Seasonal and daily patterns in known dissolved metabolites in the northwestern Sargasso Sea
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Seasonal and daily patterns in known dissolved metabolites in the northwestern Sargasso Sea

Published Web Location

https://doi.org/10.1002/lno.12497
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Abstract: Organic carbon in seawater plays a significant role in the global carbon cycle. The concentration and composition of dissolved organic carbon reflect the activity of the biological community and chemical reactions that occur in seawater. From 2016 to 2019, we repeatedly sampled the oligotrophic northwest Sargasso Sea in the vicinity of the Bermuda Atlantic Time‐series Study site (BATS) to quantitatively follow known compounds within the pool of dissolved organic matter in the upper 1000 m of the water column. Most metabolites showed surface enrichment, and 83% of the metabolites had significantly lower concentrations with increasing depth. Dissolved metabolite concentrations most notably revealed temporal variability. Fourteen metabolites displayed seasonality that was repeated in each of the 4 yr sampled. Concentrations of vitamins, including pantothenic acid (vitamin B5) and riboflavin (vitamin B2), increased annually during winter periods when mixed layer depths were deepest. During diel sampling, light‐sensitive riboflavin decreased significantly during daylight hours. The temporal variability in metabolites at BATS was less than the spatial variability in metabolites from a previous sample set collected over a broad latitudinal range in the western Atlantic Ocean. The metabolites examined in this study are all components of central carbon metabolism. By examining these metabolites at finer resolution and in a time‐series, we begin to provide insights into the chemical compounds that may be exchanged by microorganisms in marine systems, data which are fundamental to understanding the chemical response of marine systems to future changes in climate.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item