Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Independent and Stochastic Action of DNA Polymerases in the Replisome

Abstract

It has been assumed that DNA synthesis by the leading- and lagging-strand polymerases in the replisome must be coordinated to avoid the formation of significant gaps in the nascent strands. Using real-time single-molecule analysis, we establish that leading- and lagging-strand DNA polymerases function independently within a single replisome. Although average rates of DNA synthesis on leading and lagging strands are similar, individual trajectories of both DNA polymerases display stochastically switchable rates of synthesis interspersed with distinct pauses. DNA unwinding by the replicative helicase may continue during such pauses, but a self-governing mechanism, where helicase speed is reduced by ∼80%, permits recoupling of polymerase to helicase. These features imply a more dynamic, kinetically discontinuous replication process, wherein contacts within the replisome are continually broken and reformed. We conclude that the stochastic behavior of replisome components ensures complete DNA duplication without requiring coordination of leading- and lagging-strand synthesis. PAPERCLIP.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View