Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

4D Flow MR Imaging to Improve Microwave Ablation Prediction Models: A Feasibility Study in an In Vivo Porcine Liver

Abstract

Purpose

To characterize the effect of hepatic vessel flow using 4-dimensional (4D) flow magnetic resonance (MR) imaging and correlate their effect on microwave ablation volumes in an in vivo non-cirrhotic porcine liver model.

Materials and methods

Microwave ablation antennas were placed under ultrasound guidance in each liver lobe of swine (n = 3 in each animal) for a total of 9 ablations. Pre- and post-ablation 4D flow MR imaging was acquired to quantify flow changes in the hepatic vasculature. Flow measurements, along with encompassed vessel size and vessel-antenna spacing, were then correlated with final ablation volume from segmented MR images.

Results

The linear regression model demonstrated that the preablation measurement of encompassed hepatic vein size (β = -0.80 ± 0.25, 95% confidence interval [CI] -1.15 to -0.22; P = .02) was significantly correlated to final ablation zone volume. The addition of hepatic vein flow rate found via 4D flow MRI (β = -0.83 ± 0.65, 95% CI -2.50 to 0.84; P = .26), and distance from antenna to hepatic vein (β = 0.26 ± 0.26, 95% CI -0.40 to 0.92; P = .36) improved the model accuracy but not significantly so (multivariate adjusted R2 = 0.70 vs univariate (vessel size) adjusted R2 = 0.63, P = .24).

Conclusions

Hepatic vein size in an encompassed ablation zone was found to be significantly correlated with final ablation zone volume. Although the univariate 4D flow MR imaging-acquired measurements alone were not found to be statistically significant, its addition to hepatic vein size improved the accuracy of the ablation volume regression model. Pre-ablation 4D flow MR imaging of the liver may assist in prospectively optimizing thermal ablation treatment.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View