Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Fractional change of scattering and absorbing aerosols contributes to Northern Hemisphere Hadley circulation expansion.

Abstract

The relative amount of scattering and absorbing aerosols is essential in determining the aerosol radiative and climate effects. Using reanalysis datasets and climate simulations, here, we show that changes in the relative amount of scattering and absorbing aerosols in the Northern Hemisphere (NH) high latitudes, manifested as long-term decreasing trends in aerosol single-scattering albedo (SSA), have played an important role in driving the widening and weakening trends of the NH Hadley circulation (HC) since the early 1980s. Decreasing SSA in the NH middle and high latitudes can notably warm the troposphere there, thus reducing the equator-to-pole temperature gradient, increasing static stability in mid-latitude regions, and leading to the widening and weakening trends of NH HC. Further analysis of the Coupled Model Intercomparison Project Phase 6 (CMIP6) aerosol forcing-only simulations also supports the importance of SSA trends in perturbing NH HC through the above mechanism.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View