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One looks at maps, and does not truly apprehend the extent and variety of the

world.

John Williams

The cold was straight from the glaciers, racing down the smoking ocean. He thrust

junks of wood onto the coals, but the chimney barely drew. The wind, he thought,

was blowing so hard it was like a cap over the chimney. If that was possible.

Annie Proulx
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ABSTRACT OF THE DISSERTATION

Buoyancy and Stratification in Boussinesq Flow

with Applications to Natural Ventilation and

Intrusive Gravity Currents

by

Morris R. Flynn

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2006

Professor Paul F. Linden, Chair

Natural ventilation offers an efficient strategy for concurrently disposing of waste

heat and improving indoor air quality within the built environment. Most previous

studies of naturally-ventilated buildings assume a one-chamber geometry. Here, we

relax this assumption and examine by way of theory and experiments the flows that

may develop within a multi-chamber domain. A complex internal stratification of

buoyancy is typically observed, the details of which depend upon the relative sizes

of the adjacent chambers and the size/vertical location of the internal/external

openings. In contrast to simple geometries, this stratification is not necessarily

eroded by the mechanical action associated with buoyant convection from an iso-

lated internal thermal source. Consequently, the properties of the eventual steady

state cannot be determined without investigating the system’s transient evolution.

Hybrid buildings combine passive summer-time cooling by natural venti-

lation with active winter-time heating by conventional HVAC systems. A further

objective is to explore the inherent challenges associated with this dual design,

with particular reference to the hysteretic behavior that may occur when forcing

xiv



comes from two or more sources, for example internal heat gains and an external

wind shear.

This thesis also presents a separate investigation of intrusive gravity cur-

rents or intrusions, which are associated with density-driven flow along a sharp

interface. Theoretical descriptions often stress the similarity between intrusive

gravity currents and those that propagate along a solid boundary. Though helpful

in certain special cases, this association is inappropriate whenever the intrusion

density differs from the depth-weighted mean density of the upper and lower lay-

ers, when interfacial waves must be excited. We present herein a more detailed

analysis that properly accounts for this upstream influence using two-layer shallow

water theory. Model results show good agreement with analogue experimental and

numerical data.

Finally, we consider intrusions where the initial depth of intermediate

density fluid is strictly less than the channel depth such that momentum and energy

may be exchanged between the forward- and backward-propagating disturbances.

When the upstream interface remains approximately flat, the intrusion speed is

accurately predicted using a globally-conservative model.
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1

Thesis outline and scope

Whereas most theses consider a handful of closely related topics, I have

had the good fortune of pursuing parallel research projects during my time at the

Univ. of California – San Diego. The present document reflects this dichotomy and

presents detailed investigations of both natural ventilation and intrusive gravity

currents. To be sure, certain similarities exist between these disparate branches

of applied fluid mechanics, not the least of which is that both consider density-

stratified, Boussinesq flow. Moreover, as we are reminded every time we open

our front door on a cold winter’s day, gravity currents are a ubiquitous example

of the flows that may occur within real buildings. Nonetheless, most previous

studies of gravity currents (be they boundary or intrusive flows) examine their role

in environmental, rather than residential transport. This emphasis is preserved

in the present discussion. Although a study that explores the impact of gravity

currents on ventilated buildings is no doubt worthwhile, this shall not be the focus

here.

The thesis is therefore divided into two parts with Chapters 2 through 5

examining natural ventilation and Chapters 6, 7 and 8 examining intrusive gravity

currents in two-layer stratified media. In each case, the first chapter of the set

provides an introduction to the major research topic. However, in the spirit of the

“freestanding chapter” option, the discussion of Chapters 2 and 6 is relatively brief

1
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as each remaining chapter also includes a self-contained introduction.

Chapter 3 explores hysteresis and its connection to building ventilation

with particular reference to the thermal source and external wind gradient that

provide the impetus for flow. This discussion is of particular relevance in the con-

text of winter-time design of hybrid buildings and rigorously identifies conditions

whereby multiple steady ventilation states may be avoided. However, a possible

limitation of this analysis is that, as with the related studies of Linden, Lane-Serff

& Smeed [55], Woods, Caulfield & Phillips [97], Kaye & Hunt [45], Heiselberg et al.

[36] and many others, a relatively simple building geometry is considered. Thus,

in Chapters 4 and 5 I identify some of the complications and non-intuitive flow

behaviors that may arise in the ventilation of a more realistic, i.e. multi-chamber

domain.

Chapter 7 investigates intrusive gravity currents (a.k.a. intrusions) as gen-

erated by a full-depth lock release. Further to the analyses of Sutherland, Kyba

& Flynn [88] and Cheong, Kuenen & Linden [20], I demonstrate that a leading

interfacial wave must be excited in front of the forward-propagating disturbance

unless the intrusion density equals the depth-weighted mean density of the upper

and lower layers. An analytical model is developed, which predicts the intrusion

speed by combining shallow water theory with the classical, yet incomplete, de-

scription of intrusive gravity currents provided by Holyer & Huppert [37]. In this

fashion, a substantial improvement to the existing theoretical exposition is made.

Chapter 8 considers a somewhat more general circumstance where the intrusion

does not initially span the entire channel depth. Thus the forward- and backward-

propagating disturbances may under certain circumstances exchange momentum

and energy. Following the related work of Shin, Dalziel & Linden [81], a theoret-

ical model is derived that incorporates this front-to-back communication. Model

equations, which apply to a particular, yet important limiting case, are shown to

produce robust output that compares favorably with experimental and numerical

data.



3

Table 1.1: Scientific contribution arising from the present thesis.

Chapter Journal/Conference proceeding Status Co-author(s)

3 Building Environ. Submitted C. P. Caulfield
4 J. Fluid Mech. Published C. P. Caulfield
5 Proc. 6th ISSF To appear C. P. Caulfield
7 J. Fluid Mech. In press P. F. Linden
8 Phys. Fluids Submitted P. F. Linden,

T. Boubarne

Key conclusions arising from the present analyses are briefly reiterated in

Chapter 9. Moreover, certain detailed calculations and discussions are included in

the appendices. In particular, Appendix A presents a derivation of the filling-box

equations following the studies of Baines & Turner [5], Manins [62] and Worster

& Huppert [98]. These equations are used extensively in the design/analysis of

naturally-ventilated buildings. Appendix B summarizes some of the challenges as-

sociated with natural ventilation in the context of fire safety. Appendix C provides

a detailed derivation of a representative result from Chapter 5, which examines

multi-chamber ventilation by a non-ideal thermal source, i.e. one that supplies

both heat and mass to the interior environment. Appendix D considers Riemann

invariant solutions to the one- and two-layer shallow water equations. This deriva-

tion makes explicit a result from Baines [4] and provides a helpful background for

understanding the behavior of shallow water flows. Finally, Appendix E discusses

the open-source DNS algorithm that is applied in studying intrusive gravity cur-

rents generated from a partial-depth lock release. As noted above, this numerical

code is used to verify the accuracy of a complementary analytical model.

Many components of the thesis have been submitted or accepted for pub-

lication either as journal articles or as an extended abstract in a conference pro-

ceedings. Details are provided in the Acknowledgments section (page xi) and, more

succinctly, in table 1.1.
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But for the insights and helpful suggestions of my supervisors and com-

mittee members, all work summarized herein is fundamentally “my own,” with one

exception. The laboratory experiments described in Chapter 8 were conducted by

Thomas Boubarne, who visited UCSD as part of an undergraduate research pro-

gram from March to Aug. 2006. I supervised Thomas quite closely and was

ultimately responsible for the design, if not the execution, of the experimental

program. Moreover, I am familiar with the experimental methodology applied by

Thomas, it being similar to that employed during my Master’s degree at the Univ.

of Alberta (see for example Flynn & Sutherland [29] and Sutherland et al. [88]).

Thomas’s experimental data is included here because it offers further support of

the analytical model and numerical simulations described in Chapter 8.
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Natural ventilation – overview

2.1 Buildings and energy consumption

Few in the developed world would question Santamouris’ [78] observation

that “energy consumption defines the quality of urban life. . . ” Unfortunately, the

energy demands of large urban areas pose a significant strain on environmental

resources, as the following statistics illustrate. Each year, the world’s urban pop-

ulation increases by approximately 60 million residents. However, for each 1%

increase of population, urban energy consumption increases by more than 2%. A

major culprit in these alarming figures is the energy used by modern buildings,

which consume approximately 40% of the world’s energy and are responsible for

50% of global anthropogenic CO2 emissions. In the United States, which is the

world’s largest producer of CO2, a significant fraction of the energy expended by

buildings is devoted to summer-time cooling by high-consumption HVAC systems.

Indeed, it is estimated that 3.5×109 m2 of commercial space are actively cooled by

traditional air conditioners at an annual energy cost of approximately 250TWh.

(See Santamouris [78] and the references therein.)

Natural ventilation seeks to reduce this energy demand by achieving ad-

equate cooling through judicious use of freely-available resources such as wind

forcing, solar radiation and unavoidable internal heat gains. Innumerable specific

5
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strategies and technologies exist, many of which are novel adaptations of clever

pre-industrial designs such as the wind towers or “malqafs” used by the ancient

Arabians or the tepees favored the natives of the North American Plains (Ghiaus

& Roulet [31], Roulet & Ghiaus [77], http://www.wbdg.org/design/naturalventi-

lation.php). In almost all cases, however, small pressure differences, as may arise

from stack effects or wind shadows, are exploited to drive air flow between the in-

ternal and external environment and thereby remove excess heat from the interior

space. This reduces or even eliminates the need for mechanical blowers and/or

heat pumps, which are costly to install, operate and repair.

Naturally-ventilated buildings often exhibit a strong vertical stratifica-

tion of temperature. In contrast to conventional, yet inefficient HVAC systems,

the goal is to cool only that portion of the interior environment that is actively

used by building occupants or temperature-sensitive equipment. Strong internal

variations of temperature (i.e. density) are favored because (i) these give rise to

the largest possible exchange flows, and, (ii) a building’s thermodynamic efficiency

is improved as the temperature of the exiting fluid increases. When hot, buoyant

air is discharged from the roof of a building, it is simultaneously replaced with

cooler ambient air, which is advected into the building near ground level.

Clearly, natural ventilation is a poor cooling strategy in very hot and/or

hot and humid climates where even the external climactic conditions are beyond

one’s threshold for comfort. Nonetheless, the advantages of natural ventilation are

several-fold and not restricted simply to building cooling. As noted by Santamouris

[78], “natural ventilation is [also an] effective instrument to improve indoor air

quality in urban areas. . . ”

2.2 Indoor air quality

Estimates provided by the United Nations Centre for Human Settlements

suggest that 30% of the world’s buildings are inadequately ventilated such that the
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indoor air is of substandard quality (Santamouris [78]). In part, this statistic is

a reflection of external pollution, for example due to automobile or industrial ex-

haust. It must be emphasized, however, that the built environment introduces its

own surfeit of noxious chemicals. In the developed world, these include formalde-

hyde and vinyl chloride, which are minor constituents of many common building

materials (http://www.npr.org/templates/story/story.php?storyId=3851857). In

developing countries, indoor pollution is more often associated with other sources.

Smith [84] observes that “about half the population of the world continues to rely

for cooking and associated space heating on simple household stoves using unpro-

cessed solid fuels [most often wood] that have high emission factors for a range of

health-damaging air pollutants.” As a result, each year there are approximately 2

million fatalities worldwide due to the adverse health effects associated with indoor

cooking fires (Santamouris [78]).

Consequently enhanced ventilation through natural processes may also

serve an important health benefit, particularly for those without reliable access to

electricity or other power sources. As noted by Santamouris [78], “the efficient and

cheap design of components to enhance ventilation in [under-developed] settlements

is a very simple task, involving low or negligible cost.”

Notwithstanding this inherent simplicity, however, it must be reiterated

that the external resources that provide the impetus for fluid flow may be difficult

to regulate and therefore some care must be exercised in the design of naturally-

ventilated structures. Exacerbating this complication is the challenge of param-

eterizing turbulent flow in confined geometries. Proper implementation therefore

requires a multifaceted approach that draws insights from complementary theoret-

ical, numerical and experimental studies. A concise review of the advantages and

limitations of each of these modes of analysis is provided in the following section.
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2.3 Modeling naturally-ventilated buildings

Theoretical descriptions of natural ventilation using various degrees of

simplification have been developed by numerous researchers (see Linden [53] and

the references therein). Quite often, simple geometries are considered with com-

pact internal thermal sources, the convection from which is parameterized using

the turbulent plume equations developed by Morton, Taylor & Turner [66]. Typi-

cally, conduction and radiation to/from the building’s exterior surface are ignored,

as is dissipation due to viscous effects. Moreover, insofar as many models simplify

mixing dynamics and neglect the transient approach towards steady state, the in-

terior environment is often assumed to consist of a hot upper layer and cool lower

layer, which are separated by a sharp interface of infinitesimal thickness. Clearly,

this is a somewhat rudimentary approximation to the vertical density profile ex-

pected in real buildings where a smooth and gradual variation of temperature is

predicted, especially when the thermal forcing is by a number of broadly separated

and time varying sources (Liu & Linden [59]).

As described in more detail in § A.5, different considerations apply to

distributed thermal sources for which the interior space is typically well-mixed

such that spatial gradients of temperature are negligible. Gladstone & Woods [33]

show that convective fluid motions may in this case be described through a suitable

adaptation of the Rayleigh-Bénard equations. Such a treatment is required, for

example, when studying the areal heating supplied by solar radiation through large

windows.

Complementary numerical models have also been developed using com-

mercial software such as STAR-CD (http://www.cd-adapco.com) or CFX (http://

www-waterloo.ansys.com). The advantage of numerical modeling is that it offers

more flexibility in describing (at least qualitatively) the ventilation characteris-

tics of non-simple geometries. Here again, however, certain limiting assumptions

must be applied. For numerical models that restrict their attention to flows within



9

the building’s interior, an appropriate boundary condition must be employed to

connect the internal and external environments. In addition, Reynolds-averaged

Navier Stokes (RANS) algorithms of the type specified above must apply a turbu-

lence closure model to describe sub-grid dissipative effects. Typically, a so-called

k − ε model is used, which presumes a particular relationship between the turbu-

lent kinetic energy, k, and its rate of viscous dissipation, ε. Although favorable

agreement has been observed between the predictions of RANS algorithms and the

results of particular ventilation experiments (Linden [53]), commercial codes may

also become unstable or produce unreliable output for flows that are very strongly

stratified (D. T. Bolster – personal communication, Versteeg & Malalasekera [94]).

In addition, three-dimensional numerical simulations, even those that pa-

rameterize sub-grid dissipation and employ a relatively coarse grid, require sig-

nificant computational resources and therefore remain prohibitively expensive in

many cases. As a result, building designers and architects often employ so-called

network models, which reduce distinct rooms, office spaces or corridors to dis-

crete nodes that may exchange mass and energy only with their nearest neighbors,

and possibly, the external environment. The information provided by such low-

order models has proved useful in many instances. However, internal temperature

stratifications cannot be accurately accounted for except through certain ad-hoc

approaches. Consequently, network models, particularly those without a strong

theoretical foundation, may be of limited utility in the context of integrated, low-

energy design.

As a way of addressing these deficiencies, complementary physical exper-

iments have also been performed, both at full- and reduced-scale. Although the

former provide perhaps the most unadulterated quantitative data, they are diffi-

cult and expensive to perform, particularly in view of the large spaces and myriad

of measurement equipment/software that may be required. A more attractive al-

ternative, therefore, is to conduct physical experiments in the laboratory using

salt and fresh water as the working fluids. These are selected for the purposes of
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Table 2.1: Comparison between the dynamically-relevant parameters for building

flows and their laboratory analogues. Sources: Kundu [49], Potter & Wiggert [69],

http://www.www.d.umn.edu/∼ssternbe.

Laboratory Building
scale [water] scale [air]

g′ [m/s2] 0.35 0.15

Ĥ [m] 0.3 3.0
ν [m2/s] 1.0× 10−6 1.5× 10−5

D [m2/s] 2.5× 10−9 2.1× 10−5

Re 9.7× 104 1.3× 105

Pe 3.9× 107 9.6× 104

achieving a flow that is dynamically-similar to that encountered in real buildings

(Simpson [82]). Consider for example, the Reynolds and Peclet numbers, given

respectively by

Re =
û Ĥ

ν
, Pe = Re σ =

û Ĥ

D
, (2.1)

where ν is the kinematic viscosity, D is the coefficient of molecular or thermal

diffusivity, σ is the Schmidt or Prandtl number, Ĥ is a characteristic vertical

length scale and û is a characteristic velocity (Linden [53]). The latter quantity

is proportional to (g′ Ĥ)1/2 for buoyancy-driven flow where g′ = g ∆ρ/ρ0 in which

∆ρ is a characteristic density difference and ρ0 is a reference density. Therefore

Re ∼ g′1/2Ĥ3/2

ν
, Pe ∼ g′1/2Ĥ3/2

D
. (2.2)

Representative values of g′, Ĥ, ν, D, Re and Pe for both laboratory-scale and

building-scale flows are presented in Table 2.1. It is observed from columns 6 and

7 that the Reynolds and Peclet numbers are large in both cases and thus the flow is

dominated by inertial as opposed to molecular effects. By contrast, viscosity would

be much more important if the reduced-scale experiments employed air instead of

water as the working fluid.

Reduced-scale experiments offer a number of advantages. As described by

Linden [53], flows may be easily visualized using food coloring and thus important
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transient flow phenomena can be easily identified. In addition, precise quantitative

insights may also be discerned with the help of image processing equipment.

A disadvantage of this approach is that conductive and radiative effects

to/from solid boundaries cannot be modeled if salt is chosen as the active scalar.

Although this particular shortcoming may be partially resolved by employing

hot/cold rather than fresh/salty water, this selection limits the range of acces-

sible density differences and introduces other experimental difficulties. Therefore,

this method has not been rigorously pursued by experimentalists in the field (C. P.

Caulfield – personal communication). Moreover, proper modeling of wind shear ef-

fects requires a circulating water channel, which can be both expensive to fabricate

and difficult to operate. Finally, laboratory-scale experiments are not suitable for

investigating natural ventilation by a combination of temperature and humidity

effects.

Clearly, no single methodology for studying natural ventilation is suffi-

cient to provide an exhaustive description of the flow dynamics for a geometry

of arbitrary complexity. Thus, although the studies of Chapters 3, 4 and 5 fo-

cus primarily upon a theoretical development that relaxes some of the simplifying

assumptions of previous analyses, comparisons with experimental data (both our

own and that generously provided by Dr. G. R. Hunt) are made where possible

and appropriate. In so doing, we hope to elucidate some of the potential difficul-

ties associated with multi-season design of hybrid buildings and also identify some

of the key considerations associated with the ventilation of multi-chamber enclo-

sures. Both represent important outstanding problems for the “green architecture”

community.
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Hysteresis effects in natural,

blocked and mixed ventilation

3.1 Abstract

The summer-time cooling efficiency of hybrid buildings depends critically

upon exploiting multiple environmental resources to dispose of waste heat. To this

end, many previous studies have explored the role of wind, which exerts different

static pressures on a building’s windward and leeward facades. Here, we consider

how this methodology may be extended to the converse problem of winter-time

heating wherein hot, buoyant air is purposefully supplied to the interior space.

Thus a “blocked” flow regime is favored such that cold air infiltration is avoided.

In well-defined regions of parameter space, blocked conditions represent a unique

solution to the flow equations. Hence, for a given building geometry, the like-

lihood of blocking may be increased through prudent choice of extraction vent

size/orientation depending on the external forcing conditions. A discussion of the

inherent tradeoffs associated with multi-season design of hybrid buildings is also

presented.

12
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3.2 Introduction

Natural ventilation harnesses freely-available resources such as solar ra-

diation, internal heat gains and wind forcing to drive fluid flows within buildings.

It offers an economically-attractive alternative to ventilation by traditional me-

chanical systems, particularly when two or more resources work in tandem to

boost system efficiency. For example during summer months, occupant comfort

is maximized by removing the waste heat produced by electrical equipment and

other machinery. This is most effectively achieved using a displacement ventilation

scheme, which exploits pronounced vertical gradients of temperature in the indoor

environment (see e.g. figure 1(b) of Linden [53]). By judiciously locating lower and

upper openings to the exterior along the building’s windward and leeward facades,

respectively, the driving force for fluid motion may be enhanced whereby system

performance is substantially improved. More specifically, Hunt & Linden [41] ex-

amine the ventilation of a single chamber by an isolated thermal source of zero

volume flux. Consistent with the above discussion, the depth and temperature of

the buoyant layer that collects along the chamber’s ceiling decrease as the external

forcing becomes more severe.

Unfortunately, the wind direction often exhibits diurnal or seasonal vari-

ations. A reversed external flow results in an adverse static pressure gradient that

acts against the natural direction of the internal buoyant convection. This effect

has been examined for both distributed (Gladstone & Woods [33], Li & Delsante

[50], Li et al. [51], Lishman & Woods [57]) and isolated (Hunt & Linden [42],

Heiselberg et al. [36]) thermal sources. With the exception of Gladstone & Woods

[33], these analyses assume that the thermal forcing is independent of the inter-

nal temperature, T , and hence the effective source temperature, Ts, and reduced

gravity, g′s = g αe (Ts − Ta), are singular. (The source is said to be “ideal” in this

circumstance.) Here, g is gravitational acceleration, αe is the fluid’s coefficient of

thermal expansion and Ta is the temperature of the external ambient. It is observed
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that the ventilation flow supports multiple stable states for many combinations of

source strength and wind forcing. Hysteretic behavior is therefore observed such

that the transition between buoyancy- and wind-dominated flows proceeds along

different (often poorly-quantified) quasi-steady paths depending upon the flow’s

time history.

Because hysteresis effects represent a non-trivial impediment to optimiz-

ing building/ventilation design, it is desirable to identify conditions such that mul-

tiple steady states cannot occur. Non-trivial bounds to this effect may be derived

for an ideal thermal source by including wall conduction effects (Li & Delsante

[50]) or by considering an enclosure with three or more openings to the external

environment (Lishman & Woods [57]). As we demonstrate herein, the possibility

of hysteresis may be similarly curtailed by considering a “non-ideal” source, i.e.

one that supplies both heat and mass to its surroundings. Paradoxically, this anal-

ysis is of particular utility in the context of winter-time design of hybrid buildings

where deliberate heat addition to indoor spaces is required. During winter both

the naturally-ventilated and wind-dominated regimes described by Hunt & Linden

[42] are undesirable because they involve, respectively, infiltration of cold exterior

air at low- and high-level, which is likely to yield uncomfortable internal condi-

tions. Rather a “blocked” ventilation scheme is preferred such that there is outflow

through openings at all heights and indoor vertical gradients of temperature are

removed. By determining the maximal range over which multiple steady solutions

may occur, it is then straightforward to identify the area of parameter space in

which this favorable intermediate state must be realized.

3.3 Wind opposes ventilation

3.3.1 Ideal vs. non-ideal sources

The ventilation of a single chamber by an isolated, ideal, floor-level source

in the presence of an adverse wind that imposes a static pressure drop ∆p between
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H

Figure 3.1: Schematic illustration of observable flow regimes in the presence of an

adverse wind assuming (a) a zero volume flux source of infinite temperature, and,

(b) a finite volume flux source of finite temperature. In the former circumstance,

only naturally-ventilated (NV) and well-mixed (WM) states are possible. Con-

versely, when the source supplies heat and mass to its surroundings, blocking may

occur in which case there is no inflow of ambient air to the chamber.
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upper and lower openings is depicted schematically in figure 3.1a. A buoyancy-

dominated, naturally-ventilated regime with inflow of dense ambient fluid through

the lower leeward opening (effective cross-sectional area AB) and outflow of buoy-

ant fluid through the upper windward opening (effective cross-sectional area AT )

is favored only when the magnitude of the thermal forcing exceeds that exerted

by the external wind. In this circumstance, the fluid inside the chamber is com-

prised of two distinct layers that are separated by a sharp interface, as illustrated

schematically in figure 3.1a(i). The (dimensional) interface height, ξ H, can be

determined by solving

A?

H2
=

λ3/2 ξ5/3(
1−ξ
ξ5/3 − ∆p

ρ0
· λ H2/3

B
2/3
s

)1/2
(3.1)

(see (8) of Heiselberg et al. [36]). Here Bs is the source buoyancy flux, H is

the chamber height, ρ0 is a characteristic reference density (whose precise value is

immaterial if the Boussinesq approximation is applied) and A? is the effective area

defined by (2.4)b of Linden, Lane-Serff & Smeed [55]

A? =
21/2AT AB

(A2
T + A2

B)1/2
. (3.2)

In this ventilated regime, it is assumed that turbulent convection above an isolated

source is well-described by turbulent plume theory and the “filling-box” equations

of Baines & Turner [5]. Thus λ denotes the universal plume constant

λ =
6α

5

(
9α

10

)1/3

π2/3 (3.3)

based on the assumption that the plume satisfies “top-hat” distributions for the

vertical velocity and buoyancy profiles (Turner [90]). Here, α ' 0.1 is the en-

trainment constant, which gives the ratio of the lateral entrainment velocity to the

mean vertical velocity at any height between the level of the source (z = 0) and

the level of the interface (z = ξ H).

Although (3.1) provides an accurate description of dynamical behavior

for moderate ξ (see e.g. figures 9 through 11 of Hunt & Linden [42]), it also
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predicts that ξ > 0 for arbitrarily large ∆p. Because this situation is clearly

unphysical, Hunt & Linden [42] argue that the flow must eventually transition in

a discontinuous fashion to a wind-dominated, well-mixed mode in which there is

inflow through the windward opening and outflow through the leeward opening

(figure 3.1a(ii)). Here, the stable two-layer stratification that characterizes the

naturally-ventilated regime is replaced by a uniform layer of relatively buoyant

fluid that occupies the chamber’s entire vertical extent1.

Interestingly, the discontinuous adjustment described in the previous para-

graph disappears if (i) the source is non-ideal with Qs > 0 and g′s < ∞ where Qs

and g′s denote, respectively, the source volume flux and reduced gravity, and, (ii)

the following inequality is satisfied

Qs

AB

≥ (g′s H)1/2 (3.4)

in which (g′s H)1/2 denotes a characteristic velocity associated with the thermal

forcing. If (i) and (ii) are satisfied, the following sequence is expected as the wind

forcing is augmented in incremental steps starting with a small external wind

velocity. Initially, a naturally-ventilated state is anticipated with 0 < ξ < H,

QT > Qs > 0 and QB < 0 (figure 3.1b(i) – state NV). As the wind forcing

is increased, however, the interface must slowly descend toward the level of the

source, i.e. the buoyant layer becomes thicker. A critical condition is achieved once

this layer exactly fills the chamber such that ξ = 0 at which point flow through

the lower opening is arrested (i.e. QB = 0) and hence by mass balance QT = Qs

(figure 3.1b(ii)). For any ∆p larger than this critical value, 0 < (QT , QB) < Qs and

this state is maintained until the chamber’s internal stack pressure is insufficient to

drive a flow through the upper opening (Gladstone & Woods [33]). At this point

the wind forcing will have exactly impeded the buoyancy-driven flow and hence

QT = 0 while QB = Qs (figure 3.1b(iv)). Finally, for any further increase of ∆p,

1Similar discontinuities are observed in the studies of Li & Delsante [50] and Li et al. [51] although
in these analyses temperature is well-mixed over the chamber height in both the buoyancy- and wind-
dominated regimes. Indeed, it is shown by Heiselberg et al. [36] that the details of the buoyancy
stratification do not impact the quasi-steady transition between disparate states.
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QT must become negative and the chamber can only support a well-mixed flow of

the type described previously (figure 3.1b(v) – state WM)2.

Moreover, with Qs/AB ≥ (g′s H)1/2, the variation described above is con-

tinuous in the reverse direction as well. Thus if ∆p is subsequently decreased, each

of the five flow regimes illustrated in figure 3.1b are revisited. By contrast, qualita-

tively different behavior is observed when Qs > 0 but Qs/AB < (g′s H)1/2 in which

case the system cannot transition to/from the well-mixed mode in a continuous

fashion. Indeed, discontinuities may be of such severity that the blocked regime is

avoided altogether during the reverse transition towards the naturally-ventilated

state.

3.3.2 Non-ideal sources - Theory

The relative importance of wind vs. internal buoyancy may be quantified

by considering the characteristic volume flux associated with each type of forcing.

These are given, respectively, by

Qw = A?

(
∆p

ρ0

)1/2

, Qv = A2/3
? B1/3

s H1/3 . (3.5)

Consistent with (2.8) of Hunt & Linden [42], a non-dimensional wind forcing or

Froude number, F, is defined as the ratio of these fluxes, i.e.

F ≡ Qw

Qv

=

(
∆p

ρ0

)1/2 (
A?

Bs H

)1/3

. (3.6)

Similarly, the non-dimensional source volume flux is given by qs = Qs/Qv. It

provides a measure of the deviation from the ideal source condition considered by

Hunt & Linden [42]. A small departure is expected during summer months when

Qs is small (or identically zero) whereas adjustable openings such as windows have

a broad cross-sectional area, which facilitates communication between the interior

and exterior environments. Conversely, during winter months, a notable deviation

2It is assumed throughout that the driving force for fluid expulsion through the upper opening comes
strictly from the internal stack pressure, i.e. we neglect the motive force provided by auxiliary fans or
blowers, which are found on the roofs of many commercial buildings. This assumption is considered in
further detail in § 3.5.
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Table 3.1: Characteristic polynomial equations for qT in the naturally-ventilated,

blocked and well-mixed regimes. Equations are derived using the procedure out-

lined in §§ 2.1 and 2.2 of Hunt & Linden [42]. Here ξ is the non-dimensional

interface height, which becomes vanishingly small as qT → qs.

Regime Characteristic polynomial

Naturally- 0 = q3
T − 2(1− a2) qs q2

T + qT [(1− a2)q2
s + F2]− 1 + ξ

ventilated, qT > qs

(eqn. 1)

Blocked, 0 = (1− 2a2) qs q2
T − 2(1− a2)q2

s qT + (1− a2) q3
s

0 ≤ qT ≤ qs −qs F2 + 1
(eqn. 2)

Well-mixed, 0 = q3
T − (3− 2a2) qs q2

T + [3(1− a2) q2
s − F2] qT

qT < 0 −(1− a2) q3
s + qs F2 − 1

(eqn. 3)

from ideal source behavior is anticipated because heat is purposefully added to the

space e.g. through a forced air system. Also, windows are typically closed so that

A? is small3. Hence, qs is appreciably larger than zero. In the following analysis,

system performance is considered in both limiting cases qs ' 0 and qs 6' 0.

Associated with the naturally-ventilated, blocked and well-mixed flow

regimes of figure 3.1b are unique polynomial equations that relate the non dimen-

sional volume flow rate through the upper opening, qT = QT /Qv, to F, qs and the

geometric parameter

a2 =
A2

?

2A2
T

=
A2

B

A2
T + A2

B

(3.7)

(see table 3.1). Naturally-ventilated conditions are possible provided the wind

forcing is sufficiently weak to allow a volumetric flow of qT > qs through the

upper opening. The critical condition illustrated in figure 3.1b(ii) is achieved when

3Clearly A? 6→ 0 because of deliberate and non-deliberate communication with the exterior. This is
achieved, respectively, via extraction vents and imperfect seals around window and door frames.
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Table 3.2: Characteristic range of F2 associated with the flow regimes of figure 3.1b.

Column 3 indicates whether the criteria of Column 2 are necessary or sufficient to

achieve the corresponding flow state.

Regime Range of F2 Necessary/sufficient

Naturally- F2 < 1−a2 q3
s

qs
≡ F2

NV Necessary,

ventilated not sufficient

Blocked F2
NV ≡

1−a2 q3
s

qs
≤ F2 ≤ 1+(1−a2) q3

s

qs
≡ F2

BL Necessary,

not sufficient

Well-mixed F2 > 1+(1−a2) q3
s

qs
≡ F2

BL Sufficient,

not necessary

qT = qs whereupon

F2 =
1− a2 q3

s

qs

≡ F2
NV (3.8)

(see equations 1 and 2 of table 3.1). Therefore a ventilated state is anticipated

only if F < FNV and hence qT > qs. Note that F2
NV → ∞ as qs → 0, and so

naturally-ventilated behavior is always at least theoretically possible for qs = 0,

as predicted previously. By contrast, the flow will be blocked if 0 ≤ qT ≤ qs

in which case there is no infiltration of outside air through either opening. The

critical condition illustrated in figure 3.1b(iv) is realized when qT = 0. In this

circumstance, equations 2 and 3 of table 3.1 show that

F2 =
1 + (1− a2) q3

s

qs

≡ F2
BL . (3.9)

Thus blocked conditions are possible only for intermediate wind speeds correspond-

ing to FNV ≤ F ≤ FBL, and so blocking cannot occur as qs → 0. (Consistent with

this interpretation, we show in § 3.5 that FNV < FBL over the admissible range of

qs and a2.) Conversely, when F > FBL, only well-mixed conditions with qT < 0 are

possible. However, very importantly, equation 3 of table 3.1 also admits physical

roots (i.e. with qT < 0) for F < FBL and even F < FNV and thus well-mixed con-
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Figure 3.2: Non-dimensional flow rate, qT , as a function of F for a2 = 1
2

and (a)

qs = 0, (b) qs = 0.5765, (c) qs = 1, and (d) qs = 1.5. Panel (c) shows the critical

case q3
s = 1

2
(1− a2)−1 for which multiple steady states are exactly avoided.

ditions may be observed for F < FBL and/or F < FNV . (This is the non-zero qs

generalization of the observations of Hunt & Linden [42].) Therefore, the critical

conditions quantified by (3.8) and (3.9) must be interpreted with care. Specifi-

cally, as summarized by table 3.2, they provide necessary, though not sufficient,

conditions describing the existence of the naturally-ventilated and blocked regimes.

Refining the above analysis by deriving more concrete existence/uniqueness bounds

for the distinct flow regimes is a central objective of the present study.

For illustrative purposes, solutions to the polynomial equations of ta-

ble 3.1 for a2 = 1
2

are shown in figure 3.2 for a variety of qs. Although, a well-mixed

mode with qT < 0 does not appear until F has surpassed a minimum threshold, in

general, two well-mixed solutions of the correct sign (i.e. with qT < 0) are predicted

thereafter (figures 3.2a,b). As described by Li & Delsante [50], Hunt & Linden [42]
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and Lishman & Woods [57], however, only the lower branch of the curve is sta-

ble: along the upper branch |qT | is predicted to decrease as ∆p increases, which is

physically unreasonable. Therefore, whereas each individual flow regime admits at

most one stable solution, multiple stable states are nonetheless possible wherever

the composite curves of figure 3.2 become multi-valued in F, corresponding math-

ematically to the well-mixed polynomial equation having three real (one positive,

two negative) roots. As illustrated schematically in figure 3.3, hysteresis is associ-

ated with an asymmetric transition (resulting from quasi-steady variations to ∆p

and g′s) to/from the well-mixed mode.

As noted above, for an ideal source with qs = 0, FNV , FBL → ∞ and

the curves corresponding to the naturally-ventilated and well-mixed flow regimes

never intersect (figure 3.2a). As a result, the location of the forward transition

point F = FBL is necessarily ill-defined (Hunt & Linden [42]). For qs > 0, however,

(3.8) and (3.9) show that FNV < FBL < ∞. By virtue of the blocked intermediate

state, which connects the naturally-ventilated and well-mixed flow regimes, the

forward transition point is now well-defined.

Regardless of qs, the reverse transition point is also well-defined. As

suggested by figure 3.3, however, its location is dictated by the bifurcation point

that separates the stable and unstable branches of the well-mixed curve. Clearly,

this bifurcation point occurs when equation 3 of table 3.1 has a double non-positive

real root. With reference to this equation, we note that the coefficient of the linear

term changes sign once

F2 = 3(1− a2) q2
s ≡ F2

? , (3.10)

and so F2 > F2
? is a necessary (though not sufficient) condition for there to exist

well-mixed solutions simultaneously with either blocked or naturally-ventilated

solutions. Equating (3.9) and (3.10) shows that no bifurcation point can appear

in the lower half-plane when q3
s ≥ 1

2
(1− a2)−1 in which case there exists a smooth

and continuous transition between the blocked and well-mixed regimes through

the point qT = 0 (see (3.4)). By contrast when q3
s < 1

2
(1 − a2)−1, both stable
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Figure 3.3: Flow regime transition in the (F, qT ) plane. With q3
s < 1

2
(1 − a2)−1,

multiple steady states will occur for FC ≤ F ≤ FBL, i.e. in the shaded region.

The forward and backward transitions are indicated, respectively, by the solid and

dashed arrows. Flow regimes are as indicated where NV, BL and WM stand for

naturally-ventilated, blocked and well-mixed, respectively.

and unstable branches to the well-mixed polynomial appear. (Notice once again

that the limiting case qs → 0 implies the possibility of multiple solutions for all

a2.) Figure 3.2c considers the limiting case q3
s = 1

2
(1 − a2)−1 whereupon the

bifurcation point falls exactly on the line qT = 0. Conversely figure 3.2b considers

the limiting case qs = 0.5765 whereby the reverse transition exactly bypasses the

blocked regime. Thus the system displays a pronounced asymmetry: as ∆p is

progressively increased from zero, well-mixed conditions may only be achieved

through an intermediate blocked state. As ∆p is subsequently decreased, however,

the well-mixed mode transitions directly to the naturally-ventilated regime and

thus blocked conditions are never encountered. In addition, as figure 3.2b makes

especially clear, even with q3
s < 1

2
(1− a2)−1, multiple steady states can occur only

for certain choices of F, here corresponding to the range FC = 1.252 ≤ F ≤ 1.379 =

FBL. In the present context, the critical lower bound, FC (≥ F?, ≤ FBL), represents

the minimum Froude number at which multiple steady states may appear for fixed
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Figure 3.4: Variation of the critical points FNV , FBL and FC as qs is increased.

For completeness, we also indicate the variation of F?.

a2 and qs <
[

1
2
(1− a2)−1

]1/3
. In contrast to FNV and FBL, FC can only be

determined numerically, except for the special case q3
s = 1

2
(1 − a2)−1 whereby

FC = F? = FBL and hence FC is given by (3.9) or equivalently (3.10) – see

figure 3.2c. Furthermore, when q3
s < 1

2
(1 − a2)−1, it is the magnitude of FC

relative to FNV and FBL that determines the qualitative nature of the hysteresis

as well as the breadth of wind forcing over which multiple steady states may occur.

Further to figures 3.2 and 3.3, this is illustrated schematically in figure 3.4, which

shows how FNV , FBL and FC change with qs for fixed a2.

A corresponding quantitative analysis is summarized by figure 3.5, which

delineates the system’s hysteretic behavior for arbitrary a2 and qs. The solid

curve, which passes through (a2, qs) = (1
2
, 1), shows the locus of points satisfying

FC = F? = FBL wherein q3
s = 1

2
(1 − a2)−1. By contrast, the dashed curve,

which passes through (1
2
, 0.5765), shows the locus of points satisfying FC = FNV .

Consistent with the above discussion, hysteresis is not predicted if q3
s ≥ 1

2
(1 −

a2)−1 in which case FC is not defined because no bifurcation point appears for

qT < 0 and there is an exact forward-backward symmetry of the type suggested
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Figure 3.5: Hysteresis regime diagram.

by figure 3.2d. Conversely, between the solid and dashed curves, hysteresis is

observed, however a blocked regime separates the naturally-ventilated and well-

mixed modes in both directions. Finally, below the dashed curve, blocking is

encountered only during the forward transition towards well-mixed conditions; the

blocked regime is bypassed during the reverse transition from the well-mixed to

the naturally-ventilated state. The disparate regimes identified in figure 3.5 stand

in stark contrast to the study Hunt & Linden [42] for which (i) the intermediate

blocked regime is always inaccessible, and, (ii) hysteresis effects are anticipated

for all combinations of physical parameters. Thus, only one of the three regimes

is achieved.

Regardless of a2, figure 3.5 suggests that bypass hysteresis will occur for

qs
<∼ 0.53. Indeed as qs → 0, (FBL − FC) increases and thus the range of F over

which there exist multiple steady solutions grows significantly. Moreover, for small

qs, F2
BL ' q−1

s and hence the forward transition to the well-mixed mode is expected

once

F2 >∼ q−1
s . (3.11)

Consistent with the study of Gladstone & Woods [33], therefore, naturally-ventilated
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Table 3.3: Flow behaviors for various qs. Abbreviations are as given in figure 3.3

with MSS indicating multiple steady states.

Source Permissible MSS/hysteresis Description
volume flux flow regimes possible?

qs � 0 BL, WM No FNV ≤ 0
qs > 0 NV, BL, WM No Symmetry

qs
>∼ 0 NV, BL, WM Yes Non-bypass

qs
>∼ 0 NV, BL, WM Yes Bypass

qs = 0 NV, WM Yes FNV , FBL →∞

and blocked solutions are impossible once (∆p/ρ0)
1/2 > (g′s H)1/2. Here (∆p/ρ0)

1/2

denotes a characteristic vertical velocity inside the chamber associated with the

external static pressure drop exerted by the wind. When (∆p/ρ0)
1/2 = (g′s H)1/2

the opposing influences of wind and buoyancy are exactly balanced i.e. there is

outflow through both openings with QT = QB. At this unique point, the system

neither approaches nor recedes from the buoyancy- or wind-dominated regimes

as the opening areas are adjusted. Because g′s = Bs/Qs is not well-defined as

Qs → 0, no comparable equilibrium point can be identified in the equivalent zero

source volume flux problem. Indeed QT = QB does not represent a steady so-

lution to the constant flux model equations considered by Hunt & Linden [42]

because QT = QB implies QT = QB = 0 such that buoyancy accumulates inside

the chamber ad-infinitum (Lishman & Woods [57]).

From the preceding discussion we may identify five distinct categories of

flow behaviors (see table 3.3). We demonstrate in § 3.5 how this classification may

be fruitfully applied to multi-season design.

3.3.3 Comparison with experiments - Reverse transition

In the case of an ideal source, (discontinuous) transition from the well-

mixed to the naturally-ventilated mode is expected once F < 31/2/21/3. For the
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most part, favorable agreement has been observed when comparing this result

against experimental data (see e.g. figure 8 of Li et al. [51] and figures 13 and 14

of Hunt & Linden [42]). By necessity, however, experiments are performed using a

small but non-zero source volume flux, Qs. Therefore, where sufficient description

of the experimental apparatus and procedure is provided, a meaningful comparison

can be drawn between existing laboratory data and the predictions of the present

model. Here focus is restricted to the data generously provided by Dr. G. R.

Hunt (personal communication) in which there is relatively easy communication

between the internal and external spaces. Specific details of the equipment design

are summarized in Hunt & Linden [42].

Table 3.4 compares the critical values of F at which the reverse transition

from the well-mixed to the naturally-ventilated mode occurs. Consistent with

previous analyses, the agreement between theory and experiment is reasonable,

especially considering the non-trivial challenges associated with collecting robust

physical data.

3.3.4 Comparison with experiments - Forward transition

Because FNV , FBL → ∞ as qs → 0, the ideal source model equations

cannot predict the critical Froude number, Fforward, corresponding to the forward

transition to the well-mixed regime. However, Hunt & Linden [42] conclude from

experimental measurements that Fforward ' 1.6−1.7 whereas Heiselberg et al. [36]

argue that Fforward ' 1.7−2.4 based on a combination of experimental and numer-

ical investigations. Moreover, figure 14 of the former study suggests that Fforward

is independent of the opening area. With qs ' 0, however, this last observation

contradicts (3.11), which predicts that Fforward ∝ A
1/3
? . This apparent discrepancy

is most likely due to the unstable character of the naturally-ventilated mode as

ξ → 0. In this limit, Heiselberg et al. [36] note that “the [naturally-ventilated] flow

becomes very sensitive to any perturbations and the flow is [readily] switched to the

[well-mixed] state.” (Complementary mathematical arguments are summarized in
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Table 3.4: Comparison between measured and predicted values of F at which the

flow reverts from wind- to buoyancy-dominated.

qs Fexpt. Ftheo.

0.0152 1.36 to 1.43 1.3704
0.0176 1.41 to 1.51 1.3697
0.0215 1.31 to 1.37 1.3686
0.0280 1.50 to 1.59 1.3667
0.0446 1.49 to 1.54 1.3621

§ 4 of their study.) In other words, unless changes to ∆p are made excruciatingly

slowly (a particular difficulty in the context of physical experiments), well-mixed

conditions may be realized before F2 ' q−1
s . These factors appear to be at play in

figure 12c of Hunt & Linden [42] in which case the interface is heavily deformed

such that there is outflow (inflow) through the lower (upper) opening and yet

ξ̄ > 0. Here, ξ̄ denotes the horizontally-averaged non-dimensional interface height.

Assuming ∆p varies in a quasi-steady fashion inevitably leads to the most

conservative estimate of the forward transition point. Nonetheless, the model

equations of §§ 3.3.2 are helpful because they provide a hard upper bound in

describing regions where multiple steady states may occur. This idea is further

explored in § 3.5.

3.4 Wind assists ventilation

In contrast to the discussion of § 3.3, analytical complications are by and

large avoided when the wind and buoyancy forcing reinforce one another so that

∆p < 0 and therefore by (3.6) F2 < 0. This situation is realized when the lower

and upper openings are located, respectively, along the chamber’s windward and

leeward facades. In this circumstance, the well-mixed ventilation mode depicted

in figure 3.1 with inflow through the upper opening is clearly impossible: only
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Figure 3.6: Ventilation flow regimes as functions of F2 and qs assuming (a) a2 = 1
2
,

(b) a2 = 15
16

, and (c) a2 = 1
16

. Abbreviations are as given in figure 3.3 and table 3.3.

The thick solid line shows the curve F2 = F2
BL – see (3.9). Conversely, the thin

solid line shows the curve F2 = F2
NV over the range where multiple steady states

are impossible – see (3.8).

naturally-ventilated and blocked conditions are physically obtainable. Consistent

with the previous discussion, the boundary between these disparate states is easily

identified as

F2 = F2
NV . (3.12)

As with the analysis of Woods, Caulfield & Phillips [97], (3.12) predicts a2 q3
s = 1 as

the critical (non-dimensional) condition for blocking in the absence of an imposed

wind.

3.5 Discussion

The preceding analysis provides a complete picture of the disparate flow

regimes that are possible when ventilating a single chamber in the presence of

either an adverse or favorable wind. In particular for prescribed F, a2 and qs > 0

it is possible to identify categorically regions where multiple steady states cannot

be realized, i.e. the flow regime is unique.

During summer months, focus is placed upon waste heat removal. Be-
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cause this is greatly facilitated by enhancing communication between the interior

and exterior spaces, we assume qs ' 0 and thus source conditions are of secondary

importance. In addition, Linden et al. [55] suggest that qT is principally deter-

mined by the smaller of AT and AB and therefore system performance is optimized

(i.e. qT is maximized) by selecting AT ' AB. A regime diagram illustrating the var-

ious ventilation modes appropriate to this geometrical configuration is depicted in

figure 3.6a. The thick and thin solid curves correspond, respectively, to F2 = F2
BL

and F2 = F2
NV . The latter curve is shown only where the flow regime is unique

and thus does not extend into the region labeled “MSS.” Hence if the wind forcing

opposes ventilation (i.e. F2 > 0), naturally-ventilated conditions are assured only

below the dashed curve. Therefore, for any increase of F2, qs must be decreased

by opening more windows to the exterior. Although this will further increase F2,

the above strategy will nonetheless increase the level of the interface and thereby

increase and decrease, respectively, the overall flow rate through the system and

the average interior temperature.

Conversely, during winter months, heat addition/retention is of critical

importance so that extraction vents represent the only deliberate openings to the

exterior. Thus, a blocked flow regime is favored in which the internal pressure ex-

ceeds the external pressure at all heights. Moreover, because (3.12) depends on AT ,

but not AB, a transition from naturally-ventilated to blocked conditions is greatly

facilitated by choosing AT ' 0, i.e. a2 ' 1. With AT small and supposing F2 > 0,

however, it is in turn easier to transition from blocked to well-mixed conditions.

By contrast if a2 ' 0, blocking is observed over a wider (narrower) range of oppos-

ing (assisting) wind forcings. These trends are illustrated in figures 3.6b,c which

show regime diagrams of the ventilation modes assuming a2 = 15
16

and a2 = 1
16

,

respectively.

Figure 3.6 suggests a variety of alternatives with respect to optimizing

cold weather design. If the wind is predominantly unidirectional (or extraction

vents may be installed on multiple building faces and opened/closed as needed),
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there is a clear advantage in concentrating extraction vents at ceiling-level along

the building’s windward facade (i.e. a2 ' 0; figure 3.6c). By contrast, if the

wind speed and direction are highly variable, greater flexibility may be achieved

by distributing the extraction vents both along the ceiling and the floor so that

a2 >∼ 1
2

(figure 3.6a). Finally, in regions of relatively light wind activity, optimum

performance is obtained by placing extraction vents at floor-level only (i.e. a2 ' 1;

figure 3.6b).

Whichever design strategy is selected, the obvious operating objective

is to tune ventilation parameters so that blocked conditions are maintained for

a variety of external forcings. Because blocking is favored as qs is increased, this

requires striking some reasonable balance between the volumetric flow rate, Qs, and

reduced gravity, g′s, of the warm supply air. Contrary to common practice, this

procedure may be more delicate than simply increasing the air temperature, which

only exacerbates floor-level drafts! Alternatively, ∆p (i.e. F2) may be adjusted by

employing auxiliary fans or blowers at the extraction vents. This approach must

be applied with caution, however. Suppose for example, that extraction vent(s)

are located at ceiling-level (i.e. a2 ' 0). It is energetically wasteful to reduce ∆p

beyond F2 = F2
NV because at this point cold air will be advected into the building

at low levels.

3.6 Conclusions

The design of hybrid buildings in regions displaying a strong seasonal

cycle is necessarily complicated by the need to provide adequate ventilation and

cooling/heating for a variety of external conditions. Here, we explore one partic-

ular aspect of this dilemma in the context of the hysteresis effects that appear

when a building is forced by both an internal heat source and an external wind.

Further to the analyses of Li & Delsante [50] and Lishman & Woods [57], who

considered, respectively, buildings with non-trivial conductive losses and buildings
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that contain three openings to the exterior, we demonstrate that the parametric

region over which multiple steady states are possible may be significantly reduced

by considering a non-ideal thermal source with a non-dimensional source volume

flux, qs. Indeed, for sufficiently large qs there exists an intermediate flow regime

between the buoyancy- and wind-dominated states identified by Hunt & Linden

[42]. Specifically, for moderate wind forcing, the building may become blocked by

which source fluid is discharged to the external environment through both high-

and low-level openings (Woods, Caulfield & Phillips [97]).

This discussion is of limited significance in the context of summer-time

cooling for which waste heat disposal by natural ventilation is of central con-

cern and deviations from ideal source behavior (e.g. by hot machinery) are small.

However, the present analysis pertains very directly to the converse problem of

winter-time heating (e.g. by a forced air system) for which the assumption of ide-

ality cannot be applied. In this circumstance, a blocked flow regime is favored

because here alone is infiltration of cold outside air suppressed. Thus, by identi-

fying areas of parameter space in which multiple steady states may occur, we can

concurrently identify regions in which blocked conditions represent a unique flow

solution to the governing equations. Moreover, for a variety of external forcings (as

quantified here by the non-dimensional parameter F of (3.6)), particular designs

that optimize ventilation performance may be discerned.

The above results demonstrate that subtle tradeoffs may be needed for

buildings that require both active heating and passive cooling. In particular, cool-

ing by natural ventilation favors large opening areas with a2 = A2
B/(A2

B +A2
T ) ' 1

2
.

By contrast, winter-time heating favors small opening areas with a2 6' 1
2

in general.

Although much of these difficulties may be accommodated by selecting adjustable

openings to the exterior, detailed understanding of external conditions and cool-

ing/heating requirements is a clear prerequisite for effective multi-season design.

It is hoped that the engineering methodology of § 3.5 provides insights into how

such considerations may be applied to real buildings.
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Multi-chamber ventilation (ideal

source)

4.1 Abstract

Ventilation of adjacent, connected chambers forced by an isolated point

source of buoyancy is investigated. There are floor- and ceiling-level external open-

ings in the forced and unforced chambers, respectively, while the partition between

the chambers has both a floor- and ceiling-level opening. The flow evolves on the

time scale over which the volume flux associated with the plume at the ceiling

would fill both chambers. The steady state in the forced chamber is analogous to

the single chamber flow described by Linden, Lane-Serff & Smeed [55], with a well-

mixed buoyant upper layer which is deeper than in the single chamber flow due

to the extra pressure drop at the upper interior opening. The steady state in the

unforced chamber inevitably exhibits vertical stratification, and depends on the

transient flow, all the opening areas, and the relative plan area of the two cham-

bers, as is verified by laboratory experiments. When the upper interior opening

is relatively large, the buoyant layer in the unforced chamber is deeper than the

buoyant layer in the forced chamber, which contradicts model predictions based

on the assumption that the layers are always well-mixed.

34
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4.2 Introduction

Natural ventilation, by which air circulations within buildings are forced

by non-mechanical means, is a cost-effective and energy-efficient way of controlling

indoor climate in the presence of internal sources of heat. Although the equations

that describe buoyant plumes and thermals have been well-known for some time

(see for example Morton, Taylor & Turner [66], Turner [89], Baines & Turner [5],

Germeles [30], Manins [62], List [58] and Worster & Huppert [98]), it is only within

the past two decades that the benefits of applying this knowledge to architectural

design have become fully appreciated (see the review of Linden [53] for details).

Most of the studies that have been performed to date consider the ventilation of a

single chamber that is connected to the exterior by one or more openings. Analyses

have examined both steady state and transient behavior of isolated (Linden et

al. [55], herein referred to as LLS90, Kaye & Hunt [45]) and distributed sources

(Gladstone & Woods [33]), as well as the effect of a finite source volume flux

(Woods, Caulfield & Phillips [97]).

The properties of the final steady state may be determined directly from

the source conditions and/or the chamber geometry. Whereas interesting phenom-

ena may be encountered during the transient flow approach toward steady state

(e.g. the ‘overshoot’ of layer depth remarked upon by Kaye & Hunt [45]), the flow’s

time history does not affect the steady state.

To demonstrate that this behaviour is not generic, we consider the flow

shown schematically in figure 4.1. There is a point source of (constant) buoyancy

flux F0 alone in the left hand (forced) chamber of depth H, and cross-sectional

area Af . (We follow the convention that upper case roman letters are used for di-

mensional quantities.) This chamber has three openings, with in general different

effective cross-sectional areas. (For simplicity of exposition, we absorb experimen-

tally determined discharge coefficients into the various opening areas, and assume

that the pressure is constant at openings, i.e. they have infinitesimal depth. This
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Figure 4.1: Schematic figure of the flow geometry.

ensures unidirectional flow through each opening.) There is one opening (opening

‘i’ in the figure) to the exterior at the bottom of the chamber Z = 0, with effective

cross-sectional area Ai. There are also openings at the bottom (Z = 0) and top

(Z = H) of the chambers (labelled ‘b’ and ‘t’ in the figure) connecting the left hand

forced chamber to the right hand (unforced) chamber, (of cross-sectional area Au).

These openings in the central partition have effective cross-sectional areas Ab and

At respectively. Finally, the unforced chamber has an upper opening at Z = H to

the exterior (labelled ‘o’) with effective cross-sectional area Ao. Although filling

box flows in interconnected chambers have been considered before (see Wong &

Griffiths [96], Lin & Linden [52]) the principal focus has been on the transient

dynamics. The flow geometry considered here tends towards a steady state, which

nevertheless is determined by the flow’s time history.

In section 4.3, we review the the single chamber model of LLS90, fo-

cussing on the aspects of the flow which are particularly relevant to the more

general interconnected chamber flow considered here. In section 4.4, we develop

models to describe both the steady state and transient flows in the interconnected

chamber flow, treating separately cases where the buoyant layers in each chamber
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are assumed to be well-mixed or stratified at intermediate times. In section 4.5 we

discuss the important characteristics of the results of these models, briefly consid-

ering some of the implications for real ventilation flows. In section 4.6 we compare

the results of laboratory experiments to our theoretical models, and in section 4.7

we draw conclusions.

4.3 Single chamber dynamics

LLS90 considered the flow in a single forced chamber with high and low

level openings to the exterior (i.e. the flow shown in figure 1 in the absence of the

central partition). As the buoyant plume fluid rises to the top of the chamber, a

filling box flow is assumed to develop (essentially an assumption on the aspect ratio

of the chamber: see Baines & Turner [5], Hunt, Cooper & Linden [39] and Conroy,

Llewellyn Smith & Caulfield [21] for more detailed discussion), with a buoyant

layer deepening towards the floor. The presence of this buoyant layer leads to the

pressure Pf (H) within the chamber at Z = H becoming greater than the pressure

in the exterior Pe(H) at that height. This pressure differential drives a flow Qo

through the upper opening, which is given by Bernoulli’s equation

Qo = Ao

[
2

ρe

(Pf (H)− Pe(H))

]1/2

, (4.1)

where ρe is the (constant) exterior reference density, and a discharge coefficient

has been absorbed into the effective area Ao. This outflow is balanced by an equal

and opposite inflow (by convention negative) through the lower opening ‘i’, i.e.

Q0 + Qi = 0. (4.2)

Assuming that the pressure inside and outside the chamber varies hydro-

statically,

Pe(0)− Pf (0)

ρe

=
G

ρe

∫ H

Hf

(ρe − ρf ) dZ − Pf (H)− Pe(H)

ρe

=

∫ H

Hf

G′
f dZ − Pf (H)− Pe(H)

ρe

, (4.3)
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where Hf is the interface location of the buoyant layer, ρf (Z, T ) is the density

within this buoyant layer, G is the acceleration due to gravity and G′
f is the

reduced gravity of the buoyant fluid in this layer. Using Bernoulli’s equation at

Z = 0, we obtain

Qi = −Ai

[
2

∫ H

Hf

G′
fdZ −

Q2
o

A2
o

]1/2

(4.4)

→ −Qi = Qo =
AoAi[

1
2
(A2

o + A2
i )
]1/2

(∫ H

Hf

G′
f dZ

)1/2

≡ A?(If )
1/2, (4.5)

defining the effective opening area parameter A? and the buoyancy integral of the

forced chamber If .

The equation for conservation of mass, under the assumption that diffu-

sive processes are insignificant compared to advective processes, is

∂

∂T
ρf = −Wf

∂

∂Z
ρf , (4.6)

where Wf is the vertical velocity of the buoyant fluid. For the flow to be in steady

state, either ∂ρf/∂Z = 0, or Wf = 0. At steady state, the density is constant

everywhere except across a stationary interface at Z = Hf (t →∞) ≡ Hl between

a well-mixed buoyant layer and a denser layer of exterior fluid.

In the single chamber flow, the buoyancy integral If increases monotoni-

cally with time towards a steady state value, although the location of the interface

does overshoot its steady state value. The depth of the buoyant layer increases due

to the ‘filling box’ flow of plume fluid entering the layer, and decreases due to the

‘draining’ outflow Qo. Qo increases monotonically with If , while the plume volume

flux decreases monotonically as the depth of the layer increases. Since we assume

that the plume fluid spreads instantaneously horizontally with no vertical mixing

upon arrival at the ceiling of the chamber, the buoyant layer always exhibits some

vertical stratification for t < ∞.

The depth of the stratified layer always reaches its steady state value

before If has grown to its ultimate steady state value. This mismatch inevitably

leads to an overshoot in the depth of the buoyant layer, as Qo < Qp(Hl) at this time.



39

(Kaye & Hunt [45] discuss the time-dependent behaviour of this system in some

detail, under the different simplifying assumption that the buoyant layer is well-

mixed for all time, which leads to the different conclusion that the interface location

does not always overshoot. Although for flows in single chambers this difference

of approach leads to only slight quantitative differences, as we discuss in more

detail below, the well-mixed assumption cannot be applied to both interconnected

chambers without leading to significant quantitative error.)

As the buoyancy flux F0 in the plume is constant before its arrival at the

interface, the reduced gravity of the plume fluid G′
p at the interface can be simply

determined from the classical point source similarity solution of Zeldovich [102]

and Morton et al. [66]:

G′
p(Z) =

F0

Qp(Z)
=

F0

λF
1/3
0 Z5/3

; λ =
6α

5

(
9απ2

10

)1/3

, (4.7)

where α is the (assumed universal) entrainment constant. The requirements of

constant steady state density and volume of the buoyant layer are that G′
f =

G′
p(Hl) and Qp(Hl) = Qo, and so the purely geometric condition defined by LLS90

must hold:

λ3H5
l = A?

2(H −Hl). (4.8)

Furthermore, the steady state is completely independent of the flow’s time history.

4.4 Interconnected chamber dynamics

For interconnected chambers, as shown in figure 4.1, (4.2) must still hold.

Considering each chamber separately, we obtain

Qb + Qt = Qo = −Qi, (4.9)

where Qb and Qt are defined as being positive for outflow from the forced chamber.

There is always outflow through opening ‘o’, inflow through opening ‘i’,

and outflow from the forced chamber through opening ‘t’. This implies that
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Pf (H) > Pu(H) > Pe(H) and Pe(0) > Pf (0), and so

Qo = Ao

[
2

ρe

(Pu(H)− Pe(H))

]1/2

,

Qt = At

[
2

ρe

(Pf (H)− Pu(H))

]1/2

,

Qi = −Ai

[
2

ρe

(Pe(0)− Pf (0))

]1/2

. (4.10)

where we have absorbed any discharge coefficients into the effective areas. Assum-

ing that the pressure distribution is hydrostatic, we obtain

Pe(0)− Pf (0)

ρe

= If −
([Pf (H)− Pu(H)] + [Pu(H)− Pe(H)])

ρe

, (4.11)

and so

Qi

Ai

= −
(

2If −
Q2

o

A2
o

− Q2
t

A2
t

)1/2

→ −Qi = Qo = A?

(
If −

Q2
t

2A2
t

)1/2

(4.12)

Comparing (4.5) to (4.12), the presence of the unforced chamber, and hence the

associated two stage pressure drop between the forced chamber and the exterior

at Z = H manifests itself by a reduction in the ventilation flow through the entire

system.

4.4.1 Steady state flow for interconnected chambers

In steady state, since the depths of both buoyant layers are constant,

Qb(0) = 0 and hence Pf (0) = Pu(0). Therefore

0 =
2

ρe

[Pf (0)− Pu(0)] =
2

ρe

[Pf (H)− Pu(H)] + 2

∫ H

Hu

G′
u dZ − 2If ,

=
Q2

t

A2
t

− 2(If − Iu), (4.13)

where G′
u = G(ρe − ρu)/ρe is the reduced gravity of the buoyant layer in the un-

forced chamber, and Iu is the related buoyancy integral. Combining this expression

with (4.12), we obtain

Q2
i = Q2

t = Q2
o = A?

2Iu =
2A2

oA
2
i A

2
t If

A2
oA

2
i + A2

oA
2
t + A2

i A
2
t

= A?
2If

(
2A2

t

A?
2 + 2A2

t

)
. (4.14)
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At steady state, the properties of the buoyant layer in the forced chamber

can be simply determined, and the depth and reduced gravity of this layer are

completely independent of the flow’s time history. The volume flux out of the

buoyant layer in the forced chamber (here Qt) must be balanced by the volume

flux into the layer from the plume, while the density of the (well-mixed) layer in

the forced chamber must be balanced by the incoming density of the plume, and

so the analogue of (4.8) is

λ3H5
f∞ = A?

2(H −Hf∞)

(
2A2

t

A?
2 + 2A2

t

)
= A†

2(H −Hf∞), (4.15)

defining a new effective opening area A† for the interconnected chamber flow. Since

A† ≤ A?, the steady state buoyant layer is always deeper in the interconnected

forced chamber than in the single chamber, (i.e. Hf∞ < Hl where Hl is defined in

(4.8)) and hence the ventilation flow Qo is always less, due to the extra pressure

drop across the unforced chamber.

When At � A?, A† ' A?, and so the presence of the partition has

little influence on the steady state flow. Conversely, when At � A?, the interface

location is completely dominated by the value of At, as (4.15) reduces to λ3H5
f∞ '

2A2
t (H −Hf∞). This is analogous to the behaviour of the single chamber flow, as

noted in LLS90, where if Ai and A0 are very different in size, A? '
√

2 min(Ai, Ao),

and the flow is controlled by the smaller of the two opening areas.

From (4.14), the steady state flow can also be related to the buoyancy

integral Iu for the unforced chamber, in a form identical to the condition (4.5) which

pertains in the single chamber flow, since at steady state Pf (0) = Pu(0). Therefore,

the pressure difference driving the flow through Qi is the same as the pressure

difference between the exterior and the unforced chamber at Z = 0. However,

everywhere except at the ceiling of the unforced chamber, where since Qt = Qo the

buoyant fluid entering the unforced chamber immediately leaves, the steady state

flow is stationary in the unforced chamber, and so the properties of the unforced

layer cannot be determined without considering the complete flow history. Indeed,

since the buoyant layer develops transiently due to more buoyant fluid flowing
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into the unforced chamber (through opening ‘t’ from the forced chamber) than is

driven out to the exterior through opening ‘o’ to the exterior, the buoyant layer

in the unforced chamber must be vertically stratified in a way determined by the

transient evolution.

4.4.2 Transient flow dynamics for interconnected chambers

As we discuss in Appendix A, it is possible to establish that Qb ≤ 0, and

so there is never any flow through opening ‘b’ from the forced chamber into the

unforced chamber, if the buoyant layer in the unforced chamber is assumed to be

stratified. Therefore,

Qb = −Ab

(
2

ρe

[Pu(0)− Pf (0)]

)1/2

= −Ab

[
2(If − Iu)−

Q2
t

A2
t

]1/2

, (4.16)

using (4.10), closing the transient system. It is convenient for the subsequent

analysis to nondimensionalize the flow quantities.

From the properties of the steady state, A? still figures prominently, and

so we use A? to scale the two interior opening areas

at =
At

A?

, ab =
Ab

A?

, a† =
A†

A?

=

(
2a2

t

1 + 2a2
t

)1/2

. (4.17)

(We follow the convention that lower case roman letters are used for nondimen-

sional quantities.) Volume fluxes are nondimensionalized with the volume flux QH

which a point source plume with buoyancy flux F0 satisfying the similarity solution

(4.7) would have at the ceiling, i.e.

qo =
Qo

QH

, qi =
Qi

QH

, qt =
Qt

QH

, qb =
Qb

QH

, QH = λF
1/3
0 H5/3. (4.18)

The natural time scale for the flow is the filling box time scale for the two chamber

system, defined here as

Tf =
(Af + Au)H

QH

, (4.19)

i.e. the time that a source with volume flux QH would take to fill both chambers

(with total cross-sectional area Af +Au). The relative volume of the two chambers
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plays a critical role in the time-dependent behaviour of the system, and so we

define the nondimensional quantity au = Au/Af . We also scale vertical distances

with the depth H, i.e. z = Z/H, hf = Hf/H, hu = Hu/H, hf∞ = Hf∞/H, and

hl = Hl/H.

We choose to use H and G′
H = F0/QH , the reduced gravity at the ceiling

of a point source plume with buoyancy flux F0 to scale the buoyancy integrals, i.e.

iu =
Iu

G′
HH

=
λH2/3Iu

F
2/3
0

, if =
λH2/3Iu

F
2/3
0

. (4.20)

Therefore, at steady state

iu = a†
2if , (4.21)

while, in general

qo + qi = 0, qb + qt = qo, 2q2
o +

q2
t

a2
t

=
2if
µ2

, (4.22)

where µ is the nondimensional opening area parameter (or equivalently time scale

ratio) as defined in Kaye & Hunt [45], i.e.

µ2 =
λ3H4

A2
?

=
T 2

d

T 2
f

. (4.23)

The draining time scale Td is defined as

Td =
(Af + Au)H

A?(G′
HH)1/2

. (4.24)

This time scale is the characteristic time scale for buoyant fluid with this reduced

gravity to drain from the two chambers, in the absence of the internal partition.

(See Kaye & Hunt [45] for a more detailed discussion.)

Nondimensionalizing (4.16), we obtain

q2
b

a2
b

=
2(if − iu)

µ2
− q2

t

a2
t

. (4.25)

Combining this equation with (4.22), it is apparent that, provided qo ≤ qt,

iu ≤ µ2q2
o ≤ a†

2if , (4.26)
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and so a†
2if − iu ≥ 0, and iu approaches its steady state value from below for

circumstances where the buoyant layer in the unforced chamber is assumed to

remain stratified, since as discussed in Appendix A, the flow through opening ‘b’

is unidirectional.

Using (4.22) and (4.25), to eliminate qb and qt, q2
o must satisfy a quadratic

equation. Requiring that qo converges towards its steady state value qo →
√

iu/µ,

we obtain

q2
o =

iu
µ2

+
4a2

biu + [1 + 2(a2
t + a2

b)][1 + 2a2
t ][a†

2if − iu]

µ2[1− 4(a2
b − a2

t ) + 4(a2
b + a2

t )
2]

(4.27)

− [16a4
bi

2
u + 16a2

b(1 + 2a2
t )(a†

2if − iu)(a
2
biu + a2

t if )]
1/2

µ2[1− 4(a2
b − a2

t ) + 4(a2
b + a2

t )
2]

.

All the other volume fluxes can be determined from (4.22).

We assume that the plume is rising from a ‘point’ source of buoyancy

flux alone. We also assume that the plume is sufficiently narrow so that it may

be modelled as isolated, and so that, at all heights within the plume πB2 � Af ,

where B is the plume radius. This conventional assumption (see Conroy et al.

[21] for a detailed discussion) also ensures that the aspect ratio of the chamber

is sufficiently small for a quasi-steady approximation to be made, so the plume

rising through the chamber may be treated as flowing through a time-independent

ambient, which in turn evolves on a very much slower time scale.

Also, as mentioned in the Introduction, we assume that the aspect ratio

is sufficiently small so that a ‘filling box’ flow can develop, with the plume fluid

arriving at the top of the chamber and spreading to form a buoyant layer (thus

leading to stratification in the chamber) rather than driving an overturning, mixing

the fluid in the entire chamber. Finally, we assume that the flow is at sufficiently

high Reynolds numbers so that advective processes dominate diffusive processes.

We make a similar assumption in the unforced chamber, so that flow through open-

ing ‘t’ is not fast enough to overturn the buoyant layer in the unforced chamber.

Nevertheless, for solving the transient problem, four different possibilities exist,

since the buoyant layer in each chamber can be modelled as either well-mixed or
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continuously stratified.

Stratified buoyant layer in the forced chamber

In the forced chamber, using the nondimensionalization chosen, the plume

equations are

∂

∂z
q =

5

3
m1/2,

∂

∂z
m =

4fq

3m
,

∂

∂z
f = −q

∂

∂z
g′f , (4.28)

where

q =
Q

QH

, m =
M

MH

=
M(

9απ2F0H2

10

)2/3
, f =

F

F0

, g′f =
G′

f

G′
H

, (4.29)

and the boundary conditions are q(0) = 0 = m(0), f(0) = 1. The system is closed

by considering the equation for conservation of mass (4.6) at all heights in the

forced chamber. Under the above assumptions, the return velocity Wf of ambient

fluid in the forced chamber is −(Q−Qt)/Af , as there is a net flow of Qt through

the chamber. Therefore, g′f satisfies

∂

∂t
g′f = −(q − qt)(1 + au)

∂

∂z
g′f , (4.30)

with initial condition g′f (z) = 0.

Equations (4.28) and (4.30) can be solved using the method of Germeles

[30], who developed a numerical model for single chamber flow to solve (4.28)

and (4.30). The plume equations are integrated through the ambient chamber

stratification, modelled by a sufficiently large number of discrete layers, separated

by interfaces. The location of each interface is then updated using (4.30). At every

time step, a new layer is added at the ceiling of the chamber , with reduced gravity

g′p(1) given by the reduced gravity of the arriving plume fluid, which is assumed

to spread out instantly without any mixing. This model can be straightforwardly

generalized to the interconnected chamber case by tracking correctly the volume
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flux qt and the reduced gravity of fluid which leaves through opening ‘t’ at any

time instant. Using (4.22) and (4.27), qt can be determined provided iu and if

are determined. The integrals if and iu are calculated directly from the chambers’

reduced gravity distribution.

Well-mixed buoyant layer in the forced chamber

As noted by Baines & Turner [5], and discussed by Worster & Hup-

pert [98], the density stratification which develops typically has a weak variation

through much of the buoyant layer, with a region of strong variation near the base.

Also, as noted by Kaye & Hunt [45], in laboratory experiments, there is inevitably

some mixing as the plume fluid spreads at the ceiling of the chamber. It is ap-

pealing to assume that the layer is well-mixed, (mimicking the steady state) and

so only the interface location hf and the well-mixed layer reduced gravity g′f need

to be modelled. We obtain

d

dt
hf = (1 + au)(qt − h

5/3
f ),

d

dt
g′f =

(1 + au)(1− g′fh
5/3
f )

1− hf

. (4.31)

These coupled equations then can be used to describe the evolution of the buoyant

layer in the forced chamber, once again provided qt can be identified, and hence

provided iu is known, as in this case, there is the simple relationship if = g′f (1−hf ).

Stratified buoyant layer in the unforced chamber

Since the unforced chamber is supplied horizontally through opening ‘t’,

the likelihood of substantial overturning within the chamber as the buoyant layer

develops is not as significant as in the forced chamber, and the steady state is

not necessarily well-mixed. As already noted qo ≤ qt at all times, and so the

buoyant layer is continually supplied by incoming fluid from the forced chamber

through opening ‘t’, of reduced gravity g′t = g′p(1) if the forced chamber is assumed

to be stratified, or g′t = g′f if it is assumed to be well-mixed. If we assume that

there is no mixing in the unforced chamber, the net volume flux of qt − qo spreads
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out layer by layer, developing a vertical stratification in the unforced chamber.

The depth of this layer, and the value of the integral iu can be calculated by

tracking all these incoming layers, which descend at the same nondimensional

speed (qo − qt)(1 + au)/au in the unforced chamber.

Well-mixed buoyant layer in the unforced chamber

Of course, if it is assumed that the fluid in the unforced chamber is well-

mixed, it can be characterized by a single reduced gravity g′u and the interface

location hu. The equations for the evolution of these quantities then take the form

d

dt
hu =

(qt − qo)(1 + au)

au

,
d

dt
g′u =

(g′t − g′u)(1 + au)qt

au(1− hu)
, (4.32)

where g′t is the reduced gravity of the fluid entering through opening ‘t’. This

last equation is particularly interesting, as it does not involve the flow through

opening ‘o’ at all. Indeed, as we discuss in Appendix B, for this well-mixed model

it is possible for the flow to reverse direction through opening ‘b’, and hence for

the interface location hu in the unforced room to overshoot its final position. The

steady state associated with this well-mixed model occurs when qt = qo, and hence

the two interfaces are stationary. However, (4.32) implies at steady state that

g′f = g′u. Therefore, from (4.14), at steady state,

g′u(1− hu) = a2
†g
′
f (1− hf ) → (1− hu) =

2a2
t

1 + 2a2
t

(1− hf ), (4.33)

and so the buoyant layer depth in the unforced chamber is predicted to be always

less than the buoyant layer depth in the forced chamber.

We are not aware of a careful analysis of the dependence of the predic-

tions of transient models on mixing assumptions within developing layers, even

in the single chamber case. Here we will compare the results of the two extreme

situations, i.e. we will assume that both chambers remain stratified, (which we

refer to subsequently as the S-S model, denoting stratification in both chambers)

or that both may be modelled with well-mixed buoyant layers (referred to as the

M-M model, denoting well-mixed models in both chambers).



48

There is still a very large parameter space which could be considered. We

choose a single value of µ = 4, which corresponds to a steady state interface for

the single chamber flow at the midpoint hl = 1/2 of the chamber. This choice

avoids extreme values for the buoyant layer depth in the forced chamber of the

interconnected chamber flow. We are considering a situation where the draining

time scale Td (4.24) is larger than the filling box time scale Tf , (4.19) but of the

same order. To identify the influence of the other parameters, we consider eight

different situations in detail, with essentially ‘large’ and ‘small’ values for each of

the three areas at, ab and au. We are particularly interested in the extent to which

the reduced well-mixed M-M model agrees with the more detailed stratified S-S

model.

We have chosen the parameters deliberately to avoid certain complicated

flow regimes, which though potentially interesting, are beyond the scope of the

present study. For example, if the opening areas are chosen to be sufficiently

small, so that Hf∞ (as defined in (4.15)) is sufficiently close to zero, exchange flow

may occur at opening ‘b’ of buoyant fluid between the two chambers. A similar

phenomenon may occur (particularly when the unforced chamber is sufficiently

narrow compared to the forced chamber, and Hf∞ is sufficiently small) with the

buoyant layer flowing from unforced chamber into the forced chamber, thus leading

to a recycling of buoyant fluid (a phenomenon related to the some of the flows

considered in Wong & Griffiths [96]).

4.5 Model results

We consider the eight different combinations of au = 1/2 and 2, (corre-

sponding to our experimental situation) a2
t , a

2
b = 1/10, and a2

t , a
2
b = 10. In figures

4.2-4.4, we compare the important mean flow quantities predicted by the M-M

and S-S models for the various flow geometries: the flow rates qt and qo out of the

forced chamber and unforced chamber; the buoyant layer depths hf and hu; and
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the mean (or well-mixed) reduced gravities, which for the S-S model, are defined

as

g′f =
if

1− hf

, g′u =
iu

1− hu

. (4.34)

As shown in figure 4.2, in general there is a quite close agreement be-

tween the flow rates predicted by the well-mixed M-M model and the stratified

S-S model, implying that the predicted values of if and iu also agree closely. From

(4.14), increasing at increases the steady state value of the flow rate through the

system. Perhaps most interestingly, increasing at and especially ab leads to sig-

nificant transient increase in qt, which is substantially larger than qo particularly

when the forced room is relatively small compared to the unforced room, (and

hence au is large). This transient response is due to the combination of two effects:

the relatively rapid deepening of the buoyant layer in the forced room, and the

large cross-sectional area of the internal openings allowing substantial flow from

the forced room to the unforced room. For the well-mixed M-M model, typically

qt < qo eventually, so (4.39) is used to determine the flow rates, and the M-M

model predicts overshoot of the unforced layer interface, although this overshoot

is quite small.

As is apparent in figures 4.3 and 4.4, for the forced chamber, the well-

mixed M-M model also agrees closely with the stratified S-S model, as the plume

dynamics rapidly lead to the density distribution in the forced chamber being

well-mixed. The interface location in the forced chamber also exhibits overshoot,

and typically converges to a value somewhat less than that predicted for a single

chamber flow, (hl = 1/2). When the interconnecting openings are relatively large,

and so flow between the two chambers is relatively large, the reduction in the steady

state interface location is relatively small. However decreasing at can reduce the

interface location substantially, as in this case the controlling opening area A† ∼ At

in (4.15). This reduction in turn increases the steady state value of g′f substantially.

When a2
t is small, the system with a relatively small forced chamber cross-

sectional area (i.e. au large, plotted with dashed lines) exhibits slightly more rapid
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Figure 4.2: Plots against time of qt (plotted with a solid line for systems with

au = 1/2, and with a dashed line for au = 2) and qo (dotted line for au = 1/2 and

dot-dashed line for au = 2) as predicted by the stratified S-S model (thick lines)

and reduced M-M model (thin lines) for systems with hl = 1/2 and: a) a2
t = 0.1,

a2
b = 0.1; b) a2

t = 10, a2
b = 0.1; c) a2

t = 0.1, a2
b = 10; d) a2

t = 10, a2
b = 10.
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Figure 4.3: Plots against time of the forced chamber interface location hf (plotted

with a solid line for systems with au = 1/2, and with a dashed line for au = 2)

and the unforced chamber interface location hu (dotted line for au = 1/2 and

dot-dashed line for au = 2) as predicted by the stratified S-S model (thick lines)

and reduced M-M model (thin lines) for systems with hl = 1/2 and: a) a2
t = 0.1,

a2
b = 0.1; b) a2

t = 10, a2
b = 0.1; c) a2

t = 0.1, a2
b = 10; d) a2

t = 10, a2
b = 10.
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Figure 4.4: Plots against time of the mean or well-mixed forced chamber reduced

gravity g′f (plotted with a solid line for systems with au = 1/2, and with a dashed

line for au = 2) and the mean or well-mixed unforced chamber reduced gravity

g′u (dotted line for au = 1/2 and dot-dashed line for au = 2) as predicted by the

stratified S-S model (thick lines) and reduced M-M model (thin lines) for systems

with hl = 1/2 and: a) a2
t = 0.1, a2

b = 0.1; b) a2
t = 10, a2

b = 0.1; c) a2
t = 0.1,

a2
b = 10; d) a2

t = 10, a2
b = 10.
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deepening and rapid increase in g′f than the system with smaller au (plotted with

solid lines). This is due to the restriction of flow through opening ‘t’ leading to a

disproportionate amount of buoyant fluid remaining in the forced chamber, which

leads both to rapid deepening and more rapid increase in reduced gravity. The

area of the lower ‘b’ opening also has an effect on the speed of convergence of the

forced layer to its steady state value, particularly when at is large, although there

is no effect of either au or ab on the ultimate steady state in the forced chamber.

As is apparent in figures 4.2b and d, smaller ab corresponds to a smaller peak value

of qt, as the communication between the two chambers is somewhat suppressed.

There are significant differences between the predictions of the two models

for the properties of the flow in the unforced chamber. For the stratified S-S

model, there is strong dependence of the ultimate steady states on all of the area

parameters: at, ab and au. In general, increasing au increases the steady state

values of hu and g′u in such a way that the steady state value of iu = g′u(1 − hu)

is constant. When au is larger, the buoyant layer tends to be shallower in the

unforced chamber, and so the steady state reduced gravity is somewhat larger.

The relative change in g′u is largest when ab and in particular at is small, as that

corresponds to small values of the unforced chamber’s buoyant layer depth 1−hu,

which exhibit large relative changes with au.

Although increasing ab tends to decrease both interface height and re-

duced gravity at steady state, by far the strongest effects are associated with vari-

ations in at. Increasing at, and thus allowing for increased volume flow between the

two chambers even at steady state, leads inevitably to a significant increase in the

depth of the unforced buoyant layer. This deeper layer typically also has a smaller

reduced gravity. Relatively more of its volume comes from the early, transient,

peak of volume flow through the upper opening, which has low reduced gravity

since it comes from plume fluid which has been diluted through entrainment by

ambient fluid through virtually all of its rise.

Furthermore, typically, the mean reduced gravity is lower eventually in
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the unforced chamber than in the forced chamber, due to the fact that the buoy-

ant layer in the unforced chamber always contains fluid of relatively low reduced

gravity from early in the flow evolution, when the plume has been strongly di-

luted. Essentially, the stratified S-S model predicts widely varying relative depths

of the two buoyant layers. Small values of at, (and thus little flow between the two

chambers at early times) implies that hu > hf , (figure 4.3a) while larger values

of at (and to a lesser extent ab) and hence larger flow rates qt imply substantially

smaller values of hu (figure 4.3d).

The predictions of the well-mixed M-M model are qualitatively different.

The reduced gravity of the unforced layer always converges to that of the forced

layer. This forces the interface location to be given by the simple formula (4.33),

predicting that hu > hf in all cases, which is qualitatively different from the S-S

model, as shown in figure 4.3. The M-M model predicts overshoot in the unforced

layer’s interface location in all cases, and a little variation in hu with the parameter

au. Figure 4.4 shows that the predictions for g′u also depend weakly on au. For

smaller values of at, convergence to g′f is somewhat slower, due to the restriction

of flow between the two chambers.

For the S-S model, we also plot the evolution of the vertical profiles of

reduced gravity g′f and g′u in figures 4.5 and 4.6 respectively at t = n/2, n =

1, 2, . . . , 20 for systems with au = 1/2, hl = 1/2, and the four previously used

choices of at and ab. (The interfaces move downwards slightly more rapidly in

the forced chamber and conversely more slowly in the unforced chamber when

au = 2, as in each case the downwards propagation is relatively faster in the

relatively smaller chamber.) The evolution of the reduced gravity profile in the

forced chamber is very similar to the emptying filling box behaviour in a single

chamber previously considered in LLS90. Quite rapidly, the buoyant layer becomes

essentially well-mixed, and there is little vertical variation in density, and hence

little impact on qt, hf and g′f , and so it is unsurprising that the predictions of the

two models agree closely.
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Figure 4.5: Profiles of g′f (z) predicted by the stratified S-S model at times t = n/2,

n = 1, 2, . . . , 20 for systems with au = 1/2, hl = 1/2, and: a) a2
t = 0.1, a2

b = 0.1;

b) a2
t = 10, a2

b = 0.1; c) a2
t = 0.1, a2

b = 10; d) a2
t = 10, a2

b = 10.
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Figure 4.6: Profiles of g′u(z) predicted by the stratified S-S model at times t = n/2,

n = 1, 2, . . . , 20 for systems with au = 1/2, hl = 1/2 and: a) a2
t = 0.1, a2

b = 0.1; b)

a2
t = 10, a2

b = 0.1; c) a2
t = 0.1, a2

b = 10; d) a2
t = 10, a2

b = 10.
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The predictions are markedly different for the profiles of g′u in the un-

forced chamber. When at is small, the steady state buoyant layer in the unforced

chamber is relatively shallow, while the steady state value of g′f is relatively large.

Therefore small quantities of fluid with relatively rapidly varying reduced gravity

are deposited in the unforced chamber. This variation leads to a strongly stratified

final steady state in the unforced chamber. At steady state the unforced cham-

ber has no vertical motion (unlike the forced chamber) and so nonzero values of

∂ρ/∂z are not inconsistent with ∂ρ/∂t = 0 in (4.6). Indeed, although their struc-

ture is somewhat more complicated for larger values of at and ab, (associated with

the non-trivial variation with time of the flow rates through the openings) all the

profiles of g′u appear to exhibit strong vertical stratification for all times.

The time scale of convergence towards steady state is the filling box time

scale Tf for the two chamber system as defined in (4.19). Therefore, in circum-

stances where the cross-sectional area of the unforced chamber is substantially

larger than that of the forced chamber (i.e. Af � Au as defined in figure 4.1)

the approach to steady state of the forced chamber is substantially delayed by

the presence of the large, yet finite unforced chamber. This phenomenon of de-

layed convergence may have relevance in real buildings, where smaller chambers

(e.g. offices, shops) are connected to larger atria. The character of the steady

state in the unforced chamber is typically stratified, and depends strongly on the

time-dependent evolution of the flow. Particularly when the upper opening ‘t’ is

relatively large, the unforced chamber’s buoyant layer is deeper at steady state

than the buoyant layer in the forced chamber.

Indeed, large area openings connecting an unoccupied atrium to a forced

chamber lead inevitably to extensive contamination of the unoccupied atrium. Our

models predict that this behaviour occurs even when the exterior openings are

designed to be of an adequate size for the buoyant layer in the forced chamber to

be shallow, and the atrium has a relatively large cross-sectional area. This counter-

intuitive behaviour appears to be due to the fact that the stratified buoyant layer
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in the unforced chamber is constituted of fluid from the buoyant layer in the forced

chamber from different stages of the forced chamber’s development. Subsequent

use or occupation of the unforced chamber would then have to cope with this prior

contamination by buoyant fluid from the forced chamber. For the buoyant fluid

from the forced chamber to be flushed from the unforced chamber, it is essential

for the openings to the exterior to be sufficiently large compared to the upper

opening between the two chambers. This naturally involves a trade off, as such

a design will inevitably lead to a deeper buoyant layer in the forced chamber. It

thus appears sensible to avoid large disparity in the effective area A? of the exterior

openings and the upper interconnecting opening ‘t’ to optimize the depth of each

space which is not contaminated by buoyant fluid.

4.6 Laboratory experiments

To identify which of the numerical models we have discussed better pre-

dicts a real physical system, we have conducted a sequence of eight laboratory

experiments. As is conventional, the experiments were conducted in an inverted

geometry and used a descending saline plume. The experimental apparatus con-

sisted of a perspex tank of internal dimensions 91.6 cm × 30.5 cm × 31.1 cm. A

thin internal partition divided the tank such that au = 1
2

or au = 2. This in-

ternal partition contained a series of 2.54 cm diameter openings along its top and

bottom. The chambers could also communicate with the external reservoir fluid

through openings drilled along the tank’s upper and lower surfaces. For simplicity,

we considered circumstances where the external and internal partition openings

were equal in size.

We chose A? to vary from 6.08 cm2 to 18.3 cm2. The applicable nondi-

mensional parameters for the eight experiments are presented in table 1, where

at = ab = ap. The chambers were suspended in a much larger reservoir (237.5 cm

by 115.6 cm by 118.7 cm). This reservoir tank was filled to a depth of approxi-
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Table 4.1: Experimental parameter values.

Experiment hl ap au hv hf∞ hof∞ hsu∞ hmu∞ hou∞
A 0.52 1 0.5 0.078 0.49 0.49 0.50 0.66 0.52
B 0.57 1 0.5 0.078 0.53 0.54 0.56 0.69 0.57
C 0.61 1 0.5 0.080 0.57 0.58 0.61 0.72 0.62
D 0.65 1 0.5 0.078 0.61 0.58 0.65 0.74 0.66
E 0.52 1 2 0.079 0.49 0.53 0.56 0.66 0.57
F 0.61 1 2 0.079 0.57 0.53 0.65 0.72 0.56
G 0.65 0.17 0.5 0.079 0.40 0.32 0.95 0.97 0.77
H 0.57 1.5 0.5 0.083 0.55 0.58 0.48 0.63 0.48

mately 110 cm and the experimental tank was positioned such that its top surface

was approximately 11 cm below the free interface. This top surface was fitted with

a nozzle through which a saline solution was injected. The solution was itself

fed from a constant pressure head overhead tank. Flow rates were controlled via a

quarter-turn valve and measured using a rotameter. Red food colouring was added

to the saline solution for the purposes of flow visualization.

For the experiments reported upon here, the source volume flux, Qs

ranged from 1.8 to 1.9 cm3/s and the source buoyancy flux, Bs, ranged from

80 cm4/s3 to 91 cm4/s3. The nozzle design (due to Dr. Paul Cooper, see Hunt

& Linden [41] for a more detailed discussion of the design) minimized the vertical

adjustment length over which the flow became fully turbulent. We corrected for

the ‘effective origin’ hv (see Caulfield & Woods [18]), defined as

hv ≡
(

Q2
s

λ3G′
sH

5

)1/5

. (4.35)

The effective origin hv (also listed in table 1) defines the distance below the source

over which a point source plume, with the same buoyancy flux as the source would

have to rise to have the same volume flux as the source volume flux. We have

verified that, due to the small value of the source volume flux, more sophisticated

corrections (e.g. the asymptotic “virtual origin” correction suggested by Hunt &

Kaye [40]) or the results of a full calculation, considering the source volume flux
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and momentum flux explicitly, (as discussed in Woods et al. [97] for the single

chamber flow) lead to variations in predictions of interface height well within the

range of experimental error.

Before a regular filling-box flow was established, a transient ‘slumping’

phase was encountered whereby the discharged plume fluid ‘slosh[ed] up the side-

walls of the box’ (Kaye & Hunt [45]) then subsequently collapsed into a layer of

approximately uniform thickness (Hunt et al. [39]). Ambient fluid was entrained

directly into this contaminated layer. The initial density of this contaminated

layer was smaller than that anticipated from the S-S model equations of section

4.4, which assume that a filling-box flow was established instantaneously. Whereas

some fraction of this contaminated fluid was quickly re-entrained into the plume,

the remaining portion was advected into the unforced chamber where it was either

discharged through the external opening or accumulated in the expanding layer

of dense fluid. Some non-trivial ‘imprint’ of this initial transient mixing was thus

maintained in the unforced chamber, even in the long-time limit t → ∞, which

should lead to a divergence from the predictions of the stratified S-S model. Even-

tually a filling-box flow was observed, and the flow approached steady state on the

expected time scale Tf .

We measured the steady state interface locations in each chamber, which

we determine using the ‘maximum gradient’ method of Kaye & Hunt [45]. In

table 1, we list both the measured and the predicted steady state locations for

the interfaces in both the forced and unforced chamber for the eight different

experiments. The predicted steady state of the interface in the forced chamber

hf∞ can be compared with the equivalent value of hl (defined in (4.8) for a single

chamber flow) and the observed interface location (adjusted with the effective

origin) hof∞.

As expected, the presence of the unforced chamber reduces the height of

the interface above the source. This effect is most marked in the case of experiment

‘G’, when at is relatively small, and so the pressure loss through opening ‘t’ is most
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significant, as a† is dominated by at. In general, the S-S model accurately predicts

the interface location in the forced chamber. The rms error between the observed

measurements and the predictions of the S-S model is approximately 30% of the

rms error between the observed measurements and the predictions of the single

chamber model, and so it appears possible to identify the effect of the unforced

chamber quantitatively. (The well-mixed M-M model predicts the same interface

location as the S-S model.)

In table 1, we also list the steady state interface height in the unforced

chamber predicted by the stratified S-S model hsu∞, the interface height predicted

by the well-mixed M-M model hmu∞, and the observed interface height (adjusted

with the effective origin) hou∞. In general, the stratified S-S model predicts the

ultimate interface height much more accurately than the well-mixed M-M model,

although for experiment ‘G’, both models significantly under-estimate the observed

depth of the buoyant layer in the unforced chamber. This mismatch occurs when

the openings in the interconnecting partition are relatively small compared to the

openings to the exterior, and the unforced chamber is relatively small compared to

the forced chamber. The smaller interconnecting opening leads to a relatively high

velocity through the opening ‘t’ into the unforced chamber, and since the chamber

has a small cross-sectional area, this relatively high velocity fluid is likely to lead

to some overturning.

Nevertheless, the stratified S-S model is a much better predictor of the

actual interface location, with the rms error between the experimental observations

and the predictions of the S-S model being approximately 50% of the rms error

between the experimental observations and the predictions of the well-mixed M-M

model. The M-M model always predicts that the buoyant layer in the unforced

chamber is shallower than the buoyant layer in the forced chamber, and the ex-

perimental evidence shows that this is an unjustified assumption. The evidence

points strongly towards the requirement that, in general, the buoyant layer in the

unforced chamber is stratified. For example, in experiment ‘H’, where the intercon-
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necting openings were relatively large, the buoyant layer in the unforced chamber

is both predicted by the S-S model and observed experimentally to be deeper than

the buoyant layer in the forced chamber. Therefore, for the flow between intercon-

nected chambers over a wide range of parameter values, the buoyant layer depth

in the unforced chamber is well-predicted by the full transient S-S model.

4.7 Conclusions

We have considered both the transient and steady state flows which can

develop in two interconnected chambers of the geometry shown in figure 4.1. The

steady state flow in the ‘forced’ chamber (containing an isolated point source of

buoyancy flux) depends not only on the single chamber effective area A? (defined

in (4.5)) combining the lower exterior inflow opening ‘i’ in the forced chamber

(with area Ai) and the upper exterior outflow opening in the unforced chamber

(with area Ao) but also the top opening ‘t’ in the interconnecting partition (with

area At). The effect of the pressure drop associated with the flow through opening

‘t’ is to reduce the apparent effective area of the openings to A† ≤ A?, (and thus

to increase the depth of the steady state buoyant layer) compared to a single

chamber flow with the same external openings, as considered in LLS90 (c.f. (4.15)

and (4.5)). Convergence towards this steady state occurs on the filling box time

scale Tf for the two chamber system as defined in (4.19).

Although the steady state in the forced chamber is well-mixed, and has

no dependence on the previous time evolution of the flow, the steady state in

the unforced chamber is typically stratified, and depends strongly on the time-

dependent evolution of the flow towards its final steady state, as well as the areas

of all the openings and the cross-sectional areas of the two chambers. This is

a qualitatively different behaviour from that which is predicted by a model that

assumes that the fluid in each chamber is always well-mixed. Such well-mixed

models predict that the buoyant layer in the unforced chamber is always shallower
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than the buoyant layer in the forced chamber. However, evidence from analogue

laboratory experiments supports the assumption that it is essential to track the

evolving stratification in the unforced chamber if the steady state layer depth is

to be predicted correctly, capturing well a situation where the unforced chamber’s

buoyant layer depth is actually deeper than the forced chamber’s buoyant layer

depth, which is well-predicted by a stratified model.

Of course, the flow considered here is extremely idealized. For example,

we make the strong simplifying assumptions that the forced plume is a source of

buoyancy alone, that the flow through the various openings is unidirectional for

all time, and that the two chambers are initially filled with ambient fluid. Also,

we assume that the openings are of infinitesimal vertical depth, which is clearly

impossible for the interior openings. Therefore, there will inevitably be a pressure

variation across the opening, and it is more appropriate to consider the pressure

at the midpoint of the opening (see Hunt & Linden 2001 for a more detailed

discussion). Indeed, it is much more likely that either exchange flows (as considered

in Phillips & Woods [68]) or reversing flows (due perhaps to source volume flux

associated with forced air heating or air conditioning systems, as discussed by

Woods et al. [97]) may occur at different stages of the flow evolution, and that

there is at least some buoyant fluid in either or both chambers initially.

Such contamination at the start of the flow evolution and variation in

source conditions qualitatively modifies the ultimate steady state in the unforced

room, due to complex interactions between the associated draining flows, blocking

flows and filling box flows associated with the plume in the forced chamber. In all

probability, interactions of these kinds modify the paths connecting initial states to

ultimate steady states and it is necessary to consider the dynamical effects of these

interactions if we aim to develop a more complete understanding of real ventilation

flows in multi-chamber buildings.
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4.8 Appendix A: Flow through opening ‘b’ for the S-S

model

Considering the flows into the unforced chamber, if the flow remains

stratified in the unforced chamber,

d

dt
Iu = G′

f (H)(Qt −Qo) if Qt ≥ Qo,

= −G′
u(H)(Qo −Qt) if Qt < Qo, (4.36)

where G′
f (H) and G′

u(H) are the reduced gravities at the top of the forced and

unforced chambers respectively. Iu increases if and only if Qb < 0, and the depth

of the buoyant layer in the unforced chamber increases. At least initially, Qt > Qo.

Therefore, Qb < 0, which implies that Pu(0) > Pf (0), and so (4.16) applies. It is

thus impossible for Iu to exceed A2
†If , its steady state value, and so as claimed

in section 4.4.2, Iu approaches its steady state value from below. If Iu > A2
†If ,

Qt < Qo, and so Iu would have to decrease. This argument applies for all values

of Iu > A2
†If , thus implying that there is no possible time evolution by which Iu

could grow transiently larger than A2
†If while still being required to approach this

value at steady state.

4.9 Appendix B: Flow through opening ‘b’ for the M-M

model

If the flow is assumed to be well-mixed in the unforced chamber, the

appropriate equation for the evolution of the buoyancy integral Iu becomes

d

dt
Iu = G′

f (H)Qt −G′
uQo, (4.37)

where G′
f (H) is the reduced gravity at the top of the forced chamber, and G′

u

is the (well-mixed) reduced gravity of the unforced chamber. Provided G′
f (H) is

sufficiently large compared to G′
u, it is entirely possible for Iu to increase when

Qt < Qo, at least initially, and hence the argument presented in Appendix A does
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not apply. Therefore, it is possible for the buoyancy integral Iu to be sufficiently

large for the pressure Pf (0) in the forced chamber at Z = 0 to be greater than

the pressure Pu(0) in the unforced chamber at Z = 0, and so the flow Qb through

opening ‘b’ is positive (i.e. from the forced to the unforced chamber) and is given

by

Qb = Ab

(
2

ρe

[Pf (0)− Pu(0)]

)1/2

= Ab

[
Q2

t

A2
t

− 2(If − Iu)

]1/2

, (4.38)

using (4.10). Using this expression, rather than (4.16), the system is now closed,

and using the same nondimensionalization and approach as in the main body of

the text, the flow qo must satisfy

q2
o =

iu
µ2

+
[1 + 2(a2

t − a2
b)][1 + 2a2

t ][a†
2if − iu]− 4a2

biu
µ2[1 + 4(a2

b + a2
t ) + 4(a2

b − a2
t )

2]
(4.39)

+
[16a4

bi
2
u + 16a2

b(1 + 2a2
t )(a†

2if − iu)(a
2
biu − a2

t if )]
1/2

µ2[1 + 4(a2
b + a2

t ) + 4(a2
b − a2

t )
2]

.

All the other volume fluxes can be determined from (4.22). Using (4.38), it is

possible to establish that the requirement that qo > qt implies that

iu ≥ µ2q2
o ≥ a†

2if , (4.40)

and so a†
2if − iu ≤ 0 in this circumstance.

Material drawn from this chapter has been published by the Journal

of Fluid Mechanics, 2006, Flynn, M. R. and C. P. Caulfield, 564, pp. 139–158

(Cambridge University Press).
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Multi-chamber ventilation

(non-ideal source)

5.1 Abstract

Low-energy ‘natural’ ventilation offers an environmental benefit over build-

ing ventilation by high-consumption mechanical systems. However, multi-chamber

design often requires a detailed understanding of the flow’s time history, partic-

ularly when the thermal forcing is by a finite volume flux source. In this case,

theoretical models show that two distinct steady states may be achieved: a venti-

lated flow regime with inflow of ambient fluid at low-levels/outflow of buoyant fluid

at high-levels; and a blocked flow regime with outflow of buoyant fluid across the

entire chamber height. Notwithstanding the distinction between these disparate fi-

nal states, ventilation flows may also exhibit ‘transient blocking’ by which buoyant

fluid is discharged at low-levels for finite time only. For multi-chamber geometries,

such transient flows are shown to have a non-trivial impact on the properties of

the eventual (ventilated) steady state.

66
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5.2 Introduction

Indoor air quality is a critical component of maximizing occupant comfort

in modern buildings. Although air exchange with the external environment may

be forced using mechanical equipment, alternative low-energy systems are also

available, which rely upon freely accessible resources (e.g. wind forcing, internal

heat gains) to provide the motive force for fluid flow. ‘Natural’ ventilation is

particularly advantageous in temperate climates where internal vertical variations

of buoyancy may be exploited in waste heat disposal. Thus each chambers’ working

space is comprised of a layer of relatively cool ambient fluid supplied by inflow

through low-level openings. By contrast, along the ceiling is a layer of hot fluid,

which is supplied by internal thermal source(s) and flows out to the environment

through high-level openings (Linden [53]).

Previous theoretical analyses of displacement ventilation have considered the flow

behavior of both one- (Linden, Lane-Serff & Smeed [55], Gladstone & Woods [33],

Kaye & Hunt [45]) and two-chamber (Flynn & Caulfield [27]) geometries. In the

latter investigation, it is assumed that only one of the chambers is thermally-forced

yet both chambers may communicate with the external environment. In general,

the unforced chamber buoyant layer exhibits a continuous variation of density, the

details of which cannot be determined from the source conditions alone. Rather,

the transient approach towards steady state must be considered. Nonetheless, if

the thermal source supplies heat but no mass to its surroundings, the system must

evolve towards a ventilated terminal state in which there is outflow of buoyant fluid

(inflow of ambient fluid) at high- (low-) level. Here, we explore the qualitatively

disparate final steady states which may arise in inter-connected chambers when the

plume origin is a source of both heat and mass. This builds on the work of Woods,

Caulfield & Phillips [97] who showed that a single chamber forced by a finite volume

flux source of buoyant fluid and containing low- and high-level openings exhibits

two distinct steady states. If the source volume flux, Qs, is sufficiently small, the
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flow evolves to a generalization of the displacement-ventilated state, albeit with a

thicker buoyant layer for a prescribed buoyancy flux, Bs. For Qs sufficiently large,

however,

Q3
s > 2A2

U Bs H , (5.1)

where H is the chamber height and AU is the effective area of the upper opening. In

this circumstance, the steady flow is ‘blocked’ because the buoyant layer completely

fills the chamber, and there is outflow of buoyant fluid through upper and lower

openings.

With reference to a generic two-chamber geometry, we examine how the presence of

the unforced chamber may alter (5.1) and hence the selection of these qualitatively

different steady states. More critically, a novel scenario is examined in which

steady, displacement-ventilated conditions are accessed from a transient blocked

regime whereby buoyant fluid is discharged at low-level for finite time only. This

phenomenon is related to the time-dependent ‘overshoot’ of interface height that

has been documented in the case of single chamber flow by Kaye & Hunt [45]. It

arises due to a disparity of time scales over which the buoyant layer temperature

and volume approach their respective steady values. Hence, a delicate distinction

is drawn between transient and terminal blocking. The latter depends only on

the geometry of the forced chamber and is realized when a simple relation similar

to (5.1) is satisfied. Conversely, transient blocking depends upon the geometries

of both chambers, and indeed its occurrence may only be predicted numerically.

Once transient blocking occurs, however, the approach towards (and therefore,

properties of) the terminal state is demonstrably altered.

5.3 Model description

Figure 5.1 shows the two-chamber system under investigation. The left-

hand forced chamber contains a plume source at floor level (z = 0). Communica-

tion with the external ambient fluid is established through floor and ceiling-level
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Figure 5.1: Illustration of the (a) displacement-ventilated and (b) blocked states.

In both flow regimes, QB → 0 as steady-state is approached. Thus, in the blocked

terminal state, Hf = Hu = 0, i.e. both chambers are completely filled with

contaminated source fluid.

openings in the forced and unforced chambers, respectively. For simplicity, the ef-

fective area of all openings including those along the interior wall common to both

chambers we assume to be a constant, A. Furthermore, the interior openings are

assumed to be of negligible height compared to the chamber height, H. The fluid

is incompressible, inviscid and Boussinesq and the plume is sufficiently narrow in

horizontal extent so that it may be considered isolated. Letting Sf and Su denote,

respectively, the plan areas of the forced and unforced chambers, it is assumed that

Sf
<∼ Su while Qs is sufficiently small such that the buoyant layer in the forced

chamber can be approximated as well-mixed for all time (Flynn & Caulfield [27]).

This temporally-varying fluid (of depth Lf ) is supplied to the unforced chamber

by flow through the upper internal opening. Therefore, ρf (t, z > Hf ) = ρu(t,H)

where ρf and ρu denote, respectively, the densities of the buoyant layer in the

forced and unforced chambers and Hf is the forced chamber interface height. The

vertical density gradient of the unforced chamber is described by the downward

advection of isopycnal surfaces as the buoyant, upper layer increases in thickness.

The volumetric flow rates QT , QB, Qi and Qo are as indicated in figure 5.1a.

Although QT and Qo are unidirectional, QB and Qi may change sign during the
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system’s transient evolution. Moreover, both terminal states are characterized by

the condition QB = 0.

5.4 Theory

For illustrative purposes, we assume that pure plume balance is satisfied

over 0 < z < H. Hence the plume volume flux, Qp, varies with the vertical

coordinate z according to

Qp(z) = λ B1/3
s (z + zs)

5/3 , λ =
6 α

5

(
9 α

10

)1/3

π2/3 . (5.2)

Here, α ' 0.083 is the entrainment constant appropriate for two-chamber ventila-

tion flow (Lin & Linden [52]) whereas zs is the effective origin correction defined

by Caulfield & Woods [18]

zs =

(
Qs

λ B
1/3
s

)3/5

. (5.3)

Clearly, zs depends upon the relative source strength, which can be evaluated by

comparing Qs against the characteristic ventilation flow rate Qv, where

Qv = A2/3 B1/3
s H1/3 . (5.4)

When Qs < Qv, the flow is buoyancy-dominated and a displacement ventilation

regime must be realized in the long-time limit. Conversely, when Qs > Qv, the flow

is principally governed by source effects and a (stable) blocked regime is anticipated

with outflow through both exterior openings.

The total buoyancy of the forced and unforced chambers are defined, respectively,

by

If =
g

ρa

∫ H

Hf

[ρa − ρf (z)] dz, Iu =
g

ρa

∫ H

Hu

[ρa − ρu(z)] dz , (5.5)

in which g is gravitational acceleration and ρa is the density of the external ambient.

Because the forced chamber buoyant layer can be approximated as being spatially-

uniform for all time, t, (5.5)a shows that

If = g′f (H −Hf ) = g′f Lf , g′f = g

(
ρa − ρf

ρa

)
.
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Conversely, because buoyant fluid from the unforced chamber cannot be entrained

into the plume, the unforced chamber buoyant layer (of depth Lu) exhibits a con-

tinuous vertical variation of density for t →∞. Consistent with these observations,

mass and buoyancy conservation may be expressed as

dif

dt̂
= 1− qT

if
lf

,
diu

dt̂
= −qB

Sf

Su

if
lf

, (5.6)

dlf

dt̂
=

qs

ζ
5/3
s

(1− lf + ζs)
5/3 − qT ,

dlu

dt̂
= −Sf

Su

qB , (5.7)

in which ζs ≡ zs/H, lf ≡ Lf/H, lu ≡ Lu/H and t̂ ≡ t/tD where the forced chamber

draining time, tD, is given by

tD =
Sf H

Qv

=
Sf H2/3

A2/3 B
1/3
s

. (5.8)

Furthermore, if and iu are defined by

if, u ≡ If, u

(
A

Bs H

)2/3

, (5.9)

whereas qs ≡ Qs/Qv, qT ≡ QT /Qv and qB ≡ QB/Qv. These non-dimensional

volume fluxes may be expressed in terms of qo ≡ Qo/Qv using volume balance and

Bernoulli’s equation, which indicate

qT = qo − qB , (5.10)

|qB| = |2(if − iu)− q2
T |1/2 , (5.11)

|qi| = |q2
T + q2

o − 2if |1/2 , (5.12)

where

qi ≡ Qi/Qv = qs − qo . (5.13)

Eliminating qi, qT and qB from these expressions yields a quartic polynomial for

qo, which depends on the direction of flow through the lower internal and external

openings (table 5.1).

To resolve the transient approach towards steady state, (5.6) and (5.7) are solved
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using the characteristic polynomials of table 5.1 with the initial conditions if =

iu = lf = lu = 0. As t̂ → ∞, blocked conditions will be observed in the long

time limit if qs > 1. Conversely, the flow will be ventilated if qs < 1 with the

non-dimensional forced chamber interface height, hf∞ = 1− lf∞, given by

2ζ5
s

q3
s

(1− hf∞) = (hf∞ + ζs)
5/3[3(hf∞ + ζs)

10/3− 2ζ5/3
s (hf∞ + ζs)

5/3 + ζ10/3
s ] (5.14)

(c.f. (4.7) of Woods et al. [97]). Due to the ‘overshoot’ of interface height remarked

upon earlier, hf, min < hf∞. If hf, min = 0 but hf∞ > 0, transient blocking must

occur during the approach towards steady state. Thus there are two typically

distinct time scales of flow evolution. If transient blocking occurs, it will do so

when t̂ ∼ O(t̂F ), in which

t̂F ≡
tF
tD

=

(
A

λ3/2 H2

)2/3

=
ζ

5/3
s

qs

(5.15)

is the non-dimensional filling-box time scale identified by Baines & Turner [5].

By contrast, for sufficiently large source volume fluxes, ultimate steady states are

approached on time scales of the order of the non-dimensional replacement time

for both chambers, t̂R, where

t̂R ≡
tR
tD

=
1

qs

(
1 +

Su

Sf

)
. (5.16)

For many situations of practical relevance, t̂F � 1 whereas t̂R � 1.

5.5 Results

Model results for t̂ →∞ and Sf = Su are summarized in figure 5.2, which

delineates between blocked (qs > 1) and displacement-ventilated (qs < 1) terminal

states. In the latter case, curves of constant lf∞ are shown by the thin solid lines,

which indicate that for fixed ζs, lf∞ increases with qs. The dash-dotted lines show

the curves lf∞/lu∞ = 1.4, 1.5 and 1.6 which give the relative depth of the buoyant

layers at steady state.
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Table 5.1: Characteristic polynomials for qo. Here qb > 0 indicates a flow from

the forced chamber to the unforced chamber whereas qi > 0 indicates an outflow

through the lower external opening.

Flow regime Characteristic polynomial

qB > 0, qi > 0 0 = 1
4
q4
o + 2qs q3

o − q2
o [q2

s + if ] + i2f

qB < 0, qi > 0 0 = 1
4
q4
o + q2

o [4q2
s + iu − if ]− 4qs qo [q2

s + if + iu]
+[q2

s + if + iu]
2

qB < 0, qi < 0 0 = 17
4

q4
o − 8qs q3

o + q2
o [8q2

s − 5if − 3iu]− 4qs qo [q2
s − if − iu]

+[q2
s − if − iu]

2

qB > 0, qi < 0 0 = 9
4
q4
o − 2qs q3

o + q2
o [q2

s − if − iu] + [if − iu]
2

Within the displacement-ventilated regime, transient blocking is predicted at all

points to the left of the thick solid line. As expected, lf∞ is relatively large in this

region of parameter space, and so little overshoot is required to cause transient

outflow through the lower external opening. This transient flow does not alter the

properties of the forced chamber at steady state, which may be determined directly

from the source conditions – see e.g. (5.14). However, the impact of transient

blocking with respect to the properties of unforced chamber is striking. Thus,

from figure 5.2, the curve labeled ‘lf∞/lu∞ = 1.4’ displays a pair of pronounced

‘kinks’ where it intersects with the thick solid curve. Transient blocking results

in an abrupt adjustment to the flow’s temporal trajectory because buoyant fluid

is now withdrawn from openings distributed across different heights. Once this

occurs, a smaller fraction of buoyant fluid is available to collect along the ceiling

of the unforced chamber and thus lu∞ is correspondingly reduced.
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Figure 5.2: Ventilation flow regimes as a function of qs ≡ Qs/Qv and ζs ≡ zs/H.
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5.6 Conclusions

To resolve fully the steady state properties of a multi-chamber ventilation

flow, the system’s time evolution must be examined with a particular focus on the

number/size/vertical location of openings through which buoyant fluid may flow

into the external environment. Because the forced chamber buoyant layer will

always ‘overshoot’ its steady state depth, a transient outflow of buoyant fluid from

the forced chamber must occur anytime an exterior opening is located between

the minimum and terminal interface heights. The approach towards steady state

is notably perturbed if such a transient outflow is realized. This is manifested by

depressed values for the buoyant layer depth in the unforced chamber(s).

Material drawn from this chapter will be included as an extended ab-

stract in the proceedings of the 6th International Symposium on Stratified Flows,

2006, Flynn, M. R. and C. P. Caulfield (International Association of Hydraulic

Engineering and Research).
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Intrusive gravity currents –

overview

Gravity currents may be defined as the horizontal, boundary flows that

arise from density differences between immiscible or partially-miscible fluids. As

documented by Simpson [82], many examples of gravity currents may be drawn

from the natural environment. These include snow avalanches, which represent a

particular danger to skiers and mountaineers, sea breeze fronts, which are responsi-

ble for transporting pollution far inland away from coastal areas and thunderstorm

outflows, whose intense turbulence has resulted in numerous airplane crashes (Lin-

den & Simpson [56]). Gravity currents also play an important role in estuarial

exchange processes. Under appropriate conditions (i.e. small tidal stream veloc-

ities and large river output), a pronounced two-layer stratification may develop

near river outflows, as illustrated schematically in figure 6.1. Thus, relatively fresh

water may be transported along the surface of the ocean whereas a gravity current

in the form of a “salt wedge” travels upstream along the river bed. The surface

contact line, or front, between these disparate water masses is a zone of local con-

vergence that may be demarcated by small marine biota or other floating debris

(see for example figure 7.7 of Simpson [82]).

Analogous mechanisms apply to the ventilation of fjords, which are typi-
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Ocean

Front
Free surface

River water

Salt wedge

Bottom boundary

Figure 6.1: Estuarial transport by light and dense gravity currents. After figure 7.5

of Simpson [82]

cally connected to the ocean through shallow sills. However, as shown in figure 6.2

and described in detail by Simpson [82], a more gradual vertical density profile

is often encountered in this particular marine environment. Thus, although the

exchange flow immediately downstream (i.e. to the left) of the sill is similar to the

free-surface gravity current depicted in figure 6.1, important differences appear

upstream of this topographic extremum. In particular, as the gravity current of

salty, ocean fluid descends down the slope, it vigorously entrains brackish water

thereby reducing the density disparity between the gravity current and its sur-

roundings. For slow flows with small inertia, the gravity current is expected to

detach from the lower (solid) boundary once its density matches that of the local

ambient. Thereafter, the gravity current propagates inside the fluid along a par-

ticular isopycnal surface. Flows of this type are commonly referred to as intrusive

gravity currents or intrusions and may be noted in many other natural settings, as

for example with high-level thunderstorm outflows, which are associated with the

formation of anvil clouds. Moreover intrusions of polluted air are observed when

the buoyant effluent from a tall smokestack encounters an atmospheric inversion,

across which a rapid vertical variation of density is observed. Similar observations

often apply in the study of volcanic eruptions, albeit with the added complication

of particle/ash deposition (Huppert [43], [44]).

As the preceding examples illustrate, we may distinguish between two
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z
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Figure 6.2: Exchange flows within fjords. A representative vertical density profile

is shown at right. After figure 7.10 of Simpson [82]

different types of intrusions: those that propagate within a continuously stratified

media (Schooley [79], Wu [99], Schooley & Hughes [80], Manins [63], Amen & Max-

worthy [1], Rooij [23]), and those that travel along the interface between upper and

lower layers of approximately uniform density (Holyer & Huppert [37], Britter &

Simpson [16], Faust & Plate [26], D’Alessio et al. [22], Mehta, Sutherland & Kyba

[65], Lowe, Linden & Rottman [60], Sutherland, Kyba & Flynn [88]). Of particular

interest here are intrusions of the latter category, theoretical descriptions of which

often stress a topological similarity to the gravity currents described by Benjamin

[7] (see also von Kármán [95]). However, we hope to demonstrate that this as-

sociation is not, in general, exact. Thus substantial modifications to Benjamin’s

analysis may be required, for example to account for upstream interfacial wave

excitation (Chapter 7) or non-standard initial conditions (Chapter 8).

In both Chapters 7 and 8, model results are compared against analogue

numerical simulations and laboratory experiments. Although the associated time

and length scales are significantly smaller than those appropriate to most natu-

ral flows of interest, meaningful insights may nonetheless be drawn from simu-

lations/experiments provided the Reynolds number is sufficiently large such that

viscous effects do not exert a leading order influence. Indeed, this modeling ap-

proach has been successfully applied in many previous studies (Linden [54]).
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Intrusive gravity currents

(full-depth)

7.1 Abstract

The speed of a fluid intrusion propagating along a sharp density interface

is predicted using conservation of mass, momentum and energy. For the special

case in which the intrusion density equals the depth-weighted mean density of

the upper and lower layers, the theory of Holyer & Huppert [37] predicts that the

intrusion occupies one-half the total depth, its speed is one-half the interfacial long

wave speed and the interface ahead of the intrusion remains undisturbed. For all

other intrusion densities, the interface is deflected vertically by a wave that travels

ahead of the intrusion and thereby changes the local upstream conditions. Unless

the upper- or lower-layer depth is very shallow, the horizontal extent of the wave is

much larger than its vertical extent. In these cases, the conservation equations can

be matched to an exact solution of the two-layer shallow water equations, which

describe the evolution of the (nonlinear) long wave. We obtain predictions for the

intrusion speed that match closely to experiments and numerical simulations, and

with a global energy balance analysis by Cheong, Keunen & Linden [20]. Since the

latter does not explicitly include the energetics of the upstream wave, it is inferred

79



80

that the energy carried by the long wave is a small fraction of the intrusion energy.

However, the new more detailed model also shows that the kinematic influence of

the upstream wave in changing the level of the interface is a critical component of

the flow that has previously been ignored.

7.2 Introduction

The oceans and atmosphere exhibit regions of rapid vertical density vari-

ation, such as the thermocline and tropopause. Consequently, horizontal, density-

driven flow along a sharp interface arises in a variety of natural settings (Simpson

[83]). Such flows are commonly referred to as interfacial gravity currents or intru-

sions and have been the subject of extensive experimental investigations (Britter

& Simpson [16], Mehta, Sutherland & Kyba [65], Lowe, Linden & Rottman [60],

Sutherland, Kyba & Flynn [88], Cheong, Kuenen & Linden [20]). Each of these

studies examines high-Reynolds number intrusions generated by lock releases –

fluid of density ρi intermediate to that of the two layers is initially separated by a

vertical lock gate. The intrusion is initiated by removing the gate vertically. We

are concerned with the case where the motion is independent of the lock length

and hence the intrusion dynamics are not influenced by finite-volume effects. It is

observed that, consistent with dimensional analysis, the propagation speed, U , is

a constant which depends upon ρi and the layer depths and densities. Decelera-

tion will be observed only when the flow becomes self-similar, which occurs once

reflected disturbances from the end wall overtake the intrusion head (Rottman &

Simpson [76], Bonnecaze, Huppert & Lister [15]).

A theoretical description of intrusions that satisfactorily predicts U over

a broad range of parameter space remains incomplete. In particular, complications

arise when describing non-equilibrium flow for which the intrusion density, ρi, dif-

fers from the depth-weighted mean density, ρE, of the upper and lower layers.

Energy arguments in the spirit of Yih [100] suggest that the available potential
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energy of an equilibrium intrusion is a global minimum and consequently U > UE

when ρi 6= ρE. More specifically, a quadratic departure from the equilibrium

solution is predicted, which shows favorable agreement with related experiments

and (2D) direct numerical simulations (Cheong et al. [20]). However, this energy-

conserving approach is based on the assumption that the leading-order behavior

of non-equilibrium intrusions may be recovered by judicious interpolation of three

well-known flows, namely heavy and light gravity currents and the equilibrium

intrusion. Therefore, although the assumptions applied by Cheong et al. [20] pro-

vide a model in good agreement with experiments, they remain to be justified by a

more rigorous examination of non-equilibrium flow that includes some quantitative

description of the various forces at play.

The foundations of such an analysis were established in the earlier work of

Holyer & Huppert [37] who extended the gravity-current study of Benjamin [7] by

considering mass, momentum and energy conservation in a control volume moving

with the intrusion head. In the equilibrium case, Holyer & Huppert’s analysis

accurately predicts the intrusion speed, U . However, when ρi 6= ρE, there are

significant discrepancies between the predicted and observed speeds (Sutherland

et al. [88]). These discrepancies are due to the observed upstream deflection of the

interface that is caused by a wave propagating ahead of the intrusion. Although

Holyer & Huppert [37] considered the possibility of downstream wave propagation

(i.e. a stationary wave train behind the intrusion head), this upstream deflection is

not properly accounted for in their theory. Consequently in many circumstances,

the upstream conditions assumed in their calculations do not apply. Here we

model this upstream deflection explicitly by assuming that the interfacial wave is

long. From experimental images of the flow, this assumption is justified unless

the interface is very close to either the upper or lower boundary. Estimates for

the non-equilibrium intrusion speed are thereby determined, which apply over a

broad range of parameter space. Whereas the outcome of this analysis produces

results similar to those of Cheong et al. [20], these approaches are nonetheless
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fundamentally distinct as the latter is a simple energy balance in the spirit of Yih’s

calculation for a gravity current produced by lock exchange i.e. entirely different

balances are applied in deriving the respective governing equations.

The paper is organized as follows: we briefly review Holyer & Huppert’s

analysis in § 7.3 and equilibrium intrusions in § 7.4. Non-equilibrium intrusions

including the effect of the nonlinear upstream wave are discussed in § 7.5 and the

results are compared with experiments and two-dimensional numerical calculations

in § 7.6. The conclusions are given in § 7.7.

7.3 Holyer & Huppert’s theory

We consider an intrusion of density ρi propagating at constant speed U

along an interface between upper and lower layers of respective depths HU and HL.

Upstream and downstream of the intrusion front, the flow is assumed horizontal

such that the pressure p is hydrostatic. Therefore, along the vertical segment BC

p =

 pQ − g ρU z, 0 < z < HU ,

pQ − g ρL z, −HL < z < 0,
(7.1)

where ρU and ρL are, respectively, the densities of the upper and lower layers, g

denotes gravitational acceleration, z = 0 corresponds to the height of the inter-

face and pQ is the pressure along the interface far upstream from the intrusion

(figure 7.1). Similarly, along AD

p =



pR − g ρi hU − g ρU (z − hU), hU < z < HU ,

pR − g ρi z, 0 < z < hU ,

pR − g ρi z, −hL < z < 0,

pR + g ρi hL − g ρL (z + hL), −HL < z < −hL,

(7.2)

where hU and hL represent the vertical distances shown in figure 7.1. In this frame,

all the fluid inside the intrusion is at rest (cf. Lowe, Linden & Rottman [60]). Hence

pR = pO, the pressure at the stagnation point.
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Figure 7.1: Definition sketch of an intrusion (shaded) and the control volume

ABCD. The frame of reference is chosen so that the intrusion is at rest.

It is assumed that energy is conserved so that Bernoulli’s equation may

be applied along streamlines in the flow. Therefore, along the lower boundary of

the intrusion downstream from the stagnation point1, we find

u2
L = 2g′Li hL = 2g′Li (HL − dL) , (7.3)

where

g′Li ≡ g
ρL − ρi

ρ0

,

is the reduced gravity of the intrusion and the lower layer and ρ0 is a character-

istic density whose precise value is immaterial if the Boussinesq approximation is

applied. Similarly,

u2
U = 2g′iU hU = 2g′iU (HU − dU) , where g′iU ≡ g

ρi − ρU

ρ0

. (7.4)

Here dU and dL are the layer depths specified in figure 7.1. Since the layer volume

fluxes are constant, these depths are given by

dU =
U HU

uU

, dL =
U HL

uL

. (7.5)

1Strictly speaking, the stagnation point is deflected upwards by a distance ζ = U2

2g
relative to the

interface (see (2.24) of Holyer & Huppert [37]). However, this elevation is negligible for most flows
of practical interest. Consistent with the Boussinesq approximation and figure 7.1, therefore, we shall
assume ζ ≡ 0.
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From (7.3), (7.4) and (7.5), conservation of mass therefore requires

g′iU
(HU − dU) d2

U

H2
U

= g′Li

(HL − dL) d2
L

H2
L

. (7.6)

An independent relation for dU and dL is obtained via horizontal momen-

tum conservation in the control volume ABCD. Because there are no externally-

imposed forces,
D∫

A

(p + ρ u2) dz =

C∫
B

(p + ρ u2) dz . (7.7)

Using the hydrostatic pressure distributions (7.1) and (7.2) and the layer speeds

given by (7.3) and (7.4), we find

pO − pQ

ρ0

H = g′iU

{
1
2
(H2

U − d2
U)− 2dU

HU

(HU − dU)2

}
+g′Li

{
1
2
(H2

L − d2
L)− 2dL

HL

(HL − dL)2

}
. (7.8)

Applying Bernoulli’s equation upstream along the interface, a second expression

for pO − pQ is obtained

pO − pQ

ρ0

H = g′iU
d2

U

HU

(HU − dU) + g′Li

d2
L

HL

(HL − dL) . (7.9)

Equating (7.8) and (7.9) gives

g′iU
(HU − dU)2 (HU − 2dU)

HU

+ g′Li

(HL − dL)2 (HL − 2dL)

HL

= 0 . (7.10)

Equations (7.6) and (7.10) are, respectively, the Boussinesq limits of the

mass and momentum conservation equations first derived for arbitrary density

differences by Holyer & Huppert [37] and written in this fashion by Sutherland

et al. [88]. Although both equations are nonlinear in the dependent variables

dU and dL, substantial simplification is possible for certain special cases, as we

demonstrate in the following section.

7.4 Equilibrium intrusions

The easiest circumstance to consider is that of a doubly-symmetric intru-

sion, for which HU = HL and ρi = 1
2
(ρL + ρU). This intrusion can be considered
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as two gravity currents, one above and its mirror image below the interface, trav-

eling at the same speed, U (e.g. figure 7(a) of Lowe et al. [60]). In this case,

g′Li = g′iU and (7.6) is satisfied by dU = dL = D, say. Substituting this result in

(7.10), we find two solutions D = H
2

and D = H
4
. The first solution corresponds

to an intrusion with zero thickness h ≡ hU + hL = 0, which, as in the bottom-

propagating gravity current case, is the energy-conserving intrusion for infinitely

deep layers HU = HL →∞. The second solution corresponds to h = H
2
, and is the

energy-conserving half-depth solution described on p. 751 of Holyer and Huppert

[37].

This special case can be generalized to other instances in which the in-

trusion consists of two gravity currents that are, in effect, mirror images of one

another. This equilibrium condition is realized whenever the intrusion is neutrally-

buoyant with respect to the undisturbed interface such that

g′iU hU = g′Li hL . (7.11)

Equation (7.11) implies that the speeds uL and uU are equal. Thus

dU

HU

=
dL

HL

=⇒ dL + dU = 1
2
H , (7.12)

where conservation of mass and momentum has been applied. Hence an equilibrium

intrusion occupies half the channel depth. Further because (7.12) implies hU

HU
= hL

HL
,

the neutral buoyancy condition (7.11) can be written as

ρi = ρE ≡
ρU HU + ρL HL

H
. (7.13)

Thus when the intrusion density is the depth-weighted mean density ρE given by

(7.13), a consistent solution to the mass, momentum and energy equations is found

in which the interface remains undisturbed ahead of the intrusion (Sutherland

et al. [88]). Note that (7.13) specifies either the equilibrium intrusion density ρE if

the layer depths and densities are given or, if the intrusion and both layer densities

are given, the equilibrium interface height hE defined by

hE

H
=

g′iU
g′LU

, (7.14)
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where g′LU = g′iU + g′Li is the reduced gravity of the interface. Moreover, since

hL + hU = H
2
, some simple manipulation shows that

hL =
hE

2
, hU =

H − hE

2
. (7.15)

Finally, the intrusion speed can be determined from (7.3) and (7.5)

UE = 1
2

√
g′LU

hE (H − hE)

H
. (7.16)

This result is in good agreement with the equilibrium experiments and simulations

reported in Cheong et al. [20] – see their figure 5. Nonetheless, (7.16) requires

substantial modification for the case of non-equilibrium flow for which the stagna-

tion point is deflected vertically by a wave that travels ahead of the intrusion. As

we illustrate in § 7.5, this necessitates an explicit coupling of intrusion and wave

dynamics.

7.5 Non-equilibrium intrusions

The flow domain is divided into two control volumes as illustrated in

figure 7.2. Control volume ABEF encompasses the (steady) intrusion, which is

assumed stationary relative to the oncoming flow. Conversely, control volume

BCDE encompasses the nonlinear (long) wave of amplitude d, which propagates

upstream at a velocity c− U > 0 (in the moving reference frame).

7.5.1 Intrusion

Due to wave-induced shear, the velocities of the upper and lower layers

are different and are given, respectively, by U + wU and U −wL where wU and wL

denote perturbations to the uniform upstream flow field considered in § 7.3. This

disparity leads to an interfacial deflection −ξ near the stagnation point O’ where

ξ =
(U + wU)2 − (U − wL)2

2g′LU

. (7.17)
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Although the flow is Boussinesq, this displacement will be appreciable if ρi 6' ρE.

In general, therefore, |ξ| 6� hU , hL and by Bernoulli’s equation

uU =
√

2g′iU (DU − dU + ξ) , uL =
√

2g′Li (DL − dL − ξ) , (7.18)

where DU = HU − d and DL = HL + d denote, respectively, the perturbed upper

and lower layer depths (figure 7.2). Applying these results in the mass conservation

equations for the upper and lower layers yields

U + wU =
dU

DU

√
2g′iU (DU − dU + ξ) , (7.19)

and

U − wL =
dL

DL

√
2g′Li (DL − dL − ξ) , (7.20)

respectively. By combining these results with (7.17), ξ can be expressed entirely in

terms of the distances dU , dL, DU and DL and the reduced gravities g′iU , g′Li and

g′LU

ξ =

g′
iU

g′
LU

d2
U

D2
U

(DU − dU)− g′
Li

g′
LU

d2
L

D2
L

(DL − dL)

1− g′
iU

g′
LU

d2
U

D2
U
− g′

Li

g′
LU

d2
L

D2
L

. (7.21)

Furthermore, taking the difference between (7.19) and (7.20) and eliminating the

wave-induced velocity wL of the lower layer, yields

wU H

DL

=
dU

DU

√
2g′iU (DU − dU + ξ)− dL

DL

√
2g′Li (DL − dL − ξ) . (7.22)

As expected from the previous discussion, horizontal momentum is con-

served in the control volume ABEF and following the same analysis given in § 7.3,

pO − pQ

ρ0

H = g′iU

{
1
2

(
D2

U − d2
U

)
− 2dU

DU

(DU − dU)2

[
1 +

ξ

DU − dU

]}
+

g′Li

{
1
2

(
D2

L − d2
L

)
− 2dL

DL

(DL − dL)2

[
1− ξ

DL − dL

]}
(7.23)

Moreover, the pressure difference pO − pQ can again be determined by applying

Bernoulli’s equation upstream along the interface whereby

pO − pQ

ρ0

=
g′iU g′Li

g′LU

[
d2

U

D2
U

(DU − dU + ξ) +
d2

L

D2
L

(DL − dL − ξ)

]
(7.24)
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Figure 7.2: Propagation of a non-equilibrium intrusion in two-layer stratified me-

dia. For illustrative purposes, the intrusion depicted here has a density ρi that is

larger than ρE, the depth-weighted mean density of the upper and lower layers.

Thus the leading wave has positive amplitude, i.e. d > 0.

Combining (7.23) and (7.24) yields the momentum balance

H g′iU g′Li

g′LU

[
d2

U

D2
U

(DU − dU + ξ) +
d2

L

D2
L

(DL − dL − ξ)

]
=

g′iU

{
1
2
(D2

U − d2
U)− 2dU

DU

(DU − dU)2

[
1 +

ξ

DU − dU

]}
+g′Li

{
1
2
(D2

L − d2
L)− 2dL

DL

(DL − dL)2

[
1− ξ

DL − dL

]}
. (7.25)

If the reduced gravities g′iU and g′Li and unperturbed layer depths HU = DU + d

and HL = DL − d are known, (7.21), (7.22) and (7.25) represent three equations

in the five unknowns ξ, wU , dU , dL and d. To close the system, we now consider

the behaviour of the upstream wave.

7.5.2 Nonlinear wave

The photographs presented in Sutherland et al. [88] and Cheong et al. [20]

suggest that the upstream wave is non-undular and typically has a broad horizon-

tal length scale. Nonetheless, the wave amplitude may be a non-trivial fraction of
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either the upper- or lower-layer depth. Motivated by these observations, we adopt

a nonlinear dynamical description based on two-layer shallow water theory with

a flat bottom boundary. As noted above, this description is appropriate provided

HU , HL 6� H. If HU , HL � H, the upstream disturbance may take the form

of either a solitary wave or a two-layer bore (see for example Lowe, Rottman &

Linden [61] and figure 11 of Sutherland et al. [88]). Unfortunately, the energetics

of two-layer bores are not fully understood (Baines [4]) and consequently there ex-

ists some controversy regarding their appropriate dynamical description. Seeking

to avoid such tangential distractions, we will, consistent with figure 7.2, focus on

those cases where the interface is neither adjacent to the upper or lower bound-

aries. Despite the obvious limitations of this approach, the corresponding model

equations will be shown to predict the intrusion speed, U , with good accuracy for

a broad choice of parameters. This suggests that a long wave description based on

two-layer shallow water theory is appropriate to the problem at hand for all but a

small range of interface heights.

Long waves are dispersive and travel upstream at roughly twice the in-

trusion speed. Consequently, long wave propagation is necessarily unsteady with

respect to the reference frame of figure 7.2. However, if the intrusion issues from a

lock-release apparatus, then the collapse of intermediate density fluid must occur

over some finite time period, which depends upon the lock length and the speed

of the backward-propagating disturbances. Because upstream wave excitation oc-

curs in response to this non-instantaneous gravitational adjustment, it is observed

from numerical simulations that the interface is continually deflected in front of

the intrusion, so that, following some brief transient, the wave amplitude imme-

diately upstream of the intrusion remains approximately constant in time. Finite

volume effects become significant at some point because the center of mass of the

intermediate density fluid cannot rise or fall indefinitely. Once the gravitational

adjustment ceases, the long wave cannot continue to grow in horizontal extent,

except through dispersive effects. Thus the amplitude of the upstream wave in the
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immediate neighborhood of the intrusion head may begin to decrease.

Experiments and numerical simulations of intrusive gravity currents are

often conducted in channels of restricted spatial dimensions. Often, this precludes

a detailed examination of the flow dynamics following the initial collapse of the

intermediate density fluid. Consistent with these earlier studies, we shall focus

on the inceptive phase of motion where the wave amplitude, d, is approximately

constant. Therefore, because the upstream wave is assumed to satisfy the Riemann

invariant solution to the two-layer shallow water equations, the analyses of Baines

[4] § 3.3 and Appendix D show that

sin−1

(
DL −DU

H

)
− sin−1

(
wU H

DL

√
g′LU H

)
= sin−1

(
DL −DU − 2d

H

)
. (7.26)

This result relates the long wave amplitude, d, to the wave-induced velocity, wU ,

of the upper layer and can be expressed in equivalent algebraic form as follows

√
g′LU H DL (DL −DU − 2d) = (DL −DU)

√
g′LU H D2

L − w2
U H2

−wU H
√

H2 − (DL −DU)2 . (7.27)

In the experiments of Cheong et al. [20] the intrusion was generated by

releasing intermediate density fluid from a lock by removing a vertical barrier.

Consistent with the above discussion, the upstream wave results from the collapse

of the intrusion and therefore the amplitude of the long wave can be estimated

by considering the vertical adjustment of the intermediate density fluid as it is

released from the lock. When ρi exceeds the depth-weighted mean density ρE, the

intrusion will sink relative to the upstream interface and consequently over the

time interval ∆t, a volume of fluid

V = Λ (hE −HL) U ∆t (7.28)

is added to the lower layer. Here hE is the equilibrium height defined by (7.14)

and Λ is an unknown factor that characterizes the collapse of the intrusion fluid

towards its level of neutral buoyancy. If this adjustment is static, Λ = 1, but we
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expect a smaller value because dynamical effects are important. The addition of

volume to the lower layer requires the dense fluid ahead of the intrusion to rise by

an amount

d =
V

(c− U) ∆t
= Λ (hE −HL)

U

c− U
. (7.29)

For small d, c is approximately the linear long wave speed and by (7.16), c ∼ 2U ,

whereby

d ∼ Λ (hE −HL) = Λ

(
H

g′iU
g′LU

−HL

)
. (7.30)

Experiments conducted by Cheong et al. [20] confirm the validity of this leading

order approximation and give Λ ' 0.3. For this numerical value of Λ, we find an

expected symmetry in HL about HL

H
= 1

2
when g′iU = g′Li, i.e. hE

H
= 1

2
(see § 7.6).

This symmetry is not necessarily reproduced for Λ 6' 0.3, e.g. Λ = 0.15 or Λ = 0.5.

The balances quantified by (7.21), (7.22), (7.25), (7.27) and (7.30) rep-

resent a closed system of equations for the unknowns ξ, wU , dU , dL and d. By

solving this system of equations, the intrusion speed U may be determined from

(7.19).

7.6 Results

The governing equations are nonlinear and therefore multiple solutions

are predicted for prescribed conditions. Here, attention is restricted to the solution

for which the intrusion volume flux is maximized (Holyer & Huppert [37], Faust &

Plate [26]). As with the analysis of Holyer & Huppert [37], this physical solution

does not exist in all regions of parameter space. More specifically, model breakdown

is likely to be encountered if the leading order balance suggested by (7.30) proves

inadequate, i.e. higher order terms in hE−HL become significant, or the upstream

disturbance takes the form of a solitary wave or bore rather than a long wave.

In contrast to earlier studies, however, the system of equations considered here

yields a physically-meaningful solution in a relatively broad neighborhood about

the equilibrium point hE = HL. For example, with hE

H
= 0.5, (7.21), (7.22), (7.25),
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Figure 7.3: Axes: U/
√

g′LU H (vertical), HL/H (horizontal). Intrusion speed as

a function of the interface height for (a) hE

H
= 0.25, (b) hE

H
= 0.50 and (c) hE

H
=

0.61. Data points are taken from Cheong et al. [20] and show the results of

both experiments (triangles) and numerical simulations (circles). Solid and dashed

curves are as indicated in the text. The vertical dotted lines show the range of

validity of the model equations with d ≡ 0, i.e. a flat upstream interface.

(7.27) and (7.30) admit a physical solution for HL

H
' 0.0663 to 0.934. By contrast

if the displacement of the upstream interface, d, (and hence the velocities wU and

wL) are set identically to 0, intrusion properties may be determined only over the

restricted range 0.437
<∼ HL

H

<∼ 0.564.

Figure 7.3 shows the intrusion speed (normalized by
√

g′LU H) as a func-

tion of the non-dimensional interface height, HL

H
, for three choices of hE

H
. Solutions

predicted by the equations of § 7.5 are indicated by the thick solid line. The

dashed lines indicate the speeds obtained from the global energy-conserving model

described in § 4 of Cheong et al. [20], which proposes the following relationship

between U , HL and hE

U√
g′LU H

= 1
2

√(
HL

H

)2

− 2HL hE

H2
+

hE

H
. (7.31)

Although this result neglects the kinematic influence of the leading interfacial

waves, strong qualitative agreement is observed between (7.31) and the detailed
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equations of § 7.5. In particular, both models predict a global minimum of U =

UE when HL = hE in which case there is no mass transport across the vertical

level z = HL during the intrusion’s gravitational adjustment. By contrast, when

HL 6= hE (i.e. ρi 6= ρE), intrusion fluid steadily rises or falls behind the intrusion

front, which provides an additional source of energy to drive the flow (Cheong

et al. [20]).

Quantitative differences between the solid and dashed lines of figure 7.3

elucidate the dynamic influence of the interfacial waves, which play a secondary and

purely parasitic role. As is clear from figure 7.3a in particular, the lower estimates

of the intrusion speed predicted by (7.21), (7.22), (7.25), (7.27) and (7.30) provide

a closer fit with the results of the two-dimensional DNS algorithm described in

Cheong et al. [20]. Consistent with expectations, agreement is particularly strong

as HL → hE, where the leading order approximation (7.30) is most appropriate.

7.7 Conclusions

A fluid intrusion necessarily excites an upstream interfacial wave when the

intrusion density, ρi, differs from the depth-weighted mean density, ρE, of the upper

and lower layers. In general, this disturbance will be nonlinear and will exert some

non-trivial dynamical influence in that the wave (i) deflects the interface ahead

of the intrusion and thereby alters the vertical position of the stagnation point,

and, (ii) causes a shear so that the local horizontal velocities of the upper and

lower layers are non-equal. These effects may be incorporated into existing models

by combining exact solutions of the two-layer shallow water equations with mass,

momentum and energy conservation applied to a control volume surrounding the

intrusion head. The coupled equations, which are given by (7.21), (7.22), (7.25),

(7.27) and (7.30), provide good agreement with the results of analogue experiments

and numerical simulations for a broad combination of layer depths and densities.

The analytical model developed herein also shows relatively strong agree-
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ment with the results of Cheong et al. [20]. In contrast to the present discus-

sion, their formulation omits a detailed consideration of the force balance that

provides the impetus for motion. Rather, using a Yih-type energy argument, non-

equilibrium intrusions are described in terms of related equilibrium flows. The fact

that these completely different approaches yield comparable results is encouraging

and suggests that the upstream long wave extracts only a small fraction2 of the

intrusion kinetic energy, as has been observed in the case of vertically-propagating

internal waves by Ungarish & Huppert [93] and Flynn & Sutherland [29]. This is

different, however, from arguing that the interfacial wave has negligible impact.

Indeed, as is suggested by figure 7.3, Benjamin-type models that fail to account

for the upstream wave-induced effects summarized in the previous paragraph yield

physically-relevant solutions only over a limited region of parameter space.

A possible limitation of the above model is its dependence on the empirical

parameter Λ, which relates the amplitude of the long wave to the density anomaly

of the intrusion through (7.30). Notwithstanding this direct dependence on the

flow variables, it appears very difficult to estimate the numerical value of Λ from a

first-principles approach. In particular, one cannot simply apply an energy balance

in the control volume BCDE because the long wave speed, and hence the upstream

energy flux, are not known a-priori. This approach is perhaps misguided in any

event, because wave forcing is due to the vertical collapse of the intermediate

density fluid rather than far-field effects occuring much further upstream.

Nonetheless, it is encouraging that with a single value of Λ, which is

independent of the interface height, good agreement between the predicted and

measured intrusion speeds may be obtained for a wide class of initial conditions

(figure 7.3). Moreover, although the theoretical model shown above applies most

directly for full-depth planar intrusions generated by lock-exchange, it may be

2For example, based on the maximum difference of intrusion speeds predicted by the solid and dashed
curves of figure 7.3, one might estimate a decrease of intrusion kinetic energy of the order of 20%.
It should be emphasized, however, that the experimental and numerical data of figure 7.3 typically fall
between the solid and dashed curves, and therefore the dynamic impact of the upstream waves is probably
a good deal less.
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possible to extend this analysis to other closely related flows by simply altering

the empirical relationship quantified by (7.30)3. Further study is needed to assess

the universality of the present approach.

Material drawn from this chapter has been accepted for publication by

the Journal of Fluid Mechanics, 2006, Flynn, M. R. and P. F. Linden (Cambridge

University Press).

3Clearly, the discussion of § 7.5 assumes that the intrusion speed, U , is constant. Therefore, it is not
immediately obvious whether this methodology can accurate describe axisymmetric intrusions for which
the front speed may be a continually-decreasing function of time.
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Intrusive gravity currents

(partial-depth)

8.1 Abstract

Laboratory experiments of intrusive gravity currents generated by lock ex-

change offer insights into atmospheric and oceanic flows. However, whereas many

previous investigations have considered the “full-depth” lock exchange problem,

in which the intermediate density fluid initially spans the entire channel depth,

less is known about “partial-depth” releases, which represent a more appropriate

analogue to environmental flows wherein the inceptive, localized interfacial mixing

is relatively weak. Here, we consider this circumstance using a combination of

experimental and numerical techniques. Emphasis is placed on the special case

where the intrusive gravity current is approximately neutrally-buoyant with re-

spect to the upstream interface. A complementary theoretical model is presented,

which predicts the initial speed of propagation of the intrusive gravity current.

As with the related analysis of Shin, Dalziel & Linden [81], this model (i) allows

for communication of momentum and energy between the forward- and backward-

propagating disturbances, and, (ii) neglects dissipation from viscous effects. Good

agreement is observed between the model predictions and the results of experi-

96
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ments and numerical simulations.

8.2 Introduction

A Boussinesq gravity current is defined as a horizontal flow, driven by

small density differences, that occurs along a rigid boundary. Just as a gravity

current is due to a local concentration or dilution of heat, salt or some other active

scalar, an intrusive gravity current, or intrusion, may arise from compact mixing

across a stable interface, or, in continuously-stratified environments, mixing over

some finite depth. Because of the preponderance of convection in the natural

environment, intrusions are observed over a range of time and length scales, as

summarized by Simpson [83].

Of interest to the present discussion are intrusions that propagate along

a sharp interface where the upper and lower layers are of uniform density. A recti-

linear geometry of moderate characteristic length is selected (e.g. 10m to 1 km) so

that surface tension and Coriolis effects can be assumed to be small. Most previ-

ous studies of intrusions have considered the “full-depth” lock-exchange problem

in which the localized mixing is rather severe and, consequently, the intermediate

density fluid initially spans the entire vertical extent of the channel, H (Faust &

Plate [26]; Lowe, Linden & Rottman [60]; Mehta, Sutherland & Kyba [65]; Suther-

land, Kyba & Flynn [88]; Cheong, Kuenen & Linden [20]; Flynn & Linden [28]).

Although these analyses examine a useful limiting case, they ignore a wide cate-

gory of flows for which the initial mixing is relatively weak and/or the layers are

relatively deep such that the intermediate density fluid occupies only a fraction

of the depth at t = 0. We demonstrate that a modified theoretical analysis that

considers both sides of the lock release may be applied to this, more general, cir-

cumstance. The motivation for this approach comes from the related theoretical

and experimental work of Shin, Dalziel & Linden [81], who considered “partial-

depth” gravity currents and argued that communication of momentum and energy
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Figure 8.1: Definition sketch of a partial-depth intrusive gravity current at (a)

t = 0, and, (b) t > 0.

between the forward- and backward-propagating disturbances via long waves on

the downstream interface must occur whenever the initial depth of heavy fluid is

less than 0.76H. As suggested by figures 16 and 17 of their paper, theoretical

models that neglect such an exchange yield predictions that do not always agree

with experimental data.

Figure 8.1 shows a schematic illustration of a partial-depth intrusion gen-

erated by lock exchange. At the initial instant, t = 0, the fluid is stationary. A

vertical barrier divides the domain such that there is a two- and three-layer strat-

ification to the right and left of the lock gate, respectively. Once the barrier is

removed, fluid of intermediate density ρi accelerates from rest and forms an intru-

sion that propagates to the right along the interface between the upper and lower

layers of respective densities ρU and ρL. As indicated in figure 8.1 b, corresponding

backward-propagating disturbances occur on both downstream interfaces. These

disturbances take the form of a bore or long wave and ultimately reflect off the left
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end wall of the domain. The intrusion speed, U , is expected to remain constant

until these reflected disturbances overtake the intrusion front (Rottman & Simpson

[76]; Shin et al. [81]).

The goal of this analysis is to develop an analytical model that predicts

the initial, steady propagation speed for the special case where the intrusion fluid

is generated by simple mixing of the upper and lower layers without further di-

lution or concentration of the active scalar. As suggested by figure 8.1 a, mixing

is assumed to occur over a vertical expanse D such that the intermediate density

fluid is comprised of upper and lower layer fluid in the ratio DU : DL. In general,

these depths are not equal, i.e. DU 6= DL. Consistent with the nomenclature ap-

plied by Cheong et al. [20], the forward-propagating disturbance is referred to as

an equilibrium intrusion. By contrast, non-equilibrium flow is much more difficult

to characterize because the center of mass of the intrusion must rise or fall some

non-trivial distance once the vertical barrier of figure 8.1 a is removed. This has

ramifications for the flow energetics, which, though important, cannot be easily

resolved because any gravitational adjustment on the part of the intrusion must

excite an interfacial wave that propagates upstream relative to the intrusion front

at speed c > U . Although the upstream energy flux and hence the wave-induced

deceleration are small, the wave deflects the interface vertically and thereby alters

the local upstream conditions encountered by the intrusion. As demonstrated by

Flynn & Linden [28] for the case full-depth intrusions, this necessitates substantial

modifications to the governing equations.

The paper is organized as follows: § 8.3 describes the experimental ap-

paratus used to produce flows of the type illustrated schematically in figure 8.1.

Complementary numerical simulations using a spectral-finite difference algorithm

were also performed and these are described in § 8.4. Simulation output is shown

to reproduce the qualitative and quantitative features of the experimental images

in § 8.5. The analytical model is developed in § 8.6 and corresponding results

are shown in § 8.7 where a comparison between theory, experiment and numer-
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ics is made. Non-equilibrium intrusions are also discussed. Finally, a series of

conclusions is presented in § 8.8.

8.3 Experiments

The experimental apparatus and methodology are very similar to those

applied in many earlier studies (Faust & Plate [26]; Lowe et al. [60]; Mehta et al.

[65]; Sutherland et al. [88]; Cheong et al. [20]). Only the essential features will be

summarized here.

Experiments were conducted in a tank of size 183 cm×30 cm×23 cm. A

vertical barrier was placed 62 cm from the left end wall. To achieve the two- and

three-layer stratifications shown schematically in figure 8.1 a, the lock and ambient

sides were slowly filled with salt/fresh water to a total depth of H = 20 cm. As

summarized in further detail in § 8.7, experiments applied different combinations

of D, L, HU and HL, which are defined in figure 8.1 a. Moreover, for a typical

experiment, ρL ' 1.050 g/cm3, ρU = 0.998 g/cm3 and ρL < ρi < ρU . Food coloring

was added to the intermediate density fluid for the purposes of visualization.

Each experiment began by removing the lock gate vertically. After a brief

acceleration phase, steady flows of the type illustrated in figure 8.1 b were observed.

Experimental images were recorded using a CCD camera and subsequently ana-

lyzed using the image processing software Digiflow (http://www.damtp.cam.ac.uk/

lab/digiflow). Horizontal timeseries images were constructed in the manner of

Mehta et al. [65] from which the front velocity, U , was estimated.

Experimental errors are due primarily to uncertainties in the measured

values of D and L, which represent, respectively, the depth of intermediate and

large density fluid inside the lock. Although sponge floats were used to minimize

interfacial mixing as the tank was filled, interface thicknesses of approximately

0.5−1.0 cm were nonetheless noted. Furthermore, because the lock gate was pulled

up, a small but systematic asymmetry was introduced into the initial conditions.
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Specifically, interfaces were deflected upwards slightly at the beginning of each

experiment. Although the qualitative impact of this asymmetry was negligible for

D → H, it became somewhat more pronounced for D
<∼ H/2.

8.4 Numerical simulations

Turbulent gravity currents, whether planar or axisymmetric, intrusive or

bottom-propagating, exhibit an irregular topology due to Kelvin-Helmholtz and/or

span-wise flow instabilities (see, for example, the photographs presented in Simp-

son [83] and Neufeld [67]). During the initial slumping phase, however, the speed

of propagation is relatively insensitive to the resulting local mixing that occurs be-

hind the gravity current head (Härtel et al. [34]; Härtel, Meiburg & Necker [35]).

Indeed, because we shall not consider the quantitative details of this mixing, the

flow field is resolved using a two-dimensional analysis. Accordingly, for a Boussi-

nesq fluid of uniform viscosity, ν, the governing equations are given by (Kundu

[49])

∇ · u = 0 , (8.1)

Du

Dt
= − 1

ρ0

∂P
∂x

+ ν∇2u , (8.2)

Dw

Dt
= − 1

ρ0

∂P
∂z

− ρ′ g

ρ0

+ ν∇2w , (8.3)

Dρ

Dt
=

ν

Sc
∇2ρ , (8.4)

where g is gravitational acceleration, u = (u, w) is the velocity, P is the hydrostat-

ically adjusted pressure, ρ0 is a characteristic reference density, Sc is the Schmidt

number and D(·)/Dt denotes a material derivative. Furthermore, ρ(x, z, t) =

ρ̄(z, t) + ρ′(x, z, t) is the fluid density in which ρ̄ and ρ′ represent, respectively,

the background and perturbation components. For the simulations reported here,

ν = 0.01 cm2/s and Sc = 1. Although the latter choice significantly overestimates

the diffusivity of salt water, this selection is necessary for the purposes of numerical
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Table 8.1: Numerical simulation parameters.

Simulation l Λ H Nx Nz τ
type (cm) (cm) (cm ) (s)

Validation 183 62 20 1024 128 16
Flat upstream 75 or 150 30 20 512 or 1024 128 10

interface
Perturbed upstream 150 30 20 1024 128 10

interface

stability (Maxworthy et al. [64]; Ungarish & Huppert [93]). As noted by Suther-

land, Flynn & Dohan [87], the magnitude of Sc does not substantially alter the

dynamical behavior of the flow.

The above dimensional, primitive variable equations are solved with no-

slip boundary conditions using the open-source DNS algorithm Diablo. Consistent

with previous analyses such as Sutherland et al. [87], a computational domain of

size 2l × H is selected where l denotes the horizontal extent of the flow domain

shown in figure 8.1. Therefore, by specifying a condition of reflection symmetry

about the mid-plane (x = 0) in the initial condition, a Fourier decomposition of

the flow variables u, ρ and P may be applied in the streamwise direction (Canuto

et al. [17]). Conversely, in the wall-normal direction, ρ and ∂u/∂z do not satisfy

periodic boundary conditions. Thus derivatives with respect to z are evaluated

using second-order, centered finite-differences.

A combination of a third-order, low-storage Runge-Kutta-Wray (RKW3)

scheme and a Crank-Nicholson (CN) scheme is used to advance the flow in time

with ∆t = 0.001 s (Bewley [8]; Bewley, Moin & Temam [9]). Diffusive terms in the

wall-normal direction are treated implicitly; all other terms are treated explicitly.

Moreover, uniform non-staggered and staggered grids are selected, respectively, in

the streamwise and wall-normal directions. Three types of numerical simulations

are performed as summarized in table 8.1. First, validation tests are conducted
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for comparison against laboratory experiments (§ 8.5). Then investigative simu-

lations are run where the upstream interface remains approximately flat (§ 8.7.1),

and, conversely, where the upstream interface is deformed by a propagating wave

(§ 8.7.2). Consistent with the above discussion, the flow is in each case resolved

over a numerical domain of size

{−l ≤ x ≤ l}
⋃
{−HL ≤ z ≤ HU} ,

where the intermediate density fluid initially spans

{−Λ ≤ x ≤ Λ}
⋃
{−DL ≤ z ≤ DU} .

Here z = 0 corresponds to the level of the upstream interface (figure 8.1), DL =

HL − L, DU = D + L −HL and Λ denotes the lock length. Characteristic values

for l, Λ and H are provided in table 8.1, which also shows the time interval of

integration, τ , and the number of grid points used in the streamwise (x) and wall-

normal (z) directions.

As with the analogue laboratory experiments of § 8.3, the flow is sta-

tionary at t = 0. To ensure that the initial collapse of the intermediate density

fluid occurs in a regular and timely fashion, a small, random density perturbation

is added to ρi. Furthermore, because a Fourier decomposition is applied in the

streamwise direction, the vertical interfaces that define the lateral boundaries of

the lock are smoothed using a hyperbolic tangent profile. Finally, layer densities

are chosen such that

Re ≡ D(g′LU D)1/2

ν

>∼ 104 , (8.5)

in which Re is the Reynolds number and

g′LU = g

(
ρL − ρU

ρ0

)
is the reduced gravity between the upper and lower layers. With Re so selected,

the flow exhibits the characteristic features of two-dimensional turbulent gravity

currents such as the roll up of Kelvin-Helmholtz billows behind the gravity current
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head (see, for example, figures 3 and 11 of Härtel et al. [35], figure 7 of Sutherland

et al. [87] and figure 2 of Cheong et al. [20]).

8.5 Comparison between experiments and numerical sim-

ulations

Figure 8.2 shows an example of simulation output in which the initial

collapse and subsequent propagation of a volume of intermediate density fluid is

illustrated at three instants in time. We find that the initial acceleration phase

occurs over a small time interval and that the intrusion speed rapidly approaches

the time-independent value U . Corresponding experimental images are presented

(in false color) in figure 8.3. Consistent with the discussion of § 8.4 which con-

trasts two- and three-dimensional flow, the series of coherent, semi-stable Kelvin-

Helmholtz billows observed in figure 8.2 are not evident in the laboratory images.

Apart from these billows, strong qualitative and quantitative agreement is observed

between figures 8.2 and 8.3, suggesting that the numerical algorithm satisfactorily

captures the principal components of the intrusion and corresponding return flows.

8.6 Theory

As with their full depth counterparts, partial-depth intrusive gravity cur-

rents may be divided into two categories depending upon the relationship between

the layer depths and densities in the initial state. An equilibrium flow satisfies

ε ≡ g′iU DU − g′Li DL

g′LU D
= 0 , (8.6)

where D = DU + DL and

g′iU = g

(
ρi − ρU

ρ0

)
, g′Li = g

(
ρL − ρi

ρ0

)
,

are the reduced gravities of the intrusion with respect to the upper and lower

layers, respectively.
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Figure 8.2: Snapshots of the density field for a particular numerical simulation

with (ρi − ρU)/(ρL − ρU) = 1
2
, HU = H/4, HL = 3H/4, D = L = H/2 at (a)

t̂ = 0, (b) t̂ = 7.4, and, (c) t̂ = 14.8. The non-dimensional time, t̂, is defined by

t̂ = t (g′LU D)1/2/D. Consistent with the data of table 8.1, l = 183 cm.

Figure 8.3: Snapshots of the density field from the analogue laboratory experiment.

Parameters are the same as in figure 8.2.
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Heuristically-speaking, for equilibrium flow, fluid of intermediate density

ρi is produced simply by localized mixing of the upper and lower layers over the

respective depths DU and DL, where DU 6= DL in general. Conversely, non-

equilibrium flow, for which ε 6= 0, is associated both with localized mixing and

dilution (ε < 0) or concentration (ε > 0) of the intermediate density fluid.1 The

discussion of the present section is restricted to equilibrium flow such that the

interface ahead of the intrusion remains approximately flat. To leading order,

therefore, the intrusion may be considered to consist of upper and lower gravity

currents each of which travels at speed U (cf. Holyer & Huppert [37]). It is

assumed that a hydraulic description is appropriate such that the flow in each

layer is independent of the vertical coordinate, z. We further assume that the

intrusion moves as a plug, i.e. there is no relative motion of intermediate density

fluid between the forward- and backward-propagating disturbances (Lowe et al.

[60]). Moreover, these advancing fronts are assumed to (i) travel at constant

speed, and, (ii) be connected by a horizontal interface. Further upstream and

downstream, the flow is assumed quiescent with a hydrostatic vertical pressure

gradient. Finally, everywhere within the flow domain, the fluids are assumed to

be inviscid, irrotational and immiscible with γ = 0 where γ is the surface tension.

The above assumptions are consistent with those applied by Shin et al.

[81] who examined the related problem of partial-depth gravity currents. There-

fore, from (5.14) of their work, mass and momentum conservation applied, respec-

tively, to the upper and lower layers require

U2 =
g′iU DU (DU − hU) (HU − hU)

2hU HU

, (8.7)

and

U2 =
g′Li DL (DL − hL) (HL − hL)

2hL HL

, (8.8)

where hU and hL are defined in figure 8.1 b. For equilibrium intrusions, however,

1A geophysical example of a non-equilibrium intrusion is the high-level outflow from a convective
thunderstorm whose buoyancy is determined both by mixing and latent heat effects.
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(8.6) shows that g′iU DU = g′Li DL and hence

(DU − hU) (HU − hU)

hU HU

=
(DL − hL) (HL − hL)

hL HL

. (8.9)

As demonstrated by Shin et al. [81], equations (8.7) and (8.8) are derived by

performing an integrated horizontal momentum balance in a control volume that

encompasses both the forward- and backward-propagating disturbances. Energy

dissipation is neglected in the upper and lower layers. In principle, momentum

and energy may be transfered between the forward- and backward-propagating

disturbances via waves along the downstream interfaces. As with Yih [100], the

present model therefore takes a “global” perspective, which considers both sides

of the lock exchange flow. This methodology differs from the classical treatment

of Benjamin [7] in which only the forward-propagating disturbance is considered.

Unfortunately, non-local models of the type considered here suffer from

two principal shortcomings, as identified by Ungarish [92]. Firstly, backward-

propagating disturbance(s) are assumed to take the form of a bore rather than a

long wave of expansion. In the case of gravity currents, for example, the labora-

tory experiments of Rottman & Simpson [76] show that this assumption is strictly

valid only for D/H
>∼ 0.7. Also, the derivation of (8.7) and (8.8) assumes that

the backward-propagating disturbances have not yet encountered the left end wall

of the control volume (figure 8.1 b). As such, these expressions apply only for the

period after the removal of the lock gate during which the intrusion travels a hor-

izontal distance of approximately one lock-length. Despite the above limitations,

the gravity current model developed by Shin et al. [81] shows favorable agreement

with experimental data over a broad range of D/H. In addition, it is observed that

U is unaltered by the reflection of the backward-propagating disturbance. There-

fore, in spite of their possible drawbacks, global models may nonetheless represent

a useful predictive tool in describing bulk features of gravity current/intrusion flow.

To close the system of equations developed above, some further state-

ments concerning the flow energetics are required. For intrusions that travel along

a free-slip interface, Ermanyuk & Gavrilov [25] note that “. . . energy losses due to
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vorticity generation and mixing at the interface between the [intrusion] and the

ambient fluid are far less important than the losses due to bottom friction [asso-

ciated with gravity current flow].” Moreover, because wave forcing is assumed to

be negligible when ε = 0, we conclude that energy dissipation may be neglected to

leading order. One might therefore expect that the upper and lower flows conserve

energy independent of one another such that hU = DU/2 and hL = DL/2, i.e. the

upstream interface acts as a true solid boundary (Benjamin [7]; Holyer & Huppert

[37]). Interestingly, (8.7) and (8.8) then yield consistent results if and only if

DU

HU

=
DL

HL

⇐⇒ L =
HL (H −D)

H
, (8.10)

where the geometric identity DL = HL − L has been employed in deriving the

latter expression (figure 8.1 a). Although (8.10) is trivially respected for full depth

lock release flows, it is not, in general, valid when DU < HU and DL < HL. We

therefore propose that the depths hU and hL are determined such that energy

is conserved for the total flow including the forward- and backward-propagating

disturbances in both the upper and lower layers. As summarized by Shin et al.

[81], changes of kinetic energy are associated with accelerating fluid from rest on

either side of the lock. The requisite energy comes from a loss of potential energy

due to a reduction in depth of intermediate density fluid from D = DU + DL to

hU +hL. Taking these various factors into account and letting ∆U and ∆L denote,

respectively, the time rate of change of energy of the upper and lower flows, it can

be shown that

∆j = 1
2
ρi U

2 (U + Urj) hj + 1
2
ρj u2

j (U + Urj) (Hj − hj) (8.11)

+1
2
g δρj U h2

j − 1
2
g δρj Urj (D2

j − h2
j) ,

where j = U or L, Urj and uj denote, respectively, the velocity of the backward-

propagating disturbance and ambient layer (figure 8.1 b), and

δρj =

 ρi − ρU if j = U ,

ρL − ρi if j = L .
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Figure 8.4: Relative depth of penetration into the upper and lower layers as pre-

dicted from (8.7), (8.8), (8.9) and (8.13) with HU = HL = D = H/2. Line types

are indicated in the text. Here L = HL (H −D)/H corresponds to L/H = 1
4
.

Thus if

0 = ∆U + ∆L ,

we find

0 =
hU DU

DU − hU

[
U2 HU

HU − hU

− g′iU (DU − hU)

]
(8.12)

+
hL DL

DL − hL

[
U2 HL

HL − hL

− g′Li (DL − hL)

]
,

where mass continuity has been applied in eliminating UrU , UrL, uU and uL. Fi-

nally, combining this result with (8.7), (8.8) and (8.9) yields

hU + hL =
D

2
. (8.13)

Hence an energy-conserving intrusion occupies one-half the initial depth of the

intermediate density fluid, D = DU + DL.

Assuming the initial state to be well-defined, (8.7), (8.8), (8.9) and (8.13)

represent three independent equations in the three unknowns U , hU and hL. These

governing equations show the appropriate limiting behavior as DU/HU , DL/HL →
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1 in which case a consistent solution to (8.9) and (8.13) is given by

hU = 1
2
HU , hL = 1

2
HL .

Therefore, from (8.7) and (8.8),

U = 1
2
(g′iU HU)1/2 = 1

2
(g′Li HL)1/2 ,

which reproduces the (equilibrium) results of Holyer & Huppert [37] who provide

a theoretical description of intrusion flow based on the gravity current analysis of

Benjamin [7]. For the more general circumstance where DU/HU , DL/HL 6→ 1,

(8.7), (8.8), (8.9) and (8.13) predict that

hU

DU

>
1

2
>

hL

DL

when L <
HL (H −D)

H
i.e.

DU

HU

<
DL

HL

, (8.14)

hU

DU

<
1

2
<

hL

DL

when L >
HL (H −D)

H
i.e.

DU

HU

>
DL

HL

. (8.15)

This behavior is demonstrated in figure 8.4, which shows hU/DU (solid line) and

hL/DL (dashed line) as functions of L/H for the particular combination HU =

HL = D = H/2.

Equations (8.14) and (8.15) have the following interesting consequence:

whereas an intrusion that is exactly neutrally-buoyant with respect to the interface

is expected to satisfy g′iU hU = g′Li hL, here we find that

g′iU hU > g′Li hL when L <
HL (H −D)

H
i.e.

DU

HU

<
DL

HL

, (8.16)

g′iU hU < g′Li hL when L >
HL (H −D)

H
i.e.

DU

HU

>
DL

HL

. (8.17)

In contrast to the full-depth case, therefore, the center of mass of an intrusion

issuing from a partial-depth lock release apparatus may rise or fall even though

ε = 0, where ε is the non-dimensional density parameter defined by (8.6). As

discussed in § 8.2, this gravitational adjustment necessarily excites an upstream

interfacial wave. Although neither of these effects are properly accounted for in

the present theory, the magnitude of the vertical adjustment is typically small such
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Figure 8.5: Relative intrusion depth, (hU + hL)/D, as a function of L/H where

hU , hL, L, H and D are defined in figure 8.1. The dashed line shows the result

predicted by (8.13). Data points are derived from laboratory observations with

HU = HL = D = H/2 (open circles), HU = HL = H/2, D = 3H/4 (stars) and

HU = H/4, HL = 3H/4, D = H/2 (cross-hairs). In each case, ε = 0 where ε is the

non-dimensional density parameter defined by (8.6). A representative error bar is

shown in the lower right hand corner.

that the wave amplitude is observed to be no greater than the interfacial thickness

(see, for example, figures 8.2 and 8.3). Thus, with ε = 0 any deviations from the

condition of neutral-buoyancy will not significantly impact the potential energy of

the flow. Indeed, as we illustrate in quantitative detail in § 8.7.1, good agreement

between theory, experiment and numerics may be obtained even when g′iU hU and

g′Li hL are not exactly equal.

8.7 Results

8.7.1 Equilibrium flow

A central feature of the above energy-conserving model is quantified by

(8.13), which shows that the intrusion should occupy one-half the initial depth of
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the intermediate density fluid. This prediction is tested in figure 8.5, which com-

pares measured values of hU +hL against D = DU +DL for a variety of laboratory

experiments. The relative error of repeated measurements is large in some cases,

particularly when D = H/2 and L/H → 0. In addition to the random and sys-

tematic experimental errors discussed in § 8.3, these deviations may also be due

to interfacial mixing, which obscures the exact boundary between adjacent fluid

layers. Nonetheless, within the range of the indicated error bar, (8.13) provides an

accurate description of the flow in most instances. Similar agreement is noted by

Shin et al. [81] for the case of gravity currents (see, for example, figure 13 of their

paper).

Figure 8.6 shows the measured and predicted speeds of propagation as

a function of the non-dimensional vertical location of the intrusion, L/H. Note

that the permissible range of L/H differs for different choices of HU , HL and D

(figure 8.1 a). Theoretical results based on the equations of § 8.6 are given by the

thick solid curves, and experimental and numerical results are given, respectively,

by the crosses and open circles. Here, U has been non-dimensionalized according

to the Froude number, Fr

Fr =
U

(g′LU H)1/2
, (8.18)

based on the total depth, H = HU +HL, and interfacial reduced gravity, g′LU . The

vertical dotted and dashed lines of figure 8.6 show, respectively, the critical values

of L/H

L =
HL (H −D)

H
=⇒ DU

HU

=
DL

HL

, (8.19)

in which case the interface behaves like a true solid boundary, and

L = HL − 1
2
D =⇒ DU = DL , (8.20)

in which case the interface will, in general, be deflected vertically by a small am-

plitude wave (see, for example, figures 8.2 and 8.3). Because HU = HL in fig-

ures 8.6 a,b, these two lines overlap. Conversely, in figure 8.6 c where HU 6= HL,
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Figure 8.6: Fr versus L/H for ε = 0 and three different model geometries: (a)

HU = HL = D = H/2, (b) HU = HL = H/2, D = 3H/4, and, (c) HU = H/4,

HL = 3H/4, D = H/2. Representative error bars for the experimental (crosses)

and numerical (open circles) data are shown, respectively, in the lower right hand

corner of (c). Dotted and dashed lines are described in the text.

DU = DL when L/H = 0.5 and the dashed line coincides with the right hand edge

of the domain.

The model equations of § 8.6 predict that Fr (and hence the propagation

speed, U) achieves its maximum value when DU ' DL and therefore, from the

definition of ε, ρi ' 1
2
(ρU + ρL) (cf. (3.6) of Flynn & Linden [28]). This deduction

is supported by the experimental and numerical data of figures 8.6 a,c, which show

good agreement with the theoretical curve over a broad range of L/H. Comparable

agreement is noted in figure 8.6 b. Here, however, the vertical variation of Fr is

small relative to the error bars and thus we cannot estimate with good certainty

the measured values of L/H that maximize Fr.

Taken together, figures 8.5 and 8.6 suggest that a global, energy conserv-

ing model provides accurate estimates of the leading order behavior exhibited by

equilibrium partial-depth intrusions. For reasons described above, however, this

analysis cannot be straightforwardly adapted for non-equilibrium flow for which

ε 6= 0 and the intrusion is not approximately neutrally-buoyant with respect to the

upstream interface. As we illustrate in § 8.7.2, this complication greatly restricts
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our ability to describe the flow dynamics.

8.7.2 Non-equilibrium flow

Consistent with Yih’s study of gravity currents, helpful insights into the

speed of non-equilibrium intrusions may be ascertained from rudimentary energy

arguments. Consider, for example, the three initial conditions depicted schemat-

ically in figure 8.7. Those of figure 8.7 a satisfy ε = 0 and therefore, by suitable

manipulation of (8.6),

HL(ε = 0) ≡ H?
L = L + D

(
ρi − ρU

ρL − ρU

)
.

(It is assumed that ρL < ρi < ρU . Hence an equilibrium flow must satisfy L <

HL < D+L). By contrast HL = L and HL = D+L, respectively, in figures 8.7 b,c

whence ε 6= 0. For these latter two cases, the available potential energy, E , of the

initial state may be determined from

2Eb

ρ0

= g′iU D2 ,
2Ec

ρ0

= g′Li D
2 , (8.21)

respectively, where subscripts refer to the appropriate panel of figure 8.7 (see, for

example, § 4 of Cheong et al. [20]). Conversely, for the equilibrium case shown in

figure 8.7 a,
2Ea

ρ0

=
g′iU g′Li

g′LU

D2 . (8.22)

With ρL < ρi < ρU , it may be easily verified that Ea < Eb, Ec.

Extending the above results, we find that for arbitrary HL with L ≤

HL ≤ D + L and H fixed (i.e. variable interface height), the available potential

energy is given by

2E
ρ0

= g′iU D2

(
g′Li

g′LU

+ ε

)2

+ g′Li D
2

(
g′iU
g′LU

− ε

)2

. (8.23)

This result shows the proper limiting behavior with (8.22) as ε → 0. Furthermore,

with ε defined by (8.6), (8.23) reduces to (8.21) a,b in the respective limits DL → 0

(ε → g′iU/g′LU) and DU → 0 (ε → −g′Li/g
′
LU). Differentiation of (8.23) holding ρU ,
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Figure 8.7: Three different initial conditions corresponding to (a) ε = 0 with

L < (HL = H?
L) < D +L (b) ε > 0 with HL = L, and, (c) ε < 0 with HL = D +L.

Layer densities are assumed to be the same in each case.

ρL and ρi constant shows that E is a global minimum when ε = 0. Therefore the

available potential energy of an equilibrium intrusion is strictly less than that of

any corresponding non-equilibrium flow with HL 6= H?
L ≡ HL(ε = 0). In the spirit

of energy conservation, it is reasonable to expect that U(HL = H?
L) < U(HL 6= H?

L)

as has been verified for full-depth intrusions by Cheong et al. [20].

Notwithstanding the simplicity of the above arguments, which neglect

energy losses due to interfacial mixing, upstream wave propagation and other dis-

sipative effects, the results of figure 8.8 suggest that the preceding conclusion is

approximately correct. Here, snapshots of the density field are presented at t = 8 s

(t̂ ≡ t (g′LU D)1/2/D = 7.9) for a particular set of numerical simulations. In all

four images (ρi − ρU)/(ρL − ρU) = 1
4
, D = H/2 and L = 3H/8, however, the

vertical location of the interface (and consequently HU and HL) are different in

each case. Thus in figure 8.8 a, ε > 0, in figures 8.8 c,d, ε < 0 and figure 8.8 b

shows the equilibrium intrusion (ε = 0). In particular, figures 8.8 a and d cor-

respond, respectively, to the extreme configurations HL = L (figure 8.7 b) and

HL = D + L (figure 8.7 c). Because (ρi− ρU)/(ρL− ρU) < 1
2
, the initial conditions

considered here are asymmetric, and consequently we observe little difference be-

tween U(HL = L) and U(HL = H?
L) (figures 8.8 a,b). However, when HL > H?

L,

observed intrusion speeds are notably larger than U(HL = H?
L). In particular, the

intrusion of figure 8.8 d travels more than twice as fast as the equilibrium flow of

figure 8.8 b. These findings are consistent with (8.23). For the intrusions depicted,
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respectively, in figures 8.8 a,b,c,d, it can be shown that the available potential

energy of the initial state scales as 1.3̄ : 1 : 1.75 : 4.

Unfortunately, it is difficult to make more detailed predictions of non-

equilibrium flow behavior without developing a comprehensive analytical model

that quantifies the gravitational adjustment of the intrusion and the commensu-

rate vertical deflection of the upstream interface. Such a deflection is a prominent

feature of the non-equilibrium intrusions illustrated in figures 8.8 a,c, and most

especially, d. In general therefore, one must consider both communication be-

tween the forward- and backward-propagating disturbances as well as between the

forward-propagating disturbance and an upstream interfacial wave. Such possibili-

ties greatly expand the complexity of the balance equations (for example (8.7) and

(8.8)) and necessitate substantial modifications to existing analyses which omit

one or the other form of communication. Beyond the usual non-trivial algebraic

obstacles, this also demands a reconciliation of the different frames of reference

which are typically applied in studying either of the constituent problems. In par-

ticular, when momentum and energy cannot be transfered between the forward-

and backward-propagating disturbances, it is conventional to consider a reference

frame moving with the speed of the intrusion, as is done for example in Chapter 7.

By contrast, when such exchanges are possible and hence the influence of down-

stream waves cannot be neglected, it is preferable to work in a stationary reference

frame as is done in the present chapter. Further study is needed to determine

whether the upstream and downstream problems may be considered separately,

or, conversely, whether the entire flow must be examined all at once, most likely

within a stationary reference frame.

8.8 Conclusions

We have considered, via experiments and related two-dimensional nu-

merical simulations, the dynamics of “partial-depth” intrusions whose initial non-
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Figure 8.8: Snapshots of the density field for (ρi−ρU)/(ρL−ρU) = 1
4
, D = H/2, L =

3H/8 and (a) HL = 3H/8, HU = 5H/8, ε = 0.25, (b) HL = HU = H/2, ε = 0, (c)

HL = 11H/16, HU = 5H/16, ε = −0.375, (d) HL = 7H/8, HU = H/8, ε = −0.75.

A reflection symmetry about the interface is not observed for the equilibrium

intrusion (b) because (ρi − ρU)/(ρL − ρU) 6= 0.5. Consistent with the remarks of

§ 8.4, a (one-sided) lock length of 30 cm is selected in each case. Furthermore,

l = 150 cm and thus only one quarter of the total (two-sided) horizontal extent is

shown.



118

dimensional depths of penetration into the upper and lower layers are strictly

less than unity. An analytical model is also developed, which predicts the time-

independent intrusion height, hU +hL, and speed, U , for the special case of equilib-

rium flow where ε = 0 in which ε is the non-dimensional density parameter defined

by (8.6). As with the related analysis of Shin et al. [81], this model considers

both sides of the lock release and, in general, allows momentum and energy to

be transfered between the forward- and backward-propagating disturbances. The

model further assumes that energy is conserved overall, i.e. dissipative effects due

to viscosity are ignored. Good agreement is observed between the theoretical pre-

dictions and corresponding experimental and numerical data. Moreover, the data

of figure 8.6 suggest that U is maximized when DU ' DL such that the intrusion

density is roughly the arithmetic average density of the upper and lower layers.

For non-equilibrium flow, the center of mass of the intrusion may rise or

fall some appreciable vertical distance, which inevitably leads to wave excitation

along the upstream interface. As suggested by the related analysis of Flynn &

Linden [28], the corresponding flow dynamics are complex and cannot be recov-

ered by a simple extension of the preceding analytical model. Here, we estimate

the lower bound of U for non-equilibrium intrusions using rudimentary energy ar-

guments. Deriving more robust quantitative predictions awaits further theoretical

developments.

Material drawn from this chapter has been submitted for publication to

Physics of Fluids, 2006, Flynn, M. R., Boubarne, T. and P. F. Linden (American

Physical Society).
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Conclusions and summary of

present contribution

9.1 Natural ventilation

Whereas conventional HVAC systems provide a comfortable indoor cli-

mate at a considerable energy expense, “naturally-ventilated” buildings apply

freely-available resources such as wind forcing and internal heat gains in place of

mechanical equipment such as fans and blowers. In particular, because naturally-

ventilated buildings provide cooling only for those regions occupied by people or

temperature-sensitive equipment, natural ventilation represents a particularly ad-

vantageous strategy with respect to waste heat disposal. Unfortunately, designs

that maximize thermodynamic efficiency during summer months often yield inade-

quate interior conditions during winter months when (i) deliberate heat input may

be required to supplement that produced by electrical equipment or other machin-

ery, and, (ii) infiltration of cold external air is typically undesirable. “Hybrid”

buildings are designed specifically for multi-season use and must therefore achieve

some reasonable compromise between the disparate demands of passive summer-

time cooling and active winter-time heating. The analysis of Chapter 3 explores

this topic in detail and shows (at least for simple geometries) how an external wind
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forcing that exerts a pressure difference across a building’s external shell may be

fruitfully harnessed in either circumstance.

An important conclusion from this theoretical development is that hys-

teresis effects in ventilation flows may be significantly curtailed or eliminated al-

together provided the interior thermal source supplies both heat and mass to its

surroundings. Thus for prescribed source conditions and external forcing, one may

identify whether multiple steady flow states will occur, or, conversely whether the

ventilated, blocked and well-mixed flow regimes described in Chapter 3 represent

unique solutions to the governing equations. Because all possibility of cold air

infiltration is arrested only for sufficiently large source volume fluxes, drawing this

distinction is a crucial first step in optimizing the cold weather performance of

hybrid buildings.

A possible restriction of the preceding analysis is that it considers an

idealized geometry, i.e. a single chamber connected to the exterior through floor-

and ceiling-level openings (Linden, Lane-Serff & Smeed [55], Rooney & Linden

[75], Linden [53], Li & Delsante [50], Hunt & Linden [41], [42], Woods, Caulfield

& Phillips [97], Kaye & Hunt [45], Heiselberg et al. [36]). Although limited by

its simplicity, this configuration offers a number of computational advantages, not

the least of which is that a comprehensive description of the steady state may be

derived directly from the source conditions and building geometry. No independent

consideration of the transient approach towards steady state is required.

The theoretical and experimental discussion of Chapters 4 and 5 shows

that this mode of analysis may be inadequate when studying the ventilation char-

acteristics of more intricate (i.e. multi-chamber) geometries. Specifically, areas

devoid of direct thermal forcing lack the convective motions necessary to homoge-

nize layers of contaminated source fluid. Thus a continuous vertical stratification of

temperature (i.e. density) may be maintained, even in the longtime limit, t →∞.

Consequently, some non-decaying and non-trivial “imprint” of the system’s tran-

sient evolution is preserved, which depends sensitively upon a number of factors
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including the relative size(s) of adjacent chamber(s), the number and position of

interior/exterior openings and the possibility that contaminated source fluid might

be discharged to the environment from multiple openings for a finite period of time.

The above discussion poses a particular challenge for the design engineer.

To wit, although reduced models that universally neglect the internal stratification

of contaminated layers are relatively straightforward to implement, they may pre-

dict qualitatively incorrect flow behavior. For example, for the geometry illustrated

schematically in figure 4.1, the doubly well-mixed model described in Chapter 4

predicts that the forced chamber buoyant layer depth must always exceed the

unforced chamber buoyant layer depth. This conjecture is contrary to both the re-

sults of a more exhaustive analytical model, and, more importantly, observations

derived from complementary laboratory experiments. Therefore, for non-simple

building geometries, a detailed analysis of natural ventilation design/performance,

particularly with reference to possible steady states, should proceed from a careful

examination of the transient flow behavior. Temporal and spatial variations of

density in the interior environment must be appropriately modeled, for example

using the numerical algorithm suggested by Germeles [30].

Similar considerations must also apply to the ventilation of a multi-

chamber enclosure in the presence of an external wind shear. However, because the

vertical stratification of the unforced chamber is destroyed once wind-dominated,

well-mixed conditions are achieved, the system’s initial temporal evolution may be

of secondary importance in special limiting cases. Needless to say, such consid-

erations are somewhat academic vis-a-vis summer-time design, where waste heat

disposal is of central concern such that well-mixed conditions are highly undesir-

able in any event. As is observed for simple geometries, hysteretic behavior of the

type described in Chapter 3 should again be possible provided the source volume

flux is sufficiently small. It appears unlikely, however, that a slowly-varying oscil-

latory wind will result in a chaotic internal response. Rather the multi-chamber

system is expected to alternate between well-defined quasi-steady states. Further
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study is required to characterize exhaustively these (geometry-dependent) tempo-

ral fluctuations.

Even in the absence of an external wind, additional analysis is also needed

to properly assess the influence of the initial conditions on the properties of the

eventual steady state for multi-chamber flow. Consistent with previous studies

(e.g. Lin & Linden [52]), the ventilation models of Chapters 4 and 5 assume that the

building is filled entirely with ambient fluid of uniform temperature at t = 0. More

realistically, the chambers might possess an initial, non-trivial density stratification

due, for example, to prior occupation or solar radiation. Although contamination

of this type will not alter the system’s long time behavior for sufficiently simple

(i.e. one chamber) geometries, it remains to identify how a pre-existing density

stratification will perturb the selection of, and corresponding approach to, the

final steady state in non-trivial flow domains.

Furthermore, there is a poor understanding of the ventilation performance

of buildings forced by an oscillatory thermal source, mimicking, for example, a

diurnal variation of solar radiation, an electrical appliance such as a refrigerator

that cycles on and off, or a lecture theater or meeting room that is used at regular

intervals, but not continuously, throughout the day. Thus the period of oscillation

represents an additional time scale, whose magnitude relative to the filling, draining

and replacement time scales defined in Chapters 4 and 5 should influence the

system’s transient adjustments. Also, once the thermal forcing is reduced, the

plumes generated by isolated heat sources may contain insufficient buoyancy to

rise all the way to the top of the chamber. As a result, the plumes will act

as fountains once their (height-dependent) density matches that of the external

ambient. It has been shown by D. T. Bolster (personal communication) that

incorporating into conventional ventilation models the equations of Bloomfield &

Kerr [13], [14], which describe the entrainment of buoyant ambient fluid by the

fountain is a non-trivial task.

Finally, all of the strategies for natural ventilation described thus far focus
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on heat transfer via convection. It may be possible, however, to significantly ex-

pand thermodynamic performance by also taking advantage of conductive and/or

radiative effects. For example, thermal mass floors and walls trap heat within the

building fabric and thereby “phase shift” daytime solar gains. Accordingly, tem-

peratures within the building’s interior are respectively lowered and raised during

midday and evening. By judiciously integrating this technology with that described

in quantitative detail above, it may be possible to extend both the seasonal and

geographic ranges over which low-energy building ventilation may be applied.

9.2 Intrusive gravity currents

Diapycnal mixing across a density-stratified interface often results in an

intrusive gravity current, which represents an important category of environmental

flow. More specifically, whereas interfacial waves transport no mass to leading

order, intrusive gravity currents may carry discrete fluid parcels and/or nutrients,

sediment, insects, etc. over great distances in nature (see for example Armi [3]

and Simpson [83]). Although existing descriptions of intrusive gravity currents,

or intrusions, have focused on their similarity to the boundary gravity currents

studied by Benjamin [7], we demonstrate herein that a straightforward extension

of Benjamin’s analysis (i.e. that provided by Holyer & Huppert [37]) is insufficient

to provide a satisfactory dynamical description under many instances of practical

relevance.

Chapter 7 explores non-equilibrium flow for which the intrusion density

is different from the depth-weighted mean density of the upper and lower layers.

It is well known from the analyses of Sutherland, Kyba & Flynn [88] and Cheong,

Kuenen & Linden [20], that upstream interfacial waves must be generated in this

circumstance. However, these previous studies do not suggest a theoretical method-

ology for resolving the waves’ quantitative influence. Here, we apply shallow water

theory to provide the necessary analytical framework. More specifically, it is as-
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sumed that the upstream waves are non-linear and satisfy the Riemann invariant

solutions to the two-layer shallow water equations given by Baines [4] (see also

Appendix D). Consequently we may relate the wave-induced velocity of the upper

and lower layers to the wave amplitude, which is itself dependent on the intrusion’s

gravitational adjustment with respect to the upstream interface. Application of

mass, momentum and energy conservation in a control volume surrounding the

intrusion head closes the 5 × 5 system of non-linear algebraic equations. Of par-

ticular interest here is the predicted front speed, U , which is expected to remain

constant during the slumping phase of motion (Rottman & Simpson [76]).

The theoretical model described above shows good agreement with com-

plementary experimental and numerical data as reported in Cheong et al. [20].

Moreover, model results compare favorably with Cheong et al.’s energy-conserving

model, which neglects the dynamical effect of upstream propagating interfacial

waves. This suggests that the wave energy flux is relatively small compared to

the kinetic energy of the bulk flow. Nonetheless, the waves’ impact should not

be considered irrelevant because they deflect the upstream interface vertically and

thereby change the local upstream conditions encountered by the intrusion. Dy-

namical models that overlook this important fact (for example that of Holyer &

Huppert [37]) predict physical solutions of restricted parametric scope.

Chapter 8 considers via experiments and two-dimensional numerics a

modified lock-release geometry in which the fluid of intermediate density does

not initially span the entire channel depth, H. For mixed layers whose initial

depth is small, it is expected from the related analysis of Shin, Dalziel & Lin-

den [81] that momentum and energy may be exchanged between the forward- and

backward-propagating disturbances by long waves on the downstream interfaces.

Communication of this sort is neglected in the studies of Benjamin [7] and Holyer

& Huppert [37], who consider only the forward-propagating flow.

A hydraulic, energy-conserving model is developed for the special circum-

stance in which the intrusion density matches the system’s depth-weighted mean
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density. For this particular case, it is helpful to approximate the upstream inter-

face as being exactly horizontal. It must be emphasized, however, that the gravity

currents above and below the interface are not independent of one another as they

are observed to travel with the same speed, U . This restriction places particular

constraints on the relative height of the intrusion with respect to the upper and

lower layers. Although the intrusion is predicted to occupy one-half the initial

depth of the intermediate density fluid, we find that, in general, hU/DU 6= 1/2 and

hL/DL 6= 1/2 where hU , hL, DU and DL are the distances specified in figure 8.1.

Model results show good quantitative agreement with the output from

the numerical simulations, which apply a spectral and finite difference decompo-

sition in the streamwise and wall-normal directions, respectively. Agreement with

experimental data, though positive, is slightly less robust due to certain systematic

asymmetries introduced by the equipment design.

It is much more difficult to describe theoretically non-equilibrium in-

trusions issuing from a partial-depth lock release apparatus for in this case the

intrusions must be matched to wave-perturbed upstream and downstream condi-

tions. Whereas a detailed investigation of the corresponding equations is beyond

the scope of the present inquiry, helpful information may nonetheless be drawn

from rudimentary energy arguments. Though limited in scope, this analysis may

provide insights into the development of a more comprehensive theory.

A possible limitation of the analyses of Chapters 7 and 8 is that the

lower (rigid) boundary is assumed flat and thus the flow is not influenced by

topographic effects. Indeed, it is well-known from the theoretical, numerical and

experimental work of Birman et al. [10] and others that topography plays an

important role in the dynamics of gravity currents that travel along a rigid yet non-

uniform boundary. In a similar fashion, topographic forcing should likewise exert

some non-trivial role in the motion of intrusive gravity currents. Most importantly,

perhaps, with an irregular lower boundary, the flow cannot achieve steady state

during the slumping phase of motion because the lower layer depth changes as
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a function of the horizontal coordinate and thus there is a local acceleration or

deceleration of the mean flow. Therefore, the steady state analysis summarized

in Chapters 7 and 8 cannot be applied. Instead, if the topographic slopes are

sufficiently small, a more appropriate alternative may be to employ the shallow

water formulation of Rottman & Simpson [76] and D’Alessio et al. [22] for which

unsteady terms in the momentum equation (i.e. ∂u/∂t) are explicitly retained.

Critically, one must then determine a front condition of the type given by (7.7) of

Shin et al. [81], which accurately describes unsteady gravity current flow over a

non-uniform surface.

Topographic forcing will also impact upstream and downstream waves

generated by the intrusion. In particular, if the lower layer becomes sufficiently

shallow, the upstream long wave may steepen and break. This may have impor-

tant ramifications for nutrient and/or pollution transport across a sharp density

interface in stratified marine environments.

Further complications may arise if the intrusion contains sedimenting

particles as is observed, for example, in the outflow of volcanic plumes. In this

circumstance, the intrusion density decreases with time suggesting that a contin-

uous vertical adjustment with respect to the upstream interface will occur. By

assessing the impact of this effect on the front speed for a variety of conditions, it

may be possible to predict the pattern of particle deposition for both planar and

axisymmetric geometries.



Appendix A

Mathematical description of

filling-box flows

A.1 Preliminary remarks

Following the studies of Linden, Lane-Serff & Smeed [55], Woods, Caulfield

& Phillips [97], Kaye & Hunt [45] and many others, the ventilation analysis of

Chapters 3, 4 and 5 makes liberal use of the turbulent plume equations in param-

eterizing buoyant convection from internal, time-invariant heat sources. Here, we

present a rigorous derivation of these relations and provide a brief justification for

their use1. As is demonstrated in mathematical detail below, plumes necessarily

entrain external fluid and thus their behavior depends upon the properties and

geometry of the ambient reservoir. Therefore the derivation is divided into two

parts. First, it is assumed that the reservoir is infinite in extent so that temporal

variations of the ambient are negligible, even if the flow is sustained over long

time scales (Morton, Taylor & Turner [66]). Second, and of more relevance to

building ventilation, we consider a finite reservoir for which the ambient density

field evolves in time due to boundary deposition of plume fluid (Baines & Turner

1In contrast to the previous discussion, equations are here derived by assuming that the flow originates
from a negatively-buoyant thermal source. Consistent with the discussion of Spiegel & Veronis [85] and
Kundu [49], p. 112, this change of coordinate frame is immaterial so long as density differences are small
so that the Boussinesq approximation may be applied.
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(b)(a)

Figure A.1: Negatively-buoyant point-source plume falling into (a) an infinite, and,

(b) a bounded environment.

[5], Germeles [30], Manins [62], Worster & Huppert [98]). The distinction between

these disparate cases is illustrated schematically in figure A.1.

A.2 Formulation

Notwithstanding the differences between figure A.1a and A.1b, each flow

is assumed to satisfy the following basic conditions:

(i) The volume and momentum fluxes are negligible at the (point) source,

(ii) The horizontal entrainment velocity is linearly related to the plume’s local

vertical velocity,

(iii) The buoyancy and velocity profiles of the plume are well-represented by Gaus-

sian distributions2.

From condition (iii), we therefore define

b = B + (bc −B)e−r2/a2

, w = W + (wc −W )e−r2/a2

, (A.1)

where bc(z) and wc(z) denote, respectively, the buoyancy and vertical speed at the

plume core (r = 0) and a(z) is the plume’s characteristic radius. Furthermore, B(z)

2Alternatively, “top hat” profiles may be applied without any material change to the end result.
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and W (z) represent the buoyancy and velocity profiles in the far field, respectively.

Localized plumes of the type considered here satisfy |wc| � |W |. Hence, close to

the centerline of the plume

w ' wc e−r2/a2

. (A.2)

Regions over which the above approximation is valid are referred to as the “local

scale.” By contrast, regions far from the plume core where (A.1)b must be applied

in place of (A.2) are referred to as the “global scale.” Over both scales fluid motion

is described by the mass, buoyancy (energy) and vertical momentum equations. In

cylindrical coordinates, these are given, respectively, by

r−1(r u)r + wz = 0 , (A.3)

bt + ~∇ · (ub) = κ∇2b , (A.4)

wt + r−1(r u w)r + (w2)z = b−B + ν∇2w , (A.5)

where r and u denote the radial coordinate and the corresponding radial velocity.

Furthermore κ is the diffusivity, ν is the kinematic viscosity and subscripts indicate

differentiation. For localized plumes, only the hydrostatic component of pressure is

significant and hence fluctuating components due to turbulence may be neglected.

Therefore, consistent with Turner [90], we write B = pz/ρ0 where ρ0 denotes a

reference density.

Integrating (A.3) over the local scale and applying (A.2) yields

[r u]r=r1 + 1
2
(a2 wc)z = 0 , (A.6)

where r1 is selected such r2
1 � a2. The former term is evaluated using G. I. Taylor’s

entrainment hypothesis

[r u]r=r1 = a u(a, z) = αp a wc(z) ,

where αp ' 0.1 is the entrainment constant for an axisymmetric plume issuing

from a point source (Turner [91]). Applying this result in (A.6) yields

(a2 wc)z = −2αp a wc . (A.7)
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Table A.1: Mass, buoyancy and vertical momentum equations expressed in differ-

ential, integrated and flux form.

Differential form
Mass r−1(r u)r + wz = 0

Buoyancy bt + ~∇ · (u b) = κ∇2b
Momentum wt + r−1(r u w)r + (w2)z = b−B + ν∇2w

Integrated form
Mass (a2 wc)z = −2αp a wc

Buoyancy 1
2
[a2 wc(bc −B)]z = −a2 wc Bz

Momentum 1
2
(a2 w2

c )z = a2 (bc −B)

Flux form

Mass Qz = 2αp (2π M)1/2

Buoyancy Fz = −QBz

Momentum M Mz = F Q

In a similar fashion, the buoyancy and momentum equations can be integrated

over the local scale (table A.1). Here, effects due to heat or momentum diffusion

are neglected. Furthermore a quasi-steady state is assumed such that temporal

variations are deemed insignificant i.e. bt = ut ' 0.

The integrated equations of table A.1 may be re-expressed in flux form

by defining the volume, momentum and buoyancy fluxes as

Q = π a2 wc , M = 1
2
π a2 w2

c , F = 1
2
π a2 wc(bc −B) , (A.8)

respectively. Thus it can be shown that

Qz = 2αp(2π M)1/2 , Fz = −QBz , M Mz = F Q . (A.9)

A.3 Infinite environment

Morton et al. [66] considered the behavior of the plume equations (A.9)

for the special case of an unbounded ambient such that B and its vertical derivative

represent independent variables. In the simplest possible scenario, Bz = 0, i.e. the
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ambient is unstratified3. Hence Fz = 0 indicating that the buoyancy flux is a

constant, F = F0 ≡ π
2
[a2 wc(bc −B)]z=0. Scaling theory therefore suggests

Q ∝ F
1/3
0 z5/3 , M ∝ F

2/3
0 z4/3 . (A.10)

The constants of proportionality are determined by forming the ratio of (A.9)a

and c, separating variables and integrating. Thus it can be shown that

Q = λ(4F0)
1/3 z5/3 , M =

(
9αp F0

5

)2/3

·
(π

2

)1/3

z4/3 , (A.11)

where

λ =
6α

5

(
9α

10

)1/3

π2/3 (A.12)

is the universal plume constant. Furthermore, the plume radius, a, and core ve-

locity, wc, are given by

a =

(
Q2

2π M

)1/2

= 6
5
αp |z| , wc =

2M

Q
= −5

6

(
18F0

5π α2
p

)1/3

|z|−1/3 , (A.13)

respectively. In the above equations, the ideal plume assumption has been invoked

such that Q(0) = M(0) = 0. Plumes displaying a non-zero source volume and

momentum flux are referred to as “non-ideal” and can be described by applying a

“virtual origin” correction in the manner of Hunt & Kaye [40].

Uniformly-stratified environments are characterized by a buoyancy fre-

quency N = (−g ρ̄z/ρ0)
1/2 in which g is gravitational acceleration and ρ̄z is the

background density gradient. Vertically descending plumes of the type depicted in

Figure A.1 increase in density as they fall due to entrainment. If the rate of en-

trainment is sufficiently rapid (or equivalently if ρ̄z is sufficiently large), the plume

will become neutrally-buoyant at a vertical distance zneut ∝ F
1/4
0 N−3/4 from the

source. At this level, the plume fluid propagates into its surroundings as a radially-

symmetric gravity current (Schooley [79], Wu [99], Schooley & Hughes [80], Manins

[63], Faust & Plate [26], Flynn & Sutherland [29]).

3To leading order, this approximation is appropriate when modeling fluid discharge into the well-mixed
surface boundary layer of the atmosphere.
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A.4 Bounded environment

A.4.1 Evolution of the ambient density field

When the ambient is finite in extent (Figure A.1b), global dynamics are

strongly coupled to local dynamics via entrainment and the deposition (and subse-

quent re-entrainment) of plume fluid. Explicitly, when the plume is first “switched

on,” dense fluid falls through the ambient and descends all the way to the bottom

of the domain where it is discharged into a thin layer of approximately uniform

thickness along the lower boundary of the control volume. A small fraction of this

fluid is immediately recycled through the plume and the density of the layer de-

posited at the subsequent time step is therefore larger than that which formed at

t = 0. By the same token, the layer formed over the following time interval must

be denser still. The above process repeats ad-infinitum as the isopycnal layers in

the far-field are slowly advected upward resulting in a stable, continuously-varying

ambient density profile (Germeles [30]).

The spatio-temporal evolution of this stratification is determined by in-

tegrating (A.3) and (A.4) over the global scale. Applying (A.1) and the no-

penetration boundary condition on the side and bottom surfaces, we find

A W + π a2 wc = 0 , (A.14)

Bt + W Bz = κBzz . (A.15)

where A is the total cross-sectional area. Heuristically speaking, (A.14) demon-

strates that “the [upward] volume flux in the environment at any level must equal

the [downward] flux in the plume” (Baines & Turner [5]). By the same token,

(A.15) reveals that temporal variations in B are due to an imbalance between the

upward advection and downward diffusion of the active scalar.

The far-field vertical velocity, W , can be eliminated from the problem by

combining (A.14) and (A.15) whence

Bt −
Q

A
Bz = κBzz . (A.16)
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For filling-box flows of the type shown in figure A.1b, (A.9) and (A.16) quantify

the dynamic interaction between the plume and the surrounding ambient.

A.4.2 Analytical solution of (A.9) and (A.16)

Baines & Turner [5] studied the long-time behavior of filling-box flows

under the assumptions that Bt → constant and κ = 0. In this case, there exists

a well-defined “first front” that separates discharged plume fluid from that which

occupied the domain at the initial instant. Because diffusion effects are assumed

negligible, the density jump across this front remains constant in time. The vertical

position of the first front, zff , can be determined from

dzff

dt
= −π a2 wc

A
, (A.17)

where the plume radius, a, and core velocity, wc, are determined by the analysis

of §A.3, which is applicable for z > zff . Thus employing (A.13) in (A.17) yields

t =
5

4αp

(
5

18αp π2 F0 H2

)1/3

A

[(
−H

zff

)2/3

− 1

]
, (A.18)

where H is the total height of the control volume. Note that zff < 0 for all t < ∞

and hence in the absence of diffusion, a closed domain forced by an ideal source

cannot become completely filled with dense plume fluid in finite time.

To determine the behavior of Q, M and F , non-dimensional independent

variables ζ and τ are introduced such that

z = ζ H , t =
A τ

4π2/3 α4/3 H2/3 F
1/3
0

(A.19)

(Baines & Turner [5], Worster & Huppert [98]). Furthermore, non-dimensional

volume (q), momentum (m) and buoyancy (f) fluxes are defined whereby

q =
Q

4π2/3 α4/3 H5/3 F
1/3
0

, (A.20)

m =
M

2π1/3 α2/3 H4/3 F
2/3
0

, (A.21)
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f = F/F0 . (A.22)

Finally, assuming Bt → constant for large t, we write

B =
F

2/3
0 (δ − τ)

4π2/3 α4/3 H5/3
, (A.23)

in which the non-dimensional variable δ captures the spatial variation of B, i.e.

δ = δ(ζ). The governing equations (A.9) and (A.16) are therefore rewritten as

qζ = m1/2 , fζ = −q δζ , m mζ = f q , δζ = −q−1 . (A.24)

Baines & Turner [5] solved this 4× 4 system subject to a constant buoyancy flux

boundary condition at ζ = 0, i.e.

BC : q(0) = 0 , m(0) = 0 , f(0) = 1 .

Hence from (A.24) b,d we find that f = 1 + ζ and therefore

qζ = m1/2 , m mζ = q(1 + ζ) . (A.25)

Equations (A.25) a,b are amenable to solution via perturbation techniques (see for

example Ch. 3 of Bender & Orszag [6]). Consistent with (A.10), it can be shown

that

q ∼ 0.4597ζ5/3 + 0.0589ζ8/3 + . . . , (A.26)

and

m ∼ 0.5872ζ4/3 + 0.2409ζ7/3 + . . . . (A.27)

These results offer insights into the plume’s spatial variation for large t

and are suitable for most flows of engineering interest. It must be emphasized,

however, that (A.26) and (A.27) do not describe a steady solution to the filling-

box equations because Bt 6= 0 by assumption. Analytical solutions in the long

time limit t →∞ are of primary relevance in the context of large-scale geophysical

flows and are given by Manins [62].
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A.4.3 Numerical solution of (A.9) and (A.16)

An alternate, strictly numerical method for solving the coupled equations

was proposed by Germeles [30]. The central feature of Germeles’s algorithm is the

assumption of separation of time scales such that “the evolution of the plume

. . . occur[s] much more rapidly than the evolution of the ambient density field . . . ”

(Caulfield & Woods [19]), the latter being represented by a series of discrete steps

(Conroy, Llewellyn Smith and Caulfield [21]). Thus for a particular instant in

time, t?, the background stratification is assumed fixed, which allows (A.9) or

its non-dimensional analogue to be integrated from z = 0 to z = H. With a

prescribed time step, ∆t, (A.16) may then be solved4 for B, which yields the

ambient density profile at time t? +∆t. As a result of entrainment into the plume,

pre-existing density layers become smaller in vertical extent. In addition, because

existing layers are advected towards the thermal source, mass continuity requires

the addition of a new layer at the bottom of the control volume. This corresponds

to the physical process of boundary deposition of dense plume fluid.

Once the discretized density field, B, is updated, the local equations

given by (A.9) may be solved anew. Thus, for a well-defined initial condition, the

system’s evolution may be determined for arbitrarily large t.

A.5 Concluding remarks

Although somewhat involved, the foregoing discussion provides a useful

analytical tool, which, when coupled with analogue laboratory experiments and/or

full-scale CFD simulations, offers key qualitative and quantitative insights into

fluid flow within ventilated buildings (Linden [53]). For example, (A.11) gives

the convective volume flux above an isolated thermal source as a function of the

vertical coordinate for unstratified surroundings. As suggested by the displacement

ventilation analysis of Chapter 3, this result may be used to predict the volume of

4Again, it is assumed that mass diffusion effects may be neglected, i.e. κ ' 0.
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buoyant fluid supplied to a chamber’s hot, upper layer. For simple geometries, such

of those considered in Chapter 3, this in turn specifies the system’s total ventilation

flow rate. Moreover, Germeles’s algorithm may be easily extended to open control

volumes that exchange mass and buoyancy with the external environment. In

this case, flows are driven by pressure differences arising from stack effects, which

introduces further terms into the conservation equations. This approach is applied

in Chapter 4 when describing multi-chamber ventilation.

As noted in § 2.3, however, certain care is required in pursuing this line

of inquiry. In particular, both the analytical treatment of §§ A.3 and A.4.2 and the

numerical treatment of § A.4.3 assume that buoyant convection originates from a

compact source and further that the resulting plume occupies a relatively small

fraction of the chamber’s total cross-sectional area. These assumptions are justified

provided thermal inputs may be modeled as a series of discrete sources, no single

one of which supplies a significant volume flux. Thus, for example, a ventilated

filling-box model may be applied when describing the displacement ventilation of

a single chamber whose thermal sources include building occupants and light ma-

chinery or electrical equipment. The virtual source correction described by Hunt

& Kaye [40] may be used in parameterizing sources distributed over a small area.

However, this model is inadequate for instances of broadly-distributed heat sources

as is often associated with solar radiation through large windows. In this circum-

stance, (i) the interior space is typically well-mixed such that vertical gradients

of temperature are small, and, (ii) heat transfer is more appropriately modeled

by applying the expressions for Rayleigh-Bénard convection given, for example,

by Denton & Wood [24]. Specific details of this approach are described by Glad-

stone & Woods [33], who examine the disparate flow regimes associated with the

areal thermal forcing of a single chamber in the presence of an assistive or adverse

external wind gradient.

A further limitation of the filling-box model in general, and Germeles’s

algorithm in particular, is that discharged plume fluid is assumed to spread instan-
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taneously with no mixing. Although the consequence of the former assumption is

believed to be small for most geometries of practical interest, mixing effects (for

example due to overturning motions) have the impact of reducing vertical density

gradients in the layer of discharged plume fluid. Thus, in certain cases, it may be

acceptable to model this layer as being well-mixed for all time5. Conditions under

which this assumption is valid in the context of multi-chamber ventilation flows

are rigorously explored for a particular geometry in Chapters 4 and 5.

A final impact of mixing is to “smear” the first front. Thus, in industrial

settings, the sharp density step predicted by the filling-box equations is typically

diffused over some non-trivial vertical distance (Liu & Linden [59]). Some margin

of error is therefore required in designing displacement ventilation systems for

which the chamber’s buoyant, upper layer and working space must not intersect.

5Linden et al. [55] apply this well-mixed hypothesis in their discussion of displacement ventilation
flows. However, they consider solutions in the limit t → ∞ rather than the transient approach towards
steady state.



Appendix B

Fires and naturally-ventilated

buildings

B.1 Ventilation and fire safety

The dangers associated with accidental fires in buildings and homes are

due in large part to the noxious byproducts of combustion such as carbon dioxide,

carbon monoxide and partially-burned fuel, all of which pose a severe threat of

asphyxiation. Clearly, a critical aspect of occupant safety is the efficacy with which

such byproducts are discharged to the external environment as the building is being

evacuated of personnel. Natural ventilation of the type described in chapters 3, 4

and 5 offers some non-trivial advantages in this regard (Kramer & Gerhardt [48],

Rooney & Linden [75]). Significantly, because natural ventilation relies upon a

stable indoor stratification of temperature, a properly-designed system will by-and-

large confine buoyant fluid (i.e. smoke) along the ceiling. This provides a relatively

cool and smoke-free layer close to the floor, which is continually replenished by

inflow of ambient fluid at low level.

By providing adequate ventilation for evacuating occupants, however, ad-

ditional oxygen is also supplied for combustion. Hence fire growth within naturally-

ventilated buildings is typically not ventilation-controlled. Although this may in-
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crease the rate at which fuel is consumed, it also reduces the probability of “back-

draft” or “flashover,” which is typically associated with oxygen-depleted spaces

that are rich in partially-burned or vaporized fuel. More specifically, flashover oc-

curs once the chamber’s internal pressure is sufficient to break a window or blow a

door ajar at which point oxygen is supplied at a rapid rate, leading to an explosive

(and potentially lethal) combustion of unburned hydrocarbons. Thus, Bishop &

Drysdale [12] note that “life safety is closely associated with the duration of the

growth period, both for those in the room of origin, and for those elsewhere in the

building. The greater the duration of the preflashover phase, the longer the period

of time available for the occupants to escape to a place of safety.”

Fortunately, the non-Boussinesq effects associated with fire plumes have

a relatively minor impact so that many of the salient results described previously

(as well as those derived in the complementary analyses of Linden, Lane-Serff &

Smeed [55], Hunt & Linden [41], [42], Kaye & Hunt [45] and others) also apply to

the ventilation of relatively small fires. To the extent that non-Boussinesq effects

are important, they are principally due to a modified entrainment relationship

(Rooney & Linden [74]). Technical aspects of this difference are briefly reviewed

in the following section.

B.2 Quantitative discussion

G. I. Taylor’s entrainment hypothesis proposes that the radial entrain-

ment velocity into an ascending or descending plume is linearly related to the

plume’s (height-dependent) vertical velocity, i.e.

ue ∝ w . (B.1)

This relationship is consistent with the self-similar behavior of Boussinesq plumes.

However, (B.1) proves inadequate when there exists a significant density disparity

between the plume and ambient fluids in which case the flux of density deficiency

rather than buoyancy is conserved (assuming unstratified surroundings). For this
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non-Boussinesq circumstance, Ricou & Spalding [73] and Rooney & Linden [74]

propose the following modification to (B.1)

ue ∝ w

(
ρ

ρO

)1/2

, (B.2)

where ρ and ρO denote, respectively, the densities of the plume and ambient. As

a result of this adjustment, the plume radius, a, varies with ρ, ρO and the vertical

coordinate, z, according to

a ∝ |z|
(

ρ

ρO

)−1/2

. (B.3)

Comparison with (A.13)a shows that positively- and negatively-buoyant non Boussi-

nesq plumes will be, respectively, wider and narrower than their Boussinesq coun-

terparts.

Density effects also appear in the expressions describing the ventilation of

a single chamber of height H with upper and lower openings of cross-sectional areas

Ao and Ai, respectively. Assuming the interior space is stratified in the manner of

chapter 4, the interface height, Hl, is given by

λ3H5
l = Ã2

?(H −Hl) , (B.4)

where

Ã? =
Θ1/2 Ao Ai[

1
2

(
A2

o +
A2

i

Θ

)]1/2
,

in which λ is the universal plume constant and Θ gives the ratio of the upper

and lower layer densities. It must be emphasized, however, that due to turbu-

lent entrainment, Θ1/2 ' 1 in most instances. Therefore Hl “is little affected by

departures from the Boussinesq value” (Rooney & Linden [75]). Because similar

conclusions may also be drawn for more complicated flow domains involving mul-

tiple chambers, a naturally-ventilated building that effectively removes waste heat

should also provide adequate ventilation in the event of an accidental fire.



Appendix C

Multi-chamber ventilation

(non-ideal source) –

Mathematical details

C.1 Illustrative derivation

Because the theoretical results of Chapter 5 are developed rather quickly1,

a representative derivation is performed herein to further illuminate the previously

applied methodology. More specifically, we shall consider the results of table 5.1

to demonstrate how the quartic polynomial equations in qo are determined. For

simplicity, dimensional variables are favored with scalings applied only at the end

of the discussion to make an explicit connection with the results given above.

Attention is first of all focused on the system’s early-time dynamics for

which the directions of flow through the lower openings must be as indicated in

figure C.1. Although the forced chamber supports a two-layer stratification, con-

taminated plume fluid cannot yet accumulate in the unforced chamber because

QB > 0 indicating flow from left-to-right through the lower internal opening. Con-

sequently, the expressions of hydrostatic pressure balance for the forced and un-

1This material has been submitted as an extended abstract to the 6th International Symposium on
Stratified Flows (ISSF) for which there is a rigid page limit.
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oQ

Qi Qs

QT

QB

Lf

Hf

Hu = H

Figure C.1: Ventilation flow behavior for t = 0+. Consistent with the discussion

of Chapter 5, flows are defined to be positive in the directions specified above.

forced chambers read

pf (H)

ρa

=
pf (0)

ρa

− g Hf −
g ρf

ρa

Lf , (C.1)

pu(H)

ρa

=
pu(0)

ρa

− g H , (C.2)

respectively, where variables are defined as in Chapter 5. Equations (C.1) and

(C.2) therefore suggest that

pf (0)− pu(0)

ρa

=
pf (H)− pu(H)

ρa

− If , (C.3)

where the integral buoyancy term If is given by (5.5). Hence, applying Bernoulli’s

principle for orifice flow to both sides of (C.3), we find

QB

A
=

√
Q2

T

A2
− 2If . (C.4)

Similar reasoning shows that

Qi

A
=

√
Q2

T

A2
+

Q2
o

A2
− 2If . (C.5)
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The preceding expressions may be combined with the equations describing mass

balance. For the Boussinesq system considered here, these are given by

Qs = Qi + Qo , (C.6)

Qo = QT + QB . (C.7)

More specifically, applying (C.4) in (C.7) yields

QT = 1
2
Qo +

A2 If

Qo

. (C.8)

Combining this result with (C.5) it can be shown that

Q2
i

A2
= 5

4

Q2
o

A2
+

A2 I2
f

Q2
o

− If . (C.9)

Equation (C.6) may now be applied to eliminate Qi from (C.9). After some ele-

mentary algebra, we find

0 = 1
4
Q4

o + 2Qs Q3
o −Q2

o (Q2
s + A2 If ) + A4 I2

f . (C.10)

Dividing each term by Q4
v = (A2/3 B

1/3
s H1/3)4 yields

0 = 1
4
q4
o + 2qs q3

o − q2
o (q2

s + if ) + i2f , (C.11)

which is identical to the first equation of table 5.1.

As the two-chamber system illustrated in figure C.1 evolves in time, we ex-

pect one or both of QB and Qi to change sign, indicating a change of flow direction

through either the lower internal or external opening. The governing polynomial

equations germane to these cases may be obtained through a similar analysis to

that outlined above. In each case, however, it is assumed that both chambers con-

tain a layer of contaminated plume fluid. This necessitates a slight modification

to (C.2), the expression for hydrostatic balance in the unforced chamber and is

reflected by the appearance of iu in equations 2, 3 and 4 of table 5.1.
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C.2 Further remarks

Whereas the analytical results presented in table 5.1 do not by themselves

describe the time evolution of the multi-chamber system, a surprising amount of

information may nonetheless be derived through simple inspection of these expres-

sions. For example, although the direction of flow through the lower openings must

be as shown in figure C.1 immediately after the (non-ideal) plume is “switched on,”

both QB and Qi must change sign if the chambers are to evolve towards a ventilated

final state. These flow adjustments are not expected to occur simultaneously, how-

ever, so clearly one of QB or Qi must change sign before the other. Moreover, since

such transitions are expected to be smooth, a corresponding mathematical conti-

nuity is required between equations 1 and 2/4 of table 5.1 in the respective limits

QB → 0 and Qi → 0. Interestingly, this continuity is observed only in the former

case, from which we deduce that it is unlikely to observe inflow through the lower

external opening with flow from left-to-right through the lower internal opening.

Detailed analysis of the ordinary differential equations given by (5.6) and (5.7) con-

firms this supposition. Furthermore, with QB = 0 and outflow through the lower

external opening, equations 1 and 2 of table 5.1 show that Qo = Qi = QT = Qs/2,

i.e. equal volumes of fluid are discharged at floor- and ceiling-level.

Unfortunately, the results summarized above appear to be specific to

the particular building geometry under investigation and are therefore not easily

extended to multi-chamber systems involving a different number/positioning of

internal and external openings. Further study is required to determine whether a

simple analysis of the type given above is worthwhile in more general settings.
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C.3 Analysis of (5.14) for ζs → 0

Although it is too difficult to solve for hf∞ analytically from (5.14), for

small ζs (i.e. small Qs) one can show that

hf∞ = hf∞,0 −
ζs h4

f∞,0

2ζ5
s

15q3
s

+ h4
f∞,0

+O(ζ4/3
s ) , (C.12)

where hf∞,0 solves the following non-linear equation

λ3 h5
f∞,0 =

2

3
λ3 ζ5

s

q3
s

(1− hf∞,0) =
2

3

(
A

H2

)2

(1− hf∞,0) . (C.13)

This result complements the analysis of Linden, Lane-Serff & Smeed [55] who

studied the ventilation of a single chamber by an ideal (i.e. zero volume flux)

plume source and derived a steady state condition of the form

λ3 h5
∞ =

(
A

H2

)2

(1− h∞) . (C.14)

To lowest order in Qs, therefore, the impact of the unforced chamber is to reduce

the effective opening area by a factor of
√

2/3, as is suggested by (4.15) with

At = A? = A.



Appendix D

Riemann invariants of the shallow

water equations

D.1 The shallow water approximation

In many two-dimensional flows of geophysical relevance, the channel or

basin depth is much smaller than typical horizontal wavelengths. Thus, the fluid

layer may be considered “shallow” meaning that (i) the vertical velocity, w, is

small with respect to the horizontal velocity, u, (ii) the vertical pressure gradient is

hydrostatic, and, (iii) u is depth-independent in each fluid layer (Kundu [49], Pratt

& Whitehead [71]). If the flow geometry is sufficiently simple, the equations of

motion may then admit closed, analytical solutions by which combinations of flow

variables termed “Riemann invariants” remain fixed for observers traveling at the

Doppler-shifted, long wave speeds. These concepts are explored in mathematical

detail below, both for homogeneous and density-stratified systems.

D.2 One-layer flow

We consider the flow of a uniform density fluid of depth D(x, t) over a

flat, horizontal boundary (figure D.1). For simplicity, rotational effects are assumed

negligible, as is appropriate provided the Rossby number Ro ≡ Û/f L̂ is much less
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g

z

x

ρ=0

Du

ρ

Figure D.1: One-layer flow over a rigid horizontal surface.

than unity. Here, Û and L̂ denote characteristic velocity and horizontal length

scales, respectively. Moreover, f is the Coriolis parameter defined by (7.4.1) of

Gill [32]. Mass and momentum conservation are therefore expressed as

∂D

∂t
+ u

∂D

∂x
+ D

∂u

∂x
= 0 , (D.1)

∂u

∂t
+ u

∂u

∂x
+ g

∂D

∂x
= 0 , (D.2)

respectively (Howell [38], Stoker [86]). By suitable change of variables to canonical

or “characteristic” coordinates, this coupled system of hyperbolic partial differen-

tial equations can be re-written as a pair of ordinary differential equations. To

illustrate this technique, we first note that

dD =
∂D

∂t
dt +

∂D

∂x
dx , du =

∂u

∂t
dt +

∂u

∂x
dx . (D.3)

Thus (D.1), (D.2) and (D.3) may be expressed in matrix form as
1 u 0 D

0 g 1 u

dt dx 0 0

0 0 dt dx




Dt

Dx

ut

ux

 =


0

0

dD

du

 (D.4)

Here subscripts denote differentiation with respect to time, t, and the (horizontal)

spatial coordinate, x. Along the characteristic curves, the determinant of the
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Figure D.2: Two layer flow between rigid horizontal surfaces.

above 4×4 matrix must vanish (Ames [2], Zauderer [101]). In the present context,

therefore, these space-time curves are given by the characteristic equations

dx

dt
≡ λ± = u±

√
g D . (D.5)

Motivated by (D.5), a total derivative is defined such that

D

Dt
=

∂

∂t
+ (u±

√
g D)

∂

∂x
,

whereby the governing equations (D.1) and (D.2) reduce to

D

Dt
(u± 2

√
g D) = 0 . (D.6)

Recognizing
√

g D as the non-shifted long wave speed, c, we conclude that the

Riemann invariants u± 2c are conserved along the respective characteristics λ± =

u± c (Baines [4], Howell [38]).

D.3 Two-layer flow

Unfortunately, system complexity increases markedly as extra degrees of

freedom are introduced (Rottman & Simpson [76], Keller & Chyou [46], Klemp,

Rotunno & Skamarock [47], Baines [4], Lowe, Rottman & Linden [61]). This is

shown below for the case of two-layer stratified flow, which is depicted schematically

in figure D.2. The lower layer, of density ρL, has perturbed and unperturbed depths
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of DL(x, t) and HL, respectively. Conversely, the upper layer, of density ρU , has

perturbed and unperturbed depths of DU(x, t) and HU , respectively. The total

channel height is assumed constant, i.e. H = HU + HL = DU + DL. Moreover,

it is assumed that the density difference across the interface is relatively small so

that the flow is Boussinesq.

Proceeding as before, mass conservation may be applied in the upper and

the lower layers, whence

∂DU

∂t
+

∂

∂x
(DU uU) = 0 , (D.7)

∂DL

∂t
+

∂

∂x
(DL uL) = 0 . (D.8)

Adding and subtracting these results, it can be shown that

DU uU + DL uL = Q(t) , (D.9)

∂

∂t
(DL −DU) +

∂

∂x
(DL uL −DU uU) = 0 (D.10)

in which Q is the (time-varying) mean flow. For simplicity, we assume that the

lateral boundaries of the domain are closed such that Q = 0.

Momentum conservation is expressed via the Euler equations, which be-

come
∂uU

∂t
+

∂

∂x

[
1
2
u2

U + g H +
p?

ρU

]
= 0 , (D.11)

∂uL

∂t
+

∂

∂x

[
1
2
u2

L + g

(
DL +

ρU

ρL

DU

)
+

p?

ρL

]
= 0 , (D.12)

in the upper and lower layers, respectively. Here p? is the (spatially-variable) pres-

sure along the upper boundary, which may be eliminated by taking the difference

between (D.11) and (D.12). Thus

∂

∂t
(uL − uU) +

∂

∂x

[
1
2
(u2

L − u2
U)− g′LU DU

]
= 0 , (D.13)

where the reduced gravity g′LU is given by

g′LU = g

(
ρL − ρU

ρO

)
,
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in which ρO denotes a reference density.

With H fixed, (D.9), (D.10) and (D.13) represent three equations in the

three unknowns DL, uU and uL. This 3 × 3 system may be reduced to a 2 × 2

system by applying the coordinate transformation suggested by Baines [4] in which

v = uL − uU , d = HU −DU = DL −HL (D.14)

are defined, respectively, as the velocity jump across the interface and the magni-

tude of the interfacial displacement1 (figure D.2). Using this approach, the mass

and momentum balances quantified by (D.9), (D.10) and (D.13) may be re-written

as
∂d

∂t
+

∂

∂x

[
v (HU − d) (HL + d)

H

]
= 0 , (D.15)

∂v

∂t
+

∂

∂x

[
g′LU d +

v2 (HU −HL − 2d)

2H

]
= 0 . (D.16)

In matrix form, therefore,
1 α1 0 α2

0 α3 1 α1

dt dx 0 0

0 0 dt dx




dt

dx

vt

vx

 =


0

0

dd

dv

 (D.17)

where, for notational economy, the following variables have been introduced

α1 =
v (HU −HL − 2d)

H
, α2 =

(HU − d) (HL + d)

H
, α3 = g′LU −

v2

H
. (D.18)

Consistent with the analysis of § D.1, special values of λ± ≡ dx
dt

are sought that

result in a null determinant. These are given by

λ± = α1 ±
√

α2 α3

=
v (HU −HL − 2d)

H
±

√(
g′LU −

v2

H

)
(HU − d) (HL + d)

H
(D.19)

1Note that the definition of d applied here is somewhat different from that considered in Chapter 7.
There, d represents the amplitude of the upstream wave, whose value is fixed by the initial conditions
through (7.30). Here, d denotes the interface displacement at any point along the wave, not merely the
wave crest. Thus, in the present discussion, d is a function of both time, t, and the horizontal coordinate,
x.
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The characteristic equations defined by (D.19) may be exploited in re-writing the

mass and momentum equations given, respectively, by (D.15) and (D.16). Hence

Dd

Dt
+ (α1 − λ±)

∂d

∂x
+ α2

∂v

∂x
= 0 , (D.20)

Dv

Dt
+ (α1 − λ±)

∂v

∂x
+ α3

∂d

∂x
= 0 , (D.21)

where the material derivative is defined by

D

Dt
≡ ∂

∂t
+ λ±

∂

∂x
.

Adding (D.20) and (D.21), it can be shown that the Riemann invariant appropriate

to two-layer, Boussinesq, shallow water flow is given by the solution of the following

ordinary differential equation2

dv

dd
=

α3

α1 − λ±
= ∓

√
α3

α2

= ∓

√
g′LU H − v2

(HU − d) (HL + d)
. (D.22)

Solving this relation by separation of variables and applying the relevant boundary

conditions while writing v = −wU H/DL yields (7.26), the desired result.

2Here, it is assumed that α3 6= 0, i.e. the flow is subcritical with v2 < g′
LU H. Exact analytical

solutions to the governing equations do not exist when this condition is invalid. For details, see for
example Lowe et al. [61]



Appendix E

Direct numerical simulation

algorithm

E.1 Preliminary remarks

In their most general form, the mass, momentum and energy equations

that describe density-stratified, two-dimensional Boussinesq turbulent flow are

given by

∇ · u = 0 , (E.1)

Du

Dt
= − 1

ρ0

∂P
∂x

+ ν∇2u , (E.2)

Dv

Dt
= − 1

ρ0

∂P
∂y

− ρ′ g

ρ0

+ ν∇2v , (E.3)

Dρ

Dt
=

ν

Sc
∇2ρ . (E.4)

This set of equations is identical to that provided in Chapter 8 except that, con-

sistent with the engineering as opposed to the geophysical literature, y rather than

z is used to denote the vertical coordinate. Subject to the appropriate initial and

boundary conditions, these (primitive-variable) equations describe both the ini-

tial collapse and subsequent propagation of intrusive gravity currents. Here, (E.1)

through (E.4) are solved numerically using the direct numerical simulation (DNS)

algorithm Diablo, which was originally designed by Prof. Thomas R. Bewley and
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adapted for stratified flow by John R. Taylor. Diablo may in general be applied

to two- or three-dimensional flow where the dependent variables satisfy periodic

boundary conditions in at least two directions. In the present context, a symmetric

channel flow configuration is selected in which flow variables are periodic in the

streamwise direction, x, and non-periodic in the wall-normal direction, y (see for

example figure 6 of Sutherland, Flynn & Dohan [87]). For the purposes of numer-

ical accuracy in evaluating derivatives with respect to the streamwise coordinate,

a Fourier decomposition is applied in this (periodic) direction whereby

N (x, y, t) =

Nx
2
−1∑

−Nx
2

+1

N̂ (kn, y, t) ei kn x . (E.5)

Here kn = 2π n/Lx denotes the horizontal wavenumber in which Lx is the total

horizontal extent, Nx is the number of grid points in the x-direction and N = u, ρ

or P , which are defined in Chapter 8 (Birman, Martin & Meiburg [11]). Thus with

N given by (E.5),

∂N
∂x

=

Nx
2
−1∑

−Nx
2

+1

i kn N̂ (kn, y, t) ei kn x , (E.6)

i.e. differentiation in physical space corresponds to multiplication in wavenum-

ber space. Nonetheless, the efficacy of the decomposition given by (E.5) depends

critically on the computational ease with which the Fourier modes N̂ may be

determined. To this end, Diablo employs a uniform, non-staggered grid in the

x-direction and utilizes the optimized, open-source discrete fast-Fourier-transform

routine FFTW (http://www.fftw.org)1. Orszag’s 2/3 de-aliasing rule is applied

such that N̂ ≡ 0 if |n| > Nx/3, which significantly reduces spurious energy trans-

fer from high- to low-wavenumber modes (Canuto et al. [17]).

1A detailed discussion of FFT algorithms is provided in Press et al. [72].
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E.2 Spatial discretization in the wall-normal direction

In order to couple the pressure at adjacent nodes and avoid spurious, fine-

scale oscillations, a staggered (non-stretched) grid is selected in the y-direction, as

illustrated schematically in figure E.1. This staggered grid is, in effect, composed

of two inter-woven coarse grids: GYF (black circles in figure E.1) and GY (white

circles in figure E.1). Consistent with the discussion of Bewley [8], the horizontal

velocity, pressure and density are defined at the GYF nodes whereas the vertical

velocity is defined at the GY nodes. Because each GY node lies exactly half-way

in between adjacent GYF nodes and vice-versa, interpolation from one grid to

another is straightforward. Such interpolations are necessary when considering

“cross” terms such as ∂(u v)/∂x or ∂(u v)/∂y.

E.3 Temporal discretization

An explicit, third-order, low-storage Runge-Kutta-Wray (RKW3) scheme

and an implicit Crank-Nicholson (CN) scheme are used to advance the flow in time.

The latter algorithm is selected because it is unconditionally-stable for purely dif-

fusive processes. Although unconditional stability is not preserved once advective

transport is included, the Crank-Nicholson algorithm nonetheless represents a ro-

bust numerical scheme provided the timestep, ∆t, is sufficiently small.

Because a relatively fine resolution is selected in the wall-normal direction,

diffusive terms involving a y-derivative are treated implicitly. All other terms

are treated explicitly. Thus at each fractional timestep and for each dependent

variable, a linear system of equations must be solved. However, because second-

order finite differences are applied, Υ = 3 in which Υ is the matrix bandwidth (i.e.

the matrix is tridiagonal). Thus, the highly-efficient Thomas algorithm2 may be

employed.

The governing equations are solved starting with (E.4) in which the (di-

2See for example p. 142 of Pozrikidis [70]



155

boundary
Rigid

boundary
Rigid

GYF=1

GYF=2

GYF=3

GYF=4

GY=3

GYF=j−2

GYF=j−1

GYF=j

GYF=j+1

GY=j−1

YGY=N   −2
GYF=N   −3Y

GYF=N   −2

GYF=N   −1

GYF=N

Y

Y

Y

y

x

g

GYF=N   +1Y

GY=N   −1Y

GY=N  Y

YGY=N   +1

GY=j

GY=j+1

GY=2

GY=4

GY=1
GYF=0

Figure E.1: Grid structure in the wall-normal (y) direction. “Ghost” cells are

required when Neumann boundary conditions are specified.
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vergence free) velocity field from the previous fractional timestep is applied in

advecting the scalar component ρ. Thereafter, (E.3) then (E.2) are solved for the

vertical and horizontal components of velocity, respectively. In general, this in-

termediate field, û does not satisfy the solenoidal condition expressed by (E.1).

Rather the velocity field is made divergence-free by considering the pressure cor-

rection, φ ∝ Prk+1−Prk, in which Prk+1 and Prk denote, respectively, the pressure

at fractional timesteps rk+1 and rk. More specifically, it can be shown that (T. R.

Bewley – personal communication)

urk+1 = û−∇φ , (E.7)

in which urk+1 is the updated, solenoidal velocity field. Thus, taking the divergence

of (E.7) yields

∇2 φ = ∇ · û . (E.8)

The pressure correction, φ, may therefore be determined by solving a Poisson

equation. Once φ is known, the velocity and pressure fields may be updated

accordingly and the solution at the next fractional timestep can be computed.

E.4 Further considerations

E.4.1 Pressure field

The pressure, P , is not specified at the initial instant. Rather it is deter-

mined from (E.2) and (E.3) via

1

ρ0

∇2P = −∇ · (u · ∇u) . (E.9)

Contributions due to the density perturbation term ∂ρ′/∂y are omitted because

these are vanishingly small when t = 0.

E.4.2 Momentum and density diffusion

Simulations employ a physical value for momentum diffusivity, i.e. ν =

0.01 cm2/s. Consistent with related analyses, however, the Schmidt number, Sc =
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ν/κρ, is set to unity, which overestimates the mass diffusivity of salt water, κρ,

by approximately three orders of magnitude. As noted in Chapter 8, this choice

is necessary for the purposes of numerical stability. However its dynamic impact

to the particular problem at hand3 is believed to be small. Summarizing related

numerical simulations, Sutherland et al. [87] note that “. . . the [scalar] diffusivity

term. . . acted solely as a filter to damp small-scale numerical noise. The value we

used [for κρ] was still sufficiently small that the essential dynamics of the gravity

current’s propagation and wave generation were not affected.” Indeed the most

significant physical consequence of selecting Sc = 1 is that the interface separating

the upper and lower layers becomes progressively more diffuse over the course of a

particular numerical simulation. With g′LU = 9.8 cm/s2, this limits the maximum

run time to τ
<∼ 10 s, since, as was demonstrated by Faust & Plate [26], a finite

interface thickness may exert some non-trivial influence on the intrusion’s speed

of propagation.

3Overestimating Sc may prove more dangerous in the numerical modeling of chemically reacting
and/or non-Boussinesq flows for which the dependent variables can exhibit a sensitive dependence on
the fluid’s composition and/or temperature.
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