Skip to main content
Open Access Publications from the University of California

Recognizing Amazonian tree species in the field using bark tissues spectra

  • Author(s): Hadlich, HL
  • Durgante, FM
  • dos Santos, J
  • Higuchi, N
  • Chambers, JQ
  • Vicentini, A
  • et al.

© 2018 Elsevier B.V. The identification of tree species in the field is often a subjective process and misidentifications cause many problems for forest management in the Amazon Forest. Near infrared spectra from dried leaves of herbarium specimens are able to distinguish species in tropical forests. However, toolsto improve species identification directly in the field are needed. In this study, we tested whether spectral reflectance of bark tissues (rhytidome and phloem) collected with a portable spectrometer in the field can be used for the discrimination of tree species. Spectral data was collected for 254 trees of 8 families, 10 genera and 11 species from terra firme forests in Central Amazon with an ASD field spectrometer. Data consisted of reflectance values within 350–2500 nm wavelengths. We compared the rate of correct species recognition for different datasets using linear discriminant models. The rate of correct species assignment using this technique was 98% when using spectra from the inner bark (phloem) and 94% with outer bark (rhytidome) spectra. We suggest that the application of this technique can improve the quality of species identification directly during field inventories, fostering better forest management practices.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View