Skip to main content
eScholarship
Open Access Publications from the University of California

The arabidopsis prohibitin gene phb3 functions in nitric oxide-mediated responses and in hydrogenperoxide-induced nitric oxide accumulation

  • Author(s): Wang, Y
  • Ries, A
  • Wu, K
  • Yang, A
  • Crawford, NM
  • et al.

Published Web Location

http://www.plantcell.org/content/22/1/249.long
No data is associated with this publication.
Abstract

To discover genes involved in nitric oxide (NO) metabolism, a genetic screen was employed to identify mutants defective in NO accumulation after treatment with the physiological inducer hydrogen peroxide. In wild-type Arabidopsis thaliana plants, NO levels increase eightfold in roots after H2O2treatment for 30 min. A mutant defective in H2O2-induced NO accumulation was identified, and the corresponding mutation was mapped to the prohibitin gene PHB3, converting the highly conserved Gly-37 to an Asp in the protein's SPFH domain. This point mutant and a T-DNA insertion mutant were examined for other NO-related phenotypes. Both mutants were defective in abscisic acid-induced NO accumulation and stomatal closure and in auxin-induced lateral root formation. Both mutants were less sensitive to salt stress, showing no increase in NO accumulation and less inhibition of primary root growth in response to NaCl treatment. In addition, light-induced NO accumulation was dramatically reduced in cotyledons. We found no evidence for impaired H2O2metabolism or signaling in the mutants as H2O2levels and H2O2-induced gene expression were unaffected by the mutations. These findings identify a component of the NO homeostasis system in plants and expand the function of prohibitin genes to include regulation of NO accumulation and NO-mediated responses. © 2010 American Society of Plant Biologists.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item