Skip to main content
Download PDF
- Main
Help seeking behavior by women experiencing intimate partner violence in india: A machine learning approach to identifying risk factors
Abstract
Background
Despite the low prevalence of help-seeking behavior among victims of intimate partner violence (IPV) in India, quantitative evidence on risk factors, is limited. We use a previously validated exploratory approach, to examine correlates of help-seeking from anyone (e.g. family, friends, police, doctor etc.), as well as help-seeking from any formal sources.Methods
We used data from a nationally-representative health survey conducted in 2015-16 in India, and included all variables in the dataset (~6000 variables) as independent variables. Two machine learning (ML) models were used- L-1, and L-2 regularized logistic regression models. The results from these models were qualitatively coded by researchers to identify broad themes associated with help-seeking behavior. This process of implementing ML models followed by qualitative coding was repeated until pre-specified criteria were met.Results
Identified themes associated with help-seeking behavior included experience of injury from violence, husband's controlling behavior, husband's consumption of alcohol, and being currently separated from husband. Themes related to women's access to social and economic resources, such as women's employment, and receipt of maternal and reproductive health services were also noted to be related factors. We observed similarity in correlates for seeking help from anyone, vs from formal sources, with a greater focus on women being separated for help-seeking from formal sources.Conclusion
Findings highlight the need for community programs to reach out to women trapped in abusive relationships, as well as the importance of women's social and economic connectedness; future work should consider holistic interventions that integrate IPV screening and support services with women's health related services.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%