- Main
Electronic structure of superconducting nickelates probed by resonant photoemission spectroscopy
Published Web Location
https://doi.org/10.1016/j.matt.2022.01.020Abstract
The discovery of infinite-layer nickelate superconductors has spurred enormous interest. While the Ni1+ cations possess nominally the same 3d9 configuration as Cu2+ in cuprates, the electronic structure variances remain elusive. Here, we present a soft X-ray photoemission spectroscopy study on parent and doped infinite-layer Pr-nickelate thin films with a doped perovskite reference. By identifying the Ni character with resonant photoemission and comparison with density functional theory + U (on-site Coulomb repulsion energy) calculations, we estimate U ∼5 eV, smaller than the charge transfer energy Δ ∼8 eV, confirming the Mott-Hubbard electronic structure in contrast to charge-transfer cuprates. Near the Fermi level (EF), we observe a signature of occupied rare-earth states in the parent compound, which is consistent with a self-doping picture. Our results demonstrate a correlation between the superconducting transition temperature and the oxygen 2p hybridization near EF when comparing hole-doped nickelates and cuprates.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.