UCLA

Posters

Title

Solar Energy Collection and Management for Networked Infomechanical Systems (NIMS)

Permalink

https://escholarship.org/uc/item/0qp5w05j

Authors

Rachel Scollans Lisa Shirachi Kris Porter et al.

Publication Date

2003

Center for Embedded Networked Sensing

Solar Energy Collection and Management for Networked Infomechanical Systems

Rachel Scollans, Lisa Shirachi, Kris Porter, Richard Pon, Ashutosh Verma, Winston Wu, Steve Liu, Professor W. Kaiser

NIMS

Introduction: Networked Infomechanical Systems (NIMS)

What is NIMS?

- NIMS is a sensor node which explores and monitors the surrounding environment
- The NIMS architecture consists of static sensors, mobile nodes, and smart infrastructure which is completely integrated into one cooperative system
- · The NIMS node will sense, sample and be adaptive

Sensing:

- 1. Light
- 2. Humidity
- 3. Temperature
- 4. Pictures

Sampling

- Water
- 2. Eddie Flux (CO2)
- 3. Soil

Adaptive:

- Nodes that adjust operations to respond to events
- Horizontal and Vertical Movement
- Some Applications are natural environment, remote locations, public health, biomedical, homeland security

The NIMS Node

Problem Description: Remote Energy Aware Articulated Sensor Networks

System Requirements

- NIMS nodes must be autonomous sensing systems that can be placed in remote locations
- The remote location of the node requires the system to be independent of an utility grid and therefore, an alternative energy source must be considered
- · The Node consumes 30W of Power

Design Challenges

- · Limited Energy
- Ability to run the node and store excess energy for 24-hour periods
- · Remote location
- · Environmental factors
- · Mounting issues

Proposed Solution: Solar Energy Harvesting

Why is Solar Harvesting is Necessary?

- The remote location does not allow a utility grid to power the node
- Batteries only have a finite lifetime without being recharged
- Solar energy harvesting and storage allow the node to be run on a 24 hour basis

Stand-Alone Photovoltaic System

- A stand-alone photovoltaic system allows the node to be powered in a remote location for extended periods of time.
- The system does not have to be connected to a utility grid. Using solar cells as an alternative energy also helps the sensing nodes to remain autonomous.
- Excess energy from the system can be stored in a battery bank, which can be sized to meet the nodes requirements

- The panels can be fixed at an angle to maximize the day light resources
 - •Angle of inclination = latitude -15 degrees (Summer)
 - Angle of inclination = latitude + 15 degrees (Winter)

Mounting of Solar Panels

- The Solar Array is placed above the tree canopy so it can receive the most sunlight
- The solar panels are hung below the NIMS node main support cable
- The solar panels then can be fixed at any angle by adjusting the length of the support wires
- The power cabling then can be lowered to the forest floor where the battery bank is located

Energy Harvested

- Measured energy harvested in a day was found to be 509 Watt-hrs (1,832,400J)
- Assuming there are 5 peak hours of sunlight in day, the maximum theoretical amount of energy collected would be 750 Watt-hours (2,700,000J) using the Siemens SP75 solar panels
- Summer peak hours range from 5 7 hours in day [at Wind River]
- Winter peak hours range from 3 -4 hours in a day [at Wind River].

Acknowledgements: Richard Pon, Ashutosh Verma, Winston Wu, Steve Liu, Anita Chan, Bryan Ribaya, Jamie Burke, Iman Ahmadi, Dr. Sara Terheggen