- Main
Conformational Dynamics in the Interaction of SARS-CoV‑2 Papain-like Protease with Human Interferon-Stimulated Gene 15 Protein
Published Web Location
https://doi.org/10.1021/acs.jpclett.1c00831Abstract
Papain-like protease (PLpro) from SARS-CoV-2 plays essential roles in the replication cycle of the virus. In particular, it preferentially interacts with and cleaves human interferon-stimulated gene 15 (hISG15) to suppress the innate immune response of the host. We used small-angle X-ray and neutron scattering combined with computational techniques to study the mechanism of interaction of SARS-CoV-2 PLpro with hISG15. We showed that hISG15 undergoes a transition from an extended to a compact state after binding to PLpro, a conformation that has not been previously observed in complexes of SARS-CoV-2 PLpro with ISG15 from other species. Furthermore, computational analysis showed significant conformational flexibility in the ISG15 N-terminal domain, suggesting that it is weakly bound to PLpro and supports a binding mechanism that is dominated by the C-terminal ISG15 domain. This study fundamentally improves our understanding of the SARS-CoV-2 deISGylation complex that will help guide development of COVID-19 therapeutics targeting this complex.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-