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ABSTRACT OF THE THESIS  

 

Reprogramming Scleroderma-specific and Normal Fibroblast Gene 
Subsets Using Single Versus Multiple Transcription Factors  

 

by  

 

Tyler Martin Van Buren  

Master of Science in Biology 

University of California, San Diego, 2010  

Professor Benjamin D. Yu, Chair  

Professor Colin C. Jamora, Co-Chair 

 

The recent successes of reprogramming iPS cells and other cell 

types offer a novel platform that can be used to treat numerous 

diseases. These studies reveal that transcription factors can be used to 

alter gene expression, thereby reprogramming a new cellular 

phenotype that is eventually maintained by endogenous transcription 
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factors.  With this information, we believe it is possible to reprogram the 

altered phenotype of a diseased cell back to its normal state. 

Scleroderma in particular, is a non-curable scarring disease with a 

distinct phenotype that can be defined by its unique gene expression 

pattern. 

 

Here we report the successful induction of a subset of 

scleroderma-specific genes using predicted and endogenous 

transcription factors. Microarray data of scleroderma patients was 

analyzed finding 165 differentially expressed genes. Both DiRE and 

SynoR were bioinformatic tools employed to determine upstream 

regulators and downstream gene targets, respectively. Gain of function 

experiments were carried out as transcription factors were transiently 

transfected using overexpression vectors in multiple cell types and gene 

expression was measured via qPCR. 

 

22% of total scleroderma-specific downstream targets were 

differentially expressed using predicted transcription factors. 

Additionally, 33% of predicted downstream targets were differentially 

expressed using endogenously expressed transcription factors. Our 

data suggest that primary sequence analysis of clusters of transcription 
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factors binding sites in promoters is more predictive than evolutionary 

and conservation-based approaches alone. Our study represents a 

novel approach to treating and even curing disease by way of cellular 

reprogramming.
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CHAPTER 1 

Introduction to Reprogramming Disease 
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Transcription factors play a major role in defining cell identity. 

Even in complex cell types, the addition of the correct combination of 

transcription factors can in some cases induce a new cell identity. 

Recently, the transcription factors that define the embryonic stem cell 

have been discovered. Subsequently, investigators have found that 

introduction of four core transcription factors (Oct4, Sox2, Myc, and 

Klf4) can induce a pluripotent stem cell phenotype in fibroblasts 

(Takahashi and Yamanaka, 2006; Wernig, 2007; Yu, 2007). Surprisingly, in 

this case, an endogenous cellular program takes over and maintains 

the new identity, thus making iPS (induced pluripotent stem cells) cells 

independent of externally added transcription factors. 

 

With the discovery of iPS cells, a serious following of scientists not 

only to understand reprogramming, but to attempt to reprogram other 

cell lineages, has ensued. If it is possible to take an otherwise 

“committed” cell type such as a fibroblast and revert it to a non-

committed iPS cell, then it must be possible to force the differentiation 

of iPS cells into other cell tissue types. That is in fact true as Choi et al. 

generated CD34+CD43+ hematopoietic progenitors and CD31+CD43− 

endothelial cells in co-culture with the OP9 differentiation system. 

Around the same time, Zhang and colleagues reported a highly 
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efficient approach to inducing ES cells and iPS cells into pancreatic 

cells. Further down the road, this very method could lead to the curing 

of diabetes, a disease where pancreatic islet cells cease to produce 

insulin, which is necessary to maintain proper blood glucose levels in the 

body. Also, scientists have shown the ability to differentiate iPS cells into 

all three germ layers, which includes peripheral neurons (Lee et al., 

2009). This discovery could be used towards future potential cures for 

brain disease. 

 

These findings suggest that understanding the defining 

transcription factors for any given cell identity is critical for cell-based 

therapies. One avenue of research, which remains unexplored, is the 

possibility of reprogramming disease states. For example, by 

understanding the disease and normal transcriptional networks, 

applying the correct combination of transcription factors could in 

theory restore the normal cellular state.  

 

Scleroderma is a systemic autoimmune and fibrotic disorder with 

no known cure. Scleroderma affects the skin, lung, kidney, and 

gastrointestinal tract. Women are four times more likely to contract 

scleroderma than men and one in every 1,000 people will be 
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diagnosed, typically between the age of 25 and 55 years of age. 

Defined in Greek as “hard skin,” scleroderma has the appearance of 

hard, smooth, and ivory-colored skin, which appears to be immobile 

and may occur in both localized and systemic forms. Scleroderma is 

known to result in the overproduction of collagen in dermal cells 

(Scleroderma Foundation, 2009). Previous work has identified increase 

biosynthesis of collagen and alpha-actin in scleroderma fibroblasts 

(Uitto, 1979; Kirk, 1995). This is important as the scleroderma phenotype 

is characterized by apoptosis of the endothelial cells of the arterioles 

and smooth muscle cells. Once this occurs, collagen, fibrous material, 

and inflammatory cells infiltrate the space causing further damage 

(Gabrielli et al., 2009). 

 

Microarray studies have also been performed between 

scleroderma and normal fibroblasts (Whitfield, 2003). Importantly, these 

microarray studies provide datasets to determine global patterns of 

gene expression in scleroderma versus normal fibroblasts and to 

identify transcription factors expressed specifically in scleroderma. In 

addition, altered gene expression in scleroderma reflects the activity of 

a network of transcription factors in scleroderma. These approaches 

should lead to the identification of disease-determining transcription 
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factors.  

 

Our hypothesis is that by identifying unique transcription factors in 

disease, the disease-specific gene expression patterns can be induced 

in the lab. Depending on one’s ability to induce scleroderma-specific 

gene expression; the diseased phenotype can then be reproduced in 

the lab and subsequently reverted to its normal state. This has 

tremendous therapeutic implications as current treatments for scarring 

only ameliorate the condition, not cure it. 

 

SPECIFIC AIMS  

The specific aims of this research project are: to identify the major 

transcription factors that drive scleroderma and specific gene 

expression, to discover the downstream targets for these transcription 

factors, and to identify the downstream targets of transcription factors 

that are highly expressed in scleroderma and fibrotic cells.
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CHAPTER 2 

Predicting the Major Transcription Factors that Drive Scleroderma- 

Specific Gene Expression 
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Transcription Factors Regulate Global Gene Expression 

Gene transcription is responsible for tissue-specific gene 

expression and the regulation of gene activity in response to certain 

stimuli (Latchman, David S., 1997). Regulatory regions often have short 

recurring patterns of DNA sequence that act as binding sites for 

activating and inhibiting proteins called transcription factors.  While 

genes can also be regulated post-translationally, the majority of gene 

regulation occurs at the level of transcription initiation, a process that is 

primarily determined by transcription factors (TFs). In addition, scientists’ 

initial inspections of regulatory regions with the same pattern of gene 

expression revealed that TFs have been found to regulate the 

expression of a particular gene. TFs have the ability to either upregulate 

or downregulate the expression of a particular gene to affect 

transcription and ultimately the cellular phenotype. 

 

TFs are generally classified on the basis of their DNA binding 

domains. These domains are often used to bind to specific DNA 

sequences. As TFs bind to a particular region of DNA, they recruit 

several other factors, including RNA Polymerase to begin the process of 

messenger RNA (mRNA) transcription, which is later translated into 

proteins. In addition to their initiating role in 1 transcript, TFs can also act 
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to inhibit transcription. Complex networks of transcription factors work in 

combination to define the overall gene expression of an organism and 

ultimately the organism’s phenotype. The activity of a TF is regulated in 

two ways: 1) by controlling the synthesis or expression of a particular TF, 

and 2) by modulating their activity through post-translational 

modifications or expression. An example of the first method is the MyoD 

TF, which is specifically expressed in skeletal muscle cells. In addition, 

ectopic expression of MyoD induces muscle-like features in some non-

muscle cell types. In terms of regulating the activity of TFs, IL6 serves as 

an example where it induces/enhances the synthesis of NF-IL6β TF, 

which in turn is complemented by the transcription of other factors, NF 

IL-6 and STAT-3 (Latchman, David S., 1997). In this chapter, we aim to 

explore the method of controlling the synthesis of TFs via overexpression, 

resulting in the alteration of global gene expression patterns. 

 

Defining Promoters and Co-regulated Regions by Evolutionary 

Conservation 

A major problem in defining the regulatory region of a gene is 

determining the sequences necessary to drive expression. Usually this is 

done by reporter assays or experiments involving transgenic mouse 

lines. Even with these approaches, important regulatory regions may go 
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undiscovered. Another approach to discover regulatory regions 

responsible for gene expression is to predict those regions using the 

concept of evolutionary conservation. Once those regions are 

predicted, scientists can use sequence information from known 

transcription factor binding sites to determine what TFs may regulate 

that gene. 

 

The recent sequencing of the human and eukaryotic genomes 

provides a scaffold for understanding the genetic mechanisms that 

regulate biological function. As a result of sequencing the human 

genome, fewer genes than expected were found and the role of 

regulatory elements other than promoters are poorly understood. 

However, the recent advancements in understanding the human 

genome provides hope for our ability to decipher regulatory patterns 

and gene regulation. Early experiments that aimed to understand 

regulatory mechanisms focueds on simple organisms like yeast and 

drosophila, where in silico mechanisms are easier to validate 

experimentally (Gotea et al., 2008). While most current prediction 

methods look at local enrichment of transcription factor binding sites 

(TFBSs), DiRE aims to improve upon current prediction methods by 

looking at additional information, which includes sequence 



10 

 

conservation across taxa, nucleosome occupancy, and binding 

competition between factors. 

 

It is known that the regulation of gene expression in the 

eukaryotic genome is achieved through a complex set of networks of 

regulatory elements. The creators of DiRE have created the Enhancer 

Identification (EI) method, which infers position and functional 

information on distant regulatory elements (RE) from the analysis of 

either microarray gene expression, or co-regulation data. DiRE is 

uniquely integrated with the Array2BIO server, which gives the user 

access to raw microarray expression data to aid in their analysis. In a 

study of 79 groups of tissue-specific genes, 23% of candidate regulatory 

elements were found in the promoter region, while over half of the 

remaining elements resided in intronic or intergenic regions (Gotea et 

al., 2008). This EI method combines gene co-expression data and gene 

microarray data with evolutionary conservation across genomes to 

accurately predict upstream regulators, or TFs of target genes. By an in 

vivo validation of transgenic mice, DiRE was shown to have 28% 

sensitivity and 50% precision. Our goal was to use this web-based server 

to predict upstream regulators, otherwise known as TFs, to regulate our 
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set of 165 differentially expressed genes thought to be responsible for 

the scleroderma gene expression pattern, and phenotype. 
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MATERIALS AND METHODS: 

Microarray Data Analysis 

Raw E-MEXP-32 cel files (Whitfield et al., 2003) containing skin 

gene expression data of normal and scleroderma patients were loaded 

into Bioconductor, a tool in the statistical program R (Bioconductor, 

2004). A quantile normalization was then applied. Next, a probe match 

only summarization using the median polish algorithm was done, 

generating Log2 signal intensities (Knowledge and Information Systems, 

2003). Probe sets that had a change in expression of 25% from the 

signal intensities of normal were analyzed. Those probe sets were used 

to conduct multiple hypothesis testing using a Benjamini-Hochberg 

correction and genes were selected with differential expression of 

p<0.05. The final output of this analysis was 165 differentially expressed 

genes between Scleroderma and normal patients skin samples. 

 

Prediction of Binding Sites in Scleroderma/Normal Skin Genes 

[http://dire.dcode.org/] 

The 165 genes determined to be differentially expressed from our 

microarray data analysis were input as a set of co-regulated genes. A 

random set of 5000 background genes were used as control, and the 

target elements selected were the top 3 evolutionary conserved 
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regions (ECRs) and the top 3 promoter ECRs. These target elements of 

our co-regulated gene sets were tested. Analysis was done with the 

human genome build 18 (hg18). From the output, TFs and downstream 

genes were selected based upon the criteria mentioned in the 

upcoming results section. 

 

Cloning Transcription Factors and Vectors Used 

Cloning primers were designed and amplified from 

complimentary DNA (cDNA). Linkers specific to the overexpression 

vector multiple cloning site (MCS) were added along with the Kozak 

Consensus Sequence. The amplified gene of interest was extracted 

from 1% agarose gel using standard protocol for the Zymoclean Gel 

DNA Recovery and Cleanup Kits. The overexpression vector of interest, 

(Figure 1) pcDNA 3.0, was digested at its MCS and TF genes were 

ligated into it. The resulting overexpression vectors were grown up and 

checked with sequencing. ELF1, ETF1, YY1 and ZF5 were cloned using 

this above method. An additional 6 TFs, SP1, SMAD3, EGR2, POU3F2, 

ELK1, and NF-ΚΒ1, were obtained from an Open Biosystems Human TF 

Library. These 6 TFs were previously cloned into the mammalian 

overexpression vector, pCMV-Sport6 (Figure 1). 
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Cell Culture and Transfections 

Dermal fibroblasts (BJ cell line) were thawed from cell stock at 

passaged # 8 and cultured in D10 media (DMEM plus 10% Fetal Calf 

Serum (FCS)) with penicillin-streptomycin bacterial antibiotic. Cells were 

passaged using Trypsin and stored in a 5% CO2, 37°C incubator. Dermal 

Fibroblasts were transfected using the standard electroporation 

protocol provided by Invitrogen for the Neon electroporation unit. A 24-

well cell-line specific optimization was completed to determine the 

optimal parameters for the Neon, which was 1 pulse with a pulse width 

of 20ms, and a pulse voltage of 1650 volts (also optimized by 

Invitrogen). 

 

Quantitative Polymerase Chain Reaction (qPCR) 

Total RNA was extracted from dermal fibroblasts using the Zymo 

RNA Purification Kit. cDNA was synthesized using the Fermentas Maxima 

First Strand cDNA Synthesis Kit. Primers were designed using sequence 

information from Ensembl and Primer3 to optimize conditions. The qPCR 

primers were designed to span exon-exon gap junctions to eliminate 

non-specific binding to possible genomic DNA contamination. The 10 

qPCR TF primer sets used in this chapter are: 

“Species-Gene-Exon-Direction;Sequence; Melting Temp Product Size” 
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Hu-ZF5-Exon2-F;GATATGGGTCTGCAGGATGG;60C 208bp 
Hu-ZF5-Exon4-R;CTTCCAGGCGTTGTTCATTT;60C 208bp 
 
Hu-YY1-Exon2-F;ACCTGGCATTGACCTCTCAG;60C 193bp 
Hu-YY1-Exon4-R;TTCTGCACAGACGTGGACTC;60C 193bp 
 
Hu-ETF1-Exon4-F;CACTTTTTGGCACACTCCAA;60C 120bp 
Hu-ETF1-Exon5-R;CCATTCTTAAACGGGCAAAA;60C 120bp 
 
Hu-ELK1-Exon2-F;GGCTACGCAAGAACAAGACC;60C 200bp 
HU-ELK1-Exon3-R;ATTTGGCATGGTGGAGGTAA;60C 200bp 
 
Hu-SMAD3-Exon1-F;GAGGAGAAATGGTGCGAGAA;60C 192bp 
Hu-SMAD3-Exon2-R;GCGGCAGTAGATGACATGAG;60C 192bp 
 
Hu-EGR2-Exon1-F;GGTGACCATCTTTCCCAATG;60C 123bp 
Hu-EGR2-Exon2-R;GGATATGGGAGATCCAACGA;60C 123bp 
 
Hu-POU3F2-Exon2-F;ACGGCGGCTTGCTCTACT;60C 137bp 
Hu-POU3F2-Exon3-R;CTTGAACTGCTTGGCGAACT;60C 137bp 
 
Hu-SP1-Exon3-F;GGCCTCCAGACCATTAACCT;60C 165bp 
Hu-SP1-Exon4-R;TCCACCTGCTGTGTCATCAT;60C 165bp 
 
Hu-ELF1-Exon4-F;GCCCTATGCTGGATGAAAAA;60C 160bp 
Hu-ELF1-Exon5-R;CCCGGTGAGTCTGCATATTT;60C 160bp 
 
Hu-NFKB1-Exon5-F; ACTGTGAGGATGGGATCTGC;60C 128bp 
Hu-NFKB1-Exon6-R; CTCTGTCATTCGTGCTTCCA;60C 128bp 
 
The 18 downstream qPCR target primer sets used in this chapter are: 

Hu-YWHAE-Exon4-F;CTTCCACCAACGCATCCTAT; 60C 141bp 
Hu-YWHAE-Exon5-R; CAGCGTATCCAGTTCTGCAA; 60C 141bp 
 
Hu-NFKB1-Exon5-F; ACTGTGAGGATGGGATCTGC;60C 128bp 
Hu-NFKB1-Exon6-R; CTCTGTCATTCGTGCTTCCA;60C 128bp 
 
Hu-TGFB1-Exon1-F;GAGCCTGAGGCCGACTACTA;60C 131bp 
Hu-TGFB1-Exon2-R;CGGAGCTCTGATGTGTTGAA;60C 131bp 
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Hu-CYC1-Exon2-F;TCTCTTCCTTGGACCACACC; 60C 195bp 
Hu-CYC1-Exon4-R;GCATGAACATCTCCCCATCT; 60C 195bp 
 
Hu-PPP2R2A-Exon6-F; TGCAGATGATTTGCGGATTA;60C 127bp 
Hu-PPP2R2A-Exon7-R; TGGATGAAATTCTGCTGCTG;60C 127bp 
 
Hu-OAZ1-Exon5-F; GAGCCGACCATGTCTTCATT;60C 179bp 
Hu-OAZ1-Exon6-R; CTCCTCCTCTCCCGAAGACT;60C 179bp 

Hu-PSME2-Exon6-F;GTGGATTTCTCCCTGGGAAT;60C 124bp 
Hu-PSME2-Exon7-R;ATCTTGGGGATCAGGTGTTG;60C 124bp 
 
Hu-CCL5-Exon2-F;TACACCAGTGGCAAGTGCTC;60C 100bp 
Hu-CCL5-Exon3-R;TGTACTCCCGAACCCATTTC;60C 100bp 
 
Hu-RBBP4-Exon3-F;TGATGCGTCACACTACGACA;60C 116bp 
Hu-RBBP4-Exon4-R;AACGGGCCCTGTTTACTTCT;60C 116bp 
 
Hu-ODC1-Exon8-F;GTGGCTTTCCTGGATCTGAG;60C 120bp 
Hu-ODC1-Exon9-R;CGGGCTCAGCTATGATTCTC;60C 120bp 
 
Hu-IFI6-Exon1-F;CTGTGCCCATCTATCAGCAG;60C 146bp 
Hu-IFI6-Exon2-R;CCACTGCAAGTGAAGAGCAG;60C 146bp 
 
Hu-PARP1-Exon1-F;AAGAAATGCAGCGAGAGCAT;60C 164bp 
Hu-PARP1-Exon2-R;TCAGAGAACCCATCCACCTC;60C 164bp 
 
Hu-THBS1-Exon7-F;AGAATGCTGTCCTCGCTGTT;60C 140bp 
Hu-THBS1-Exon8-R;ATCGGTTGTTGAGGCTATCG;60C 140bp 
 
Hu-TOP1-Exon3-F;GAGAAGGACCGGGAAAAGTC;60C 100bp 
Hu-TOP1-Exon4-R;AGCTTCCATCTTTGTGTTTGG;60C 100bp 
 
Hu-ACTG2-Exon3-F;AGACAGCTATGTGGGGGATG;60C 156bp 
Hu-ACTG2-Exon4-R;GGGTGCTCTTCAGGTGCTAC;60C 156bp 
 
Hu-Crabp2-Exon2-F;AGACAGTGTCCAGTGCTCCA;60C 161bp 
Hu-Crabp2-Exon3-R;CACAGCAATCTTCCTCAGCA;60C 161bp 
 
Hu-RELA-Exon4-F;CCACGAGCTTGTAGGAAAGG;60C 162bp 
Hu-RELA-Exon5-R;AAGGGGTTGTTGTTGGTCTG;60C 162bp 
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Hu-IL18-Exon1-F;TGCATCAACTTTGTGGCAAT;60C 169bp 
Hu-IL18-Exon3-R;ATAGAGGCCGATTTCCTTGG;60C 169bp 
 
 

qPCR protocol was conducted using a Roche480 Light Cycler and SYBR 

Green reagent with the following per sample mix: 

Reagent: Volume (µL): 

SYBR Green 5 
Water 2 
Primer (10 pM) .5 
cDNA 2.5 
Total 10 

 

Recorded cycle numbers were entered in Microsoft Excel in order 

to analyze relative gene expression, which was normalized to Human 

Gapdh. The ∆ ∆Ct method or the comparative method for quantifying 

relative gene expression data was used for analysis. 

 

Imaging : Microscopy 

Light and fluorescent images were taken of transfected cells in 

culture using Olympus MVX10 and Olympus BX51 microscopes. Software 

programs were used to adjust image settings, exposure time, etc.  

 

Flow Cytometry 

Transfected BJ cells were trypsinized and spun down from culture. 

Pelleted cells were then washed and suspended in PBS. Standard 
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protocol per the manufacturer’s recommendations were used to 

conduct flow cytometry with the Millipore Guava easyCyte 8HT 

machine. Green fluorescence was measured for transfected cells and 

samples were gated relative to a non-transfected negative control 

sample. 
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RESULTS: 

Microarray Data Acquisition 

To identify transcription factors associated with the potential to 

activate genes of the Scleroderma disease phenotype, a set of 

activated genes unique to Scleroderma was determined. Previously, 

Whitefield et al. obtained skin biopsies from individuals diagnosed with 

systemic sclerosis, a form of diffuse scleroderma, and used microarray 

analysis to study the expression of ~12,000 genes. Four patients (two 

men and two women) underwent two sets of biopsies. These biopsies 

included 5 mm punch biopsies from the lateral forearm, 8cm proximal 

to the ulnar styoid. Three biopsies total for each patient were taken 

from clinically involved skin and another set of three biopsies were 

taken from the buttock or back for clinically uninvolved skin. In addition, 

four normal control samples were taken from one man and three 

women. They underwent the exact same biopsies, with the exception 

of control individual number 4 that only had biopsies of the lateral 

forearm. Of the set of three biopsies, 2 were frozen, half of the third 

biopsy went into 10% formalin for routine histology, and the other half 

was for fibroblast cell culture. 
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Preparation of total RNA was done from the two frozen punch 

biopsies and cRNA synthesis, and hybridization to an Affymetrix Hu95A 

microarray followed. The raw data produced from this microarray had 

multiple sets, but two of the sets of interest were the overall biopsy 

microarray data and the culture fibroblast microarray data. Biopsy 

microarray data from this experiment was used for analysis. The end 

result the analysis using the raw data from the Whitfield publication 

resulted in 165 (163 unique genes) differentially expressed genes 

between the scleroderma and normal skin samples (Tables 1 and 2). Of 

these genes, 92 (56%) were higher expressed in the normal samples with 

the remaining 73 (44%) in the scleroderma diseased samples (both 

numbers include NF-ΚΒ1 and RELA, which was highly expressed in both 

due to probe variation). In addition, this set of differentially expressed 

genes contains a total of 15 endogenously expressed transcription 

factors. 12 (71%) of these transcription factors were expressed higher in 

the normal skin samples, versus 5 (29%) transcription factors in the 

scleroderma samples. It is important to note that NF-ΚΒ and RELA were 

highly expressed in both scleroderma and normal samples due to 

probe sets interrogating different exons within the gene, which possibly 

corresponds to different isoforms of both genes. 
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Predicting Transcription Factors that Regulate Differentially Expressed 

Genes 

The next step in the process was to begin to predicting 

transcription factors that regulate these differentially expressed human 

genes. In order to do this, web server named DiRE was used, which was 

developed by the National Center for Biotechnology Information 

(NCBI). Using the DiRE tool, the previously discussed 165 differentially 

expressed annotated gene names were entered based on the human 

genome (hg18) and a random set of 5000 genes for the 

background/control genes was used. The untranslated region (UTR) 

evolutionary conserved regions (ECRs) and promoter ECRs were 

selected for target elements. We decided to focus mainly on ECRs 

within the UTR and proximal promoter region due to the UTR and 

promoter’s proximity to the transcription start site and their known role in 

transcription.  

 

The search resulted in the finding of 65 regulatory elements from 

the input genes. 42 (65%) of these elements were found within the 

promoter region and the other 23 (35%) were located within the UTR. 

Based upon these 65 regulatory elements a potential 112 candidate 

transcription factors were returned. The 112 transcription factors 
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returned were displayed along with two scores, occurrence and 

importance. Occurrence indicates the fraction of regulatory elements 

containing a particular TF, while importance is the product of 

occurrence and the weight assigned to each TF after optimization. 

Optimization is a process that increases the number of candidate 

regulatory elements recognized by a profile of transcription factor 

binding sites (TFBS) in the loci of input genes, while decreasing the 

number of such predictions in the loci of background genes. During this 

optimization, TFBSs are assigned weights based upon the TFBS content 

of the candidate regulatory elements (Gotea et al.). Essentially, 

importance is occurrence with taking into account the overall 

promiscuity of the TF in all of the background genes and the higher the 

importance value, the greater the probability that the TF binds and 

regulates the gene target. 

 

Of these 112 candidate TFs, 10 TFs were selected with varying 

occurrence and importance values to ensure an accurate and 

unbiased distribution of predicted candidate TFs (Table 3). This should 

help ensure that our validation of DiRE is most accurate. Occurrence 

values ranged from 34% to 3% and importance values ranged from 

0.002 to 0.26. These values exemplify an even distribution of the 
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occurrence and importance values for the 112 candidate TFs returned 

and the 10 TFs chosen are an accurate representation of the overall 

profile and characteristics of the original 112 TFs. Tertiary characteristics 

taken into account for choosing TFs were whether or not these were 

associated with published data and were known activators/repressors. 

 

Selection of Downstream Gene Targets for 10 DiRE-predicted TFs 

With 10 candidate transcription factors already selected from the 

DiRE results, downstream genes needed to be selected to measure the 

predicted TFs activity or ability to regulate these targets. Table 4 details 

the original 18 downstream genes selected. These targets were 

selected with the following factors in mind: number (both high and low) 

of transcription factors binding sites (TFBS) of the selected TF in the gene 

and the number (both high and low) of total TFBSs for the specified 

gene. High and low numbers of TFBSs in each situation were chosen to 

ensure that there was a range of differentiated targets. The variation in 

target characteristics is best exemplified by the range (0.001-2.780) of 

the selected genes’ regulatory element’s associated scores. This score 

takes into account the impact of multiple TFBS motifs in order to better 

classify candidate enhancers based on sequence signatures that 

define gene expression in a particular tissue. This tissue-specific scoring 



24 

 

scheme allows one to enrich for positively scoring candidate enhancers 

in tissue-specific loci (Pennacchio et al.). In addition, the location of the 

regulatory element (RE), the type of RE (UTR5, Promoter), and the locus 

in which it the RE exists are displayed in Table 4. Throughout the initial 

prediction process, it was our goal to create an unbiased profile of 

selected candidate TFs and downstream gene targets. 

 

Transfecting 10 DiRE-predicted Factors into Dermal Fibroblasts 

With 10 TFs predicted and 18 downstream genes selected, our 

goal was to overexpress these TFs in human cell lines and measure the 

gene expression of corresponding targets to see if we can alter a 

subset of the 165 differentially expressed genes. All 10 DiRE-predicted 

factors were cloned and isolated into one of two possible mammalian 

overexpression vectors, pCMV-SPORT6 and pcDNA3 (Figure 1). Both of 

these expression vectors are driven by the cytomegalovirus (CMV) 

promoter. Each of the individual 10 TFs were transiently transfected into 

cultured dermal fibroblasts along with a GFP reporter plasmid using 

electroporation. Three control samples were transfected with vector 

alone and with the GFP reporter plasmid, while another three samples 

were transfected with the overexpression vector containing the DiRE-

predicted TF and a GFP reporter plasmid. After 48 hours from the point 
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of transfection, total RNA was extracted from the treated cells. 48 hours 

was chosen as the optimal time point because fibroblasts divide 

relatively slowly (about once a day) and changes in gene expression 

could be observed then. First-strand complimentary DNA (cDNA) was 

synthesized from the each sample’s RNA extract and quantitative 

polymerase chain reaction (qPCR) was conducted to measure the 

expression of candidate TFs and downstream gene targets.  

 

Initially, a lipofection reagent was used to transfect each TF into 

dermal fibroblast cells. However, examination by fluorescence 

microscopy revealed transfection efficiency of less than 5% (Figure 2A). 

In comparison, electroporation resulted in a higher transfection 

efficiency as seen in Figure 2B. Flow cytometry determined that our 

transfection using electroporation yielded a 27.19% transfection 

efficiency. 

 

Measuring Expression of DiRE-predicted TFs and Downstream Gene 

Targets 

Once gene expression data was collected from qPCR, sample 

threshold cycle values (CT) were used to calculate relative gene 

expression, which was normalized to Human Gapdh expression in the 
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same samples. Figure 3 details the expression data from the 10 Dire-

predicted TFs that were transfected into a total of six samples 

containing cultured dermal fibroblasts. The mock-transfected samples 

were used as baseline TF expression levels. Six out of ten of the TFs (ETF1, 

POU3F2, NF-ΚΒ1, ELF1, YY1, and EGR2) were overexpressed by greater 

than 10 times relative to control samples. Four of the remaining TFs, 

SMAD3, SP1, ELK1, and ZF5, were not significantly overexpressed. Four of 

the six TFs were overexpressed by greater than 100 times relative to 

control. EGR2 was the most overexpressed TF with 3000 fold relative 

expression.  

 

With the successful overexpression of the majority of our DiRE-

predicted TFs, we sought to determine whether the TF overexpression 

was sufficient to activate scleroderma target genes. Three downstream 

targets that are predicted to be regulated by NF-ΚΒ1 and were a part 

of the 165 differentially expressed genes were analyzed (Figure 4). The 

first gene PSME2, was not differentially expressed between the control 

and treated samples. The second gene analyzed, CCL5, exhibited a 5-6 

fold increase in gene expression in the presence of NF-ΚΒ. The increase 

in expression was determined to be statistically significant with a p-

Value of 0.007. This means that there is a 0.7% chance that the change 
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in gene expression is not due to the treatment, or in this case, the 

overexpression of NF-ΚΒ TF. Two remaining predicted targets PSME2 and 

YWHAE, were not altered in expression levels in treated and control 

samples. Thus, for NF-κβ overexpression only 1 out of 3 of the targets 

were activated. 

 

To further our validation of DiRE and determine whether we 

would be able to activate additional scleroderma gene targets with 

DiRE-predicted TFs, we tested and validated the response to the 9 

additional predicted TFs. A summary of the transfections of each TF and 

the associated gene target expression is provided in Table 5. The 

overexpression levels of the TFs that was previously discussed is 

displayed along with their associated downstream gene targets. A total 

of 36 targets that were predicted to be regulated by the 10 TFs were 

examined. From our analysis of the treated samples, a total of 8 out of 

the 36 total targets were statistically altered from control (p<0.05). 

Unexpectedly, altered expression of four downstream targets was 

observed even in the absence of clear overexpression of predicted TFs. 

4 of the 8 differentially expressed targets were associated with the 4 TFs 

that were unable to be overexpressed. 
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In addition to looking at statistical significance, we evaluated all 

target gene expression to see which targets had a change in 

expression greater than 50% from baseline. With this cutoff, we wanted 

to choose a more stringent selection method to see which target’s 

gene expression that we were able to radically change. A total of 3 

genes had a change in expression greater than 50% from baseline. 

These three targets were CCL5, YWHAE, and PPP2R2A, but only CCL5 

was also statistically significant.  In addition, the 50% change in 

expression from baseline of YWHAE and PPP2R2A occurred in the ZF5 

transfection sample where we did not experience overexpression of the 

TF. From this data, we can say that most (7/8, or 87.5%) of the 

statistically significant targets had a change of expression less than 50%. 

While one target, CCL5, was both statistically significant and had an 

average change in expression that was 411% increased in the treated 

sample compared to control. 
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DISCUSSION: 

Our goal with the experiments contained in this chapter was to 

indentify the major TFs that drive scleroderma-specific gene expression. 

In order to do this, we used raw microarray data to find differentially 

expressed genes between scleroderma and normal skin samples. Our 

analysis resulted in 165 differentially expressed gene targets between 

both the scleroderma and normal phenotypes. We were able to use 

the web-based bioinformatic program DiRE to predict 10 TFs to regulate 

up to 18 of our 165 differentially expressed genes. Shared TFBSs among 

the 165 target genes were used to predict TFs. Upon switching our 

transfection method, we were able to successfully transfect dermal 

fibroblasts and overexpress the majority of predicted TFs.  

 

In our analysis of a total of 36 downstream targets, 10 or 27.7% of 

those targets were differentially expressed on either a statistically 

significant basis or with an average chance in expression greater than 

50%. The only target to fit both categories was CCL5, which has a 411% 

increase in expression and was regulated by the NF-ΚΒ TF. Of those 10 

differentially expressed targets, 6 (YWHAE (2), CCL5, NF-ΚΒ, PPP2R2A (2)) 

of those were upregulated of activated, while 4 (IL18, PSME2, RBBP4, 

ODC1) were repressed. All of the 6 activated targets were consistent 



30 

 

with scleroderma gene expression, meaning that those 6 targets had 

increased expression in the scleroderma diseased patient samples. The 

4 repressed targets were not consistent with scleroderma gene 

expression. Those 4 targets were actually increased in scleroderma 

patient samples and relatively decreased in normal patients samples. 

The results have important implications for potential future 

reprogramming of the scleroderma phenotype. Thus, we know that 

YY1, NF-ΚΒ1, ETF1, ZF5, and SP1 were sufficient to activate these 6 

scleroderma-specific genes potentially leading to partial activation of 

the scleroderma phenotype. Conversely, YY1 and ELK1 TFs were found 

to repress the expression of four scleroderma-specific targets and those 

TFs could be used to reprogram the normal skin phenotype from 

scleroderma disease-effected cells. 

 

While 27.7% of analyzed gene targets were differentially 

expressed, all except CCL5, YWHAE (ZF5 TF), and PPP2R2A (ZF5 TF) were 

differentially expressed at low levels (below 50% avg. ∆) and only one 

target was both differentially expressed and statistically significant 

(CCL5). There are several factors that could have increased our ability 

to differentially express a larger amount of genes. First, the microarray 

data analyzed was from punch biopsies, which contains a mixed 
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population of cells. The positive aspect of analyzing gene expression of 

a biopsy is that it is a true physiologic snapshot of the disease. However, 

our experiments were conducted in fibroblasts. It is possible that a 

subset of the differentially expressed genes are differentially expressed 

in cells other than fibroblasts, therefore it would be much more difficult 

to mimic that same gene expression in a different cell type (Machesney 

et al., 1998). It is also possible that the four TFs we were unable to 

overexpress were underexpressed due to cellular mechanisms 

preventing its overexpression, or the cell already had high level of TF 

expression making it more difficult to overexpress. Nonetheless, the 

majority of our TFs were overexpressed allowing us to continue to look 

at their predicted downstream targets. Also, TFs are known to act 

together, or in networks of gene expression, thus transfecting a single TF 

may not be substantial enough to evoke larger changes in gene 

expression. While improvements can be made, this initial DiRE analysis 

proved itself to be predictive and it deserves further attention. 
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Table 1: Differentially Expressed Genes Increased In Normal Skin 

Phenotype (Input Set) 

# Gene # Gene # Gene # Gene 

1 PF4 26 GSK3B 51 CIB1 76 RPS6KA1 
2 CYP4F2 27 EMP1 52 UBA7 77 AXL 
3 GSTM3 28 THRA 53 NF-ΚΒ* 78 CGB7 
4 KLF1 29 CDA 54 FGFR4 79 EFS 
5 NCAM1 30 MST1 55 MYCL2 80 RELA* 
6 CYP11B1 31 GUCA1A 56 FLT3LG 81 TNK2 
7 PCDHGC3 32 MAP4K1 57 MME 82 MAPK3 
8 MAPK11 33 RABGGTA 58 RAB40B 83 EDN2 
9 IL3 34 GSTM5 59 GATA2 84 MAP3K11 
10 CXCR5 35 PTPN9 60 MLANA 85 PAX8 
11 GSTA2 36 ANG 61 MT3 86 EIF4G1 
12 WNT10B 37 CDC34 62 CSPG4 87 GRK6 
13 NTRK3 38 NOS2A 63 GPR31 88 DUSP1 
14 RXRG 39 CYP4F3 64 PLCG2 89 HSPA1A 
15 XPA 40 LIG3 65 RBPMS 90 IGFBP5 
16 CCR1 41 RARG 66 SRF 91 DDR1 
17 CD19 42 GSTZ1 67 TRA@ 92 EEF1A1 
18 RAP1GAP 43 MLL 68 CGB   
19 DUSP2 44 IL8RB 69 POLR2H   
20 GH1 45 CDH15 70 TCF3   
21 MST1R 46 TIMP2 71 LTK   
22 ARHGEF16 47 PTPRS 72 TYRO3   
23 CASP2 48 MUC1 73 PRKAR1B   
24 E2F1 49 QSOX1 74 MMP15   
25 TNFRSF25 50 COL11A2 75 FGFR2   
* Differentially Expressed in Both Scleroderma/Normal Samples 

(suspected different isoforms) 
Yellow Highlight = Transcription Factor 
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Table 2: Differentially Expressed Genes Increased In Scleroderma Skin 

Phenotype (Input Set) 

# Gene # Gene # Gene 

93 CCL5 118 ISG15 143 PSMB4 
94 TNFAIP6 119 YWHAE 144 TCEB1 
95 IL10RA 120 MAP2K1 145 PSMB3 
96 LYN 121 CDC25B 146 CYC1 
97 PIK3R1 122 POLG 147 CRABP2 
98 RAB1A 123 PSMD11 148 ACTG2 
99 THBS1 124 ERF 149 TGFBI 
100 MAPK9 125 DDB2 150 PSMB2 
101 TWF1 126 PSMD1 151 EIF2AK2 
102 PTPRZ1 127 ODC1 152 PSMD2 
103 SLA 128 PSMB7 153 RHOC 
104 IL18 129 SLC38A2 154 UBA1 
105 RBBP4 130 TIMP3 155 PSMD8 
106 VDR 131 TOP1 156 EIF4A1 
107 CD44 132 PPP2R2A 157 HINT1 
108 THBS4 133 PSME2 158 RHOA 
109 SLC20A1 134 IL23A 159 EIF4A2 
110 NF-ΚΒ* 135 IL1R1 160 YWHAH 
111 PARP1 136 CTSC 161 HSP90AB1 
112 SFRS10 137 PTP4A2 162 YWHAZ 
113 IFI6 138 REEP5 163 UBB 
114 EPHB4 139 CALM3 164 UBC 
115 CTSK 140 RELA* 165 OAZ1 
116 RPA2 141 CEBPD     
117 IER3 142 TCEA1     
* Differentially Expressed in Both Scleroderma/Normal 
Samples (suspected different isoforms) 
Yellow Highlight = Transcription Factor 
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Table 3: Characteristics of 10 DiRE-predicted Transcription Factors 

# TF Occurrence Importance Associated Targets 

1 SP1 33.85% 0.06873 CRABP2, TGFB1, RELA, NF-ΚΒ1, CYC1, PPP2R2A, OAZ1   

2 ZF5 27.69% 0.00428 YWHAE, OAZ1, NF-ΚΒ1, PPP2R2A   

3 ELK1 18.46% 0.26077 PSME2, RBBP4, ODC1, YWHAE   

4 ETF1 16.92% 0.09909 YWHAE, OAZ1, NF-ΚΒ1, PPP2R2A   

5 NF-ΚΒ1 13.85% 0.13846 PSME2, CCL5, YWHAE   

6 EGR2 12.31% 0.11132 NF-ΚΒ1, PARP1, THBS1   

7 YY1 10.77% 0.04156 IL18, CYC1, PPP2R2A, OAZ1   

8 ELF1 3.08% 0.00275 RELA, NF-ΚΒ1   

9 SMAD3 3.08% 0.03308  IFI 6, NF-ΚΒ1   

10 POU3F2 3.08% 0.01138 TOP1, ACTG2    
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Table 4: 18 Differentially Expressed Gene Targets Used for qPCR Analysis 

Gene 
Regulatory 

Element 
Type Score Locus Gene 

Regulatory 

Element 
Type Score Locus 

ACTG2 
chr2:73973182-

73973890 UTR5 0.259 
chr2:7394355
8-74007447 

PARP1 
chr1:224662407

-224662507 UTR5 0.758 
chr1:2245638
28-224803083 

CCL5 
chr17:31220031

-31269179 UTR5 2.780 
chr17:312200
31-31269179 

PPP2R2A 
chr8:26204897-

26205252 UTR5 0.006 
chr8:2595852
2-26296426 

CRABP2 
chr1:154942048

-154942209 Promoter 1.058 
chr1:1549157
74-154959018 

PSME2 
chr14:23686135

-23686253 Promoter 0.192 
chr14:236806
40-23687177 

 
    

 
chr14:23686279

-23686386 Promoter 0.365 
chr14:236806
40-23687177 

CYC1 
chr8:145221875

-145221990 UTR5 0.995 
chr8:1452131
20-145225448 

RBBP4 
chr1:32888754-

32888880 Promoter 0.006 
chr1:3288798
4-32918839 

IFI 6 
chr1:27871158-

27871383 UTR5 0.010 
chr1:2783435
4-27925075 

RELA 
chr11:65187961

-65188194 Promoter 0.001 
chr11:651750
83-65236054 

IL18 chr11:11154044
3-111540613 Promoter 0.055 

chr11:111471
857-

111543248 
TGFB1 chr5:135391775

-135391964 Promoter 0.319 
chr5:1353186
44-135496433 

NF-ΚΒ1 
chr4:103641372

-103641644 UTR5 0.601 
chr4:1034854
10-103771527 

THBS1 
chr15:37660269

-37660505 Promoter 0.012 
chr15:373350
29-37679369 

OAZ1 
chr19:2220395-

2220597 UTR5 0.010 
chr19:220634

5-2224569 
TOP1 

chr20:39090242
-39090412 Promoter 0.007 

chr20:387513
06-39199562 

ODC1 
 chr2:10505707-

10506001 UTR5 1.533 
chr2:1048535
8-10627882 

YWHAE 
chr17:1250155-

1250503 UTR5 0.889 
chr17:115141

8-1272173 
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Figure 1: pcDNA3 and pCMV-Sport6 Overexpression Vectors Used to Transfect TFs 
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Figure 2: Fluorescent Images of BJ Fibroblasts Transfected with emGFP: Lipofectamin2000 vs. Neon 

emGFP emGFP 

A B 



 

 

38 

 

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

Control 1 Control 2 Control 3 Treated 1 Treated 2 Treated 3

SMAD3 SP1 ELK1 ZF5 ETF1
POU3F2 NFKB1 ELF1 YY1 EGR2

 

Figure 3: Overexpression Levels of 10 DiRE-predicted Transcription Factors 



 

 

YWHAE

0.00
20.00

40.00
60.00

80.00
100.00

120.00
140.00

160.00

Control 1 Control 2 Control 3 Treated 1 Treated 2 Treated 3

PSME2

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Control 1 Control 2 Control 3 Treated 1 Treated 2 Treated 3

39 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Downstream Gene Target Expression Following NF-κβ1 Overexpression 
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Table 5: Summary of Expression Levels of 10 DiRE-predicted TFs and Their Downstream Targets 

T.F. 
O.E. 

Level 
Targets p<0.05 

50% ∆ in 
Expression  

EGR2 3022X NF-ΚΒ1, PARP1, THBS1 0/3 0/3 

YY1 455X IL18↓*, CYC1, PPP2R2A, OAZ1, YWHAE↑* 2/5 0/5 

ELF1 150X RELA, NF-ΚΒ1 0/2 0/2 

NF-ΚΒ1 140X PSME2, CCL5↑*†, YWHAE 1/3 1/3 

POU3F2 38X TOP1, ACTG2 0/2 0/2 

ETF1 15X YWHAE, OAZ1, NF-ΚΒ1↑*, PPP2R2A 1/4 0/4 

ZF5 2.3X YWHAE↑†, OAZ1, NF-ΚΒ1, PPP2R2A↑† 0/4 2/4 

SP1 1.2X 
CRABP2, TGFB1, RELA, NF-ΚΒ1, CYC1, 

PPP2R2A↑*, OAZ1 
1/7 0/7 

ELK1 1.1X PSME2↓*, RBBP4↓*, ODC1↓*, YWHAE 3/4 0/4 

SMAD3 1X IFI 6, NF-ΚΒ1 0/2 0/2 

* p<0.05, † 50% Avg. ∆, ↑↓ Up/Down ∆ in Expression, ↑↓ Consistent with Scleroderma 
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CHAPTER 3 

Combinatorial Effects of TFs on Scleroderma Gene Targets 
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Transcription Factors Work Together to Provide Synergistic Effects 

Transcriptional activators bind to otherwise silent genes to 

stimulate their expression. The specificity of transcription factors lies in 

their ability to physically bind to specific short DNA sequences known as 

cis-regulatory elements and to recruit numerous co-factors, necessary 

to recruit RNA Polymerases and other proteins to initiate and maintain 

transcription. Recurrence of cis-elements at multiple promoters results in 

activation of all genes that share the same DNA binding sequence. 

Thus, the concept of gene batteries has emerged. In addition, while 

some TFs work independently, the majority of TFs work in cooperation 

with others. In bacteria and yeast experiments, multiple factors are 

required to form the transcription initiation complex and begin the 

process of transcription (Ptashne et al., 1997). Typically, the recruitment 

of multiple components or factors for transcription provides synergistic 

benefits and increases the specificity of gene activation. TFs are also 

known to regulate other TFs and it has been suggested that there is an 

important additional contribution from cooperative DNA binding. In a 

study by Takahashi et al., the successful induction of Oct4, Sox2, Nanog, 

and Klf4, which leads to induced pluripotent stem (iPS) cells from 

fibroblasts was reported. Their experimental approach involved pooling 
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transcription factors and using the process of elimination to find the 

core essential transcription factors. 

 

Clustering of Transcription Factor Binding Sites are Important Elements in 

Cis-regulatory Modules 

There have been many studies and experiments showing that 

regulatory elements are evolutionary conserved and that they are 

usually enriched in combinations of transcription factor binding sites 

(TFBSs). The co-occurrence of TFBSs or grouping of binding sites for the 

same transcription factors into homotypic clusters of TFBSs (HCTs) has 

only been observed in invertebrates, mainly Drosophila until recently 

(Gotea et al., 2010). While prior evidence for the functional contribution 

of HCTs in transcription seems somewhat limited, in a paper published 

by Gotea et al. these advantages are laid out. HCTs favor lateral 

diffusion of TFs along a regulatory region, favor high affinity of 

cooperative binding of TFs, and provide functional redundancy. These 

very properties led us to examine the effect of pooling TFs to see if there 

would be an observed synergistic effect on our ability to regulate 

differentially expressed genes between scleroderma and normal 

phenotypes. 
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A cis-regulatory module (CRM), also known as a regulatory 

element, is a sequence of DNA several hundred base pairs long that TFs 

bind to and regulate nearby genes. Clustering of TFBSs is a common 

feature of CRMs; however HCTs in the human genome have not been 

extensively discovered. Gotea et al. report that evolutionary conserved 

HCTs occupy nearly 2% of the human genome with more than half of 

the promoters of human genes containing HCTs. HCTs are normally 

distributed around the transcription start site (TSS) and almost half of the 

487 experimentally validated enhancers contain HCTs, which is 25 fold 

higher than expected by chance. They have also shown that there is a 

strong correlation between HCTs and the binding of the enhancer-

associated co-activator protein Ep300 (p300). Taken together, these 

results suggest that HCTs play a powerful role in regulatory elements or 

CRM. We plan to exploit that characteristic in our efforts to predict 

downstream targets of endogenously expressed TFs. 

 

Predicting Downstream Gene Targets of Known TFs 

SynoR (Genome Miner for Synonymous Regulation) is a web-

based bioinformatic tool that allows the end user to carry out genome-

wide scans for REs using evolutionary conserved TFBSs (cTFBSs) motifs. 

SynoR uses known TFBS structures of REs, which are defined as a cluster 
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of TFBSs and their specific spatial order and distribution, to search for 

novel REs that are different in sequence from original REs, but are 

synonymous in regulation. Synonymous gene regulation is ultimately 

defined as regulatory elements that drive shared spatial/temporal 

aspects of gene expression (Ovcharenko et al., 2005). It is believed that 

synonymous gene regulation is predicated on regulatory elements that 

contain similar modules or clusters of TFBSs. SynoR identifies synonymous 

regulatory elements (SREs) in vertebrate genomes and performs a de 

novo identification of these SREs using patterns of TFBSs in known 

regulatory elements. Alternatively from our previous approach to 

identify TFs that regulate scleroderma downstream gene targets, we 

aimed to predict the downstream targets of endogenous TFs 

differentially expressed between normal and scleroderma disease 

phentoypes. 
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MATERIALS & METHODS: 

Predicting Downstream Targets of Endogenous TFs with SynoR (a 

Genomic Miner for Synonymous Regulation) [http://synor.dcode.org/] 

TFs of interest, NF-ΚΒ1 and POU3F2, were put individually into the 

TFBS cluster specifications box. Count, strand, and distance limitations 

between neighboring binding sites were all optimized to return fewer 

than 1000 TFBS clusters. The base genome used was the Human 

genome build 18 (hg18) and the comparison genome used was the 

Mouse genome build 9 (mm9). Output data was analyzed and 

downstream gene targets were selected based upon criteria discussed 

in this chapter. 

 

Cloning Transcription Factors and Vectors Used 

All 10 TFs used in this chapter were previously cloned and grown 

up using the methods described in Chapter 2. 

 

Cell Culture and Transfections 

Dermal fibroblasts (BJ) and HaCaT keratinocytes cell lines were 

thawed from cell stock and cultured in D10 media (DMEM plus 10% 

Fetal Calf Serum (FCS)) with penicillin-streptomycin bacterial antibiotic. 

Cells were passaged using Trypsin and stored in a 5% CO2, 37°C 
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incubator. Dermal fibroblasts and HaCaT cells were transfected using 

the standard electroporation provided by Invitrogen for the Neon 

electroporation unit. A 24-well cell-specific optimization was completed 

to determine the optimal parameters for the Neon, which was 1 pulse 

with a pulse width of 20ms, and a pulse voltage of 1650 volts (also 

optimized by Invitrogen). The same parameters were also used for the 

HaCaT cell line. 

 

Quantitative Polymerase Chain Reaction (qPCR) 

Total RNA was extracted from BJ and HaCaT cells using the Zymo 

RNA Purification Kit. cDNA was synthesized using the Fermentas Maxima 

First Strand cDNA Synthesis Kit. Primers were designed using sequence 

information from Ensembl and Primer3 to optimize conditions. The qPCR 

primers were designed to span exon-exon gap junctions to eliminate 

non-specific binding to possible genomic DNA contamination. Primers 

for downstream targets of DiRE-predicted TFs were the same as in 

Chapter 2. The 5 qPCR primer sets used in this chapter are: 

“Species-Gene-Exon-Direction; Sequence” 

Hu-TRPV5-Exon7-F: GGAGCTTGTGGTCTCCTCTG 
Hu-TRPV5-Exon8-R: GAAACTTAAGGGGGCGGTAG 
 
Hu-BCAS3-Exon2-F: CGTGAGCAACCCAACAGTAA 
Hu-BCAS3-Exon3-R: TTGCTGGTACCTACGGGAAG 
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Hu-SDC4-Exon4-F: CCACCGAACCCAAGAAACTA 
Hu-SDC4-Exon5-R: AGGAAGACGGCAAAGAGGAT 
 
Hu-KREMEN2-Exon2-F: GAATGCTTCCAGGTGAATGG 
Hu-KREMEN2-Exon3-R: AGATGCCCTCCTCTGTCTCA 
 
Hu-PDZD2-Exon1-F: CAGCTGATGGTTGGAGTTGA 
Hu-PDZD2-Exon2-R: GTCACCCAGCTCCAAGGTAG 
 
qPCR protocol was conducted using a Roche480 Light Cycler and SYBR 

Green reagent with the following per sample mix: 

Reagent: Volume (µL): 

SYBR Green 5 
Water 2 
Primer (10 pM) .5 
cDNA 2.5 
Total 10 

 

Recorded cycle numbers were input in Microsoft Excel in order to 

analyze relative gene expression, which was normalized to Human 

Gapdh. The ∆ ∆Ct method or the comparative method for quantifying 

relative gene expression data was used for analysis. 

 

Imaging : Microscopy 

Light and fluorescent images were taken of transfected cells in 

culture using Olympus MVX10 and Olympus BX51 microscopes. Software 

programs were used to adjust image settings, exposure time, etc.  
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RESULTS: 

Pooling and Transfecting 10 DiRE-predicted Transcription Factors 

In previous experiments, single DiRE-predicted transcription 

factors were transfected into dermal fibroblasts and the expression of 8 

of the total 36 targets, or approximately 22%, were significantly altered. 

While 8 of those targets were differentially expressed, only one of those 

targets had an average change in expression greater than 50%. To 

determine if the predicted TF might act in synergy, multiple TFs (10) 

were introduced into dermal fibroblasts, to see if they would have a 

combinatorial effect and ultimately evoke greater changes in the 

expression of the downstream gene targets relative to transfecting 

them individually.  

 

Figure 5 describes the shared predicted downstream targets and 

the 10 DiRE-predicted TFs. Five target genes, including CCL5, TGFBI, 

YWHAE, PPP2R2A, and RELA, appeared to have the most overlap as 

potential targets. There is a variance in the number of TFs predicted to 

regulate these chosen targets. While up to 7 of the 10 TFs are predicted 

to regulate YWHAE, only 1 TF is predicted to regulate both CCL5 and 

TGFBI. If the hypothesis that pooled transcription factors has an additive 

or synergistic effect on scleroderma-specific targets, then we would 
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expect no improvement in CCL5 or TGFBI, while those targets with 

multiple TFBSs should respond in increased activation. In previous 

experiments using individual TFs, CCL5, PPP2R2A, and YWHAE were 

found to be statistically significant. Also, CCL5, PPP2R2A, and YWHAE 

had average changes in expression greater than 50% from the control. 

However, only CCL5 was both statistically significant and had an 

average change in expression greater than 50% in the same TF 

transfected sample. Thus, pooling all 10 TFs would allow us to test 

whether improved gene expression would be observed for these 

targets relative to our previous single TF experiment. 

 

Transient co-transfections of GFP expression vector plus 

overexpression vectors were performed in dermal fibroblasts. Three 

control and treated biological replicates were used, so three samples 

had GFP plus an empty overexpression vector and the other three had 

GFP plus overexpression vector containing a TF. A difference was that 

by pooling transfections, a smaller amount of each overexpression 

vector was used than when using single TF vectors. Nevertheless, their 

expression relative to previous transfections and the 6 previously 

overexpressed TFs were overexpressed at similar levels. After 48 hours, 
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total RNA extract was isolated and mRNA expression levels of 

associated targets were measured via qPCR. 

 

Observing Downstream Gene Target Expression of Pooled TFs in Dermal 

Fibroblasts 

As discussed previously, pooling DiRE-predicted TFs was tested to 

see if multiple TFs would provide a combinatorial effect thereby 

increasing or decreasing the expression of downstream gene targets 

more so than the single TFs alone. Figure 6 shows the gene expression 

for the 5 selected downstream targets. There are 3 biological replicates 

for both control and treated samples. It is clear that there were only 

subtle changes in gene expression among all 5 targets. In fact, the only 

target that had a statistically significant (p=0.009) change in expression 

was CCL5, with a minor increase in expression in the TF-treated sample 

versus control. 

 

Observing Downstream Gene Target Expression of Pooled TFs in 

Keratinocytes 

It is not known what cell type is responsible for the scleroderma 

phenotype and in Chapter 2 we discussed that the original microarray 

data we used to find our 165 differentially expressed genes is derived 
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from a punch biopsy, meaning that it includes a mix of all cell types 

found in skin. We first focused on fibroblasts, which exist in the dermis 

layer of the skin. The dermis layer of the skin also has large amounts of 

collagen and extracellular matrix, which is primarily synthesized from 

fibroblasts. Collagen and extracellular matrix are proteins that are 

upregulated in the scleroderma phenotype. While it makes sense to 

look at fibroblasts as a primary cell type, it is also quite possible that 

keratinocytes, which exists in the epidermis, could have a functional 

role in the scleroderma phenotype. Keratinocytes are the predominant 

cell type in the epidermis making up approximately 95% of all cells 

(McGrath et al.).  To test the hypothesis that our DiRE-predicted TFs may 

operate differently in another cell type to differentially express the 

scleroderma gene targets, we repeated the transfection of all 10 

pooled TFs in a keratinocyte cell line, called HaCaT.  

 

A summary of the 10 pooled TF transfections in both BJ and 

HaCaT cell lines is contained in Table 6. Subtle changes in gene 

expression were observed in HaCaT cells as well as no targets had a 

50% average change in gene expression between both cell lines. 

However, 2 out of the 5 targets measured in HaCaT cells had statistically 

significant changes in gene expression. Those two targets were 
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PPP2R2A and RELA. Both of these targets were downregulated in the 

treated samples suggesting that one or more of the 10 pooled TFs are 

responsible for repressing their gene expression. 

 

Testing a New Bioinformatic Approach: SynoR 

SynoR predicts gene regulation is the opposite direction of DiRE, 

meaning that instead of predicting TFs from a set of genes, it predicts 

downstream gene targets that are regulated by the TFs that one inputs. 

SynoR uses the concept of evolutionary conservation to predict 

regulatory elements. However, instead of analyzing a TF’s ability to bind 

once in a regulatory element, it can detect multiple transcriptional 

factor binding sites (TFBSs) in a given RE. This allows for one to search for 

multiple binding sites or clusters of binding sites in a regulatory element 

belonging to either one or multiple TFs, therefore predicting 

synonymous regulation (SynoR). Theoretically, it makes sense that this 

method may be more predictive than DiRE due to the simple fact that 

multiple TFBSs would appear to be more powerful than one. 

 

Using the bioinformatics tool SynoR, TFs NF-ΚΒ and POU3F2 were 

entered into the web-based software in order to find downstream gene 

targets that contained regulatory elements with clusters of either NF-ΚΒ 
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or POU3F2 TFBSs. Once the output was received, the following three 

characteristics were used to select the downstream targets. The 

median length of a cluster of TFBSs is 597 base pairs (bps), the median 

numbers of TFBSs in a cluster is 5, and most clusters of TFBSs exists in close 

proximity to the transcription start site (TSS) (Gotea et al., 2010). With this 

in mind, gene targets were selected that had clusters of 5 TFBSs or 

more, were less than 600 bps in length, and exists in the promoter region 

of the gene. Picking regulatory elements that exist in the promoter 

region is also consistent with previous analysis. Two targets were 

selected for NF-ΚΒ and three were selected for POU3F2 as shown in 

Table 7. Also portrayed, are the locus in which the cluster exists, the 

length of the cluster, and the number of TFBSs contained in the cluster. 

 

In order to perform an initial test for this method, transient co-

transfections of NF-ΚΒ and POU3F2 that were identical to those in 

Chapter 2 were performed. These two TFs were transfected individually 

into dermal fibroblasts, total RNA was extracted after 48 hours, and 

gene expression was measured via qPCR. 
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Analysis of SynoR-predicted Target Gene Expression 

Of the 5 targets analyzed, PDZD2 and TRPV5 were not 

abundantly expressed high in dermal fibroblasts to accurately assay 

change in gene expression. Therefore, 3 initial SynoR targets were left to 

analyze. Of the remaining 3 targets (Figure 7), KREMEN2 and BCAS3 

both had over a 50% change in average gene expression. KREMEN2 

and BCAS3 had increases in expression relative to control of 435% and 

181%, respectively. Although, out of the three targets KREMEN2, BCAS3, 

and SDC4, only BCAS3 had a statistically significant change in gene 

expression (p=0.009). For an initial validation of 3 targets, SynoR appears 

to be somewhat predictive for determining downstream gene targets 

of TFs. 
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DISCUSSION: 

Previously, it was proven that DiRE had the potential to predict TFs 

that would differentially regulate our set of downstream gene targets. In 

our experiment in this chapter, we wanted to see whether pooling all 10 

DiRE-predicted TFs would provide a combinatorial effect, thereby 

increasing the percentage of genes differentially expressed in our 

experiment. From the transfection of the 10 pooled TFs, we observed 

that 1 out of 5 (20%) targets were differentially expressed. This target 

was CCL5 and it was differentially expressed as determined by 

statistical significance. The increase in CCL5 expression was also 

consistent with the scleroderma phenotype, as it is increased in 

scleroderma patient samples. Moreover, none of the 5 targets analyzed 

had an average change in expression greater than 50%, which was 

observed in our original single TF transfection experiment. Also, YWHAE 

and PPP2R2A were differentially expressed in our initial experiment and 

they were not with the pooled TFs. From this data, we can conclude 

that pooling the TFs had no effect on differentially expressing 

downstream targets via TF regulation relative to transfecting single TFs. 

However, in order to determine statistical significance between the two 

methods, additional targets would need to be analyzed. 
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We decided to test our pooled TFs in an additional cell line to see 

if regulation of a portion of the downstream targets was specific to a 

certain type of cells. The largest cell type (95% of cells) of the epidermis 

is keratinocytes and that sparked our interest to repeat the previous 

experiment in the HaCaT cell line, which are immortalized human 

keratinocytes. In this experiment, 2 out of the 5 targets (PPP2R2A and 

RELA) were differentially expressed. Interestingly enough, RELA was 

unable to be differentially expressed in previous BJ cell line experiments 

and PPP2R2A expression decreased as opposed to the increase 

observed previously. These results support the hypothesis that multiple 

cell lines might be responsible for the total change in gene expression 

between diseased and normal patient samples. 

 

In this section, we also conducted an initial test of a new 

bioinformatic tool called SynoR, which stands for synonymous 

regulation, or predicts downstream gene targets based upon clustering 

of TFBSs. Of the three SynoR downstream targets measured, one had a 

statistically significant change in expression (BCAS3). On top of that, 2 

(KREMEN2 and BCAS3) of the 3 targets had an average change in 

expression greater than 50%. These initial results seem promising and 

they force one to ask additional questions regarding the approach. 
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Does the number of binding sites in a cluster, or in general, correlate 

with change in gene expression? Does the closeness in base pairs of 

TFBSs within a cluster effect the level of gene expression? These are 

questions that need to be answered by conducting additional 

experiments and testing more SynoR targets. 
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Figure 5: Relationships of Gene Regulation between 10 Pooled TFs and Downstream Targets 
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Figure 6: Gene Expression Levels of 5 Downstream Targets in BJ Cells with 10 Pooled TFs 
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Table 6: Summary of Downstream Gene Target Expression from 10 Pooled TFs in BJ and HaCaT Cells 

TFs Cell Line Targets p<0.05 
50%∆ in 

Expression 

EGR2, YY1, 
ELF1, NF-ΚΒ1, 
POU3F2, ETF1, 

ZF5, SP1, 
ELK1, SMAD3 

BJ YWHAE, PPP2R2A, RELA, CCL5↑*, TGFB1 1/5 0/5 

HaCaT YWHAE, PPP2R2A↓*, RELA↓*, CCL5, TGFB1 2/5 0/5 

* p<0.05, ↑↓ Up/Down ∆ in Expression, ↑↓ Consistent with Scleroderma 
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Table 7: Properties of SynoR Predicted TFBS Clusters and Downstream Targets 

TF Target Locus Length # TFBSs 

NF-ΚΒ1 KREMEN2 chr16:2953432-2953522 91 bps 13 
  PDZD2 chr5:31674868-31674920 53 bps 12 

POU3F2 TRPV5 chr7:142342303-142342348 46 bps 9 
  BCAS3 chr17:56108782-56108827 46 bps 9 
  SDC4 chr20:43411443-43411484 42 bps 8 
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Figure 7: CCL5 and 3 SynoR-predicted Downstream Targets
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CHAPTER 4 

An Epigenetic Approach: Testing Expression of Identified Transcription 

Factors and Downstream Targets in Human Embryonic Stem Cells 
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Embryonic Stem Cells Represent an Early Epigenetic State 

Recently, scientists have been able to isolate embryonic stem 

(ES) cells from the inner cell mass of blastocysts and culture them. A 

characteristic feature of stem cell is their ability to proliferate indefinitely 

while maintaining the ability to differentiate into various cell types. 

Mouse ES cells are so potent that an entire mouse can be produced 

from an ES cell. While ES cells are transcriptional active, most protein 

expression is at low levels. As these ES cells differentiate into various cell 

types, transcription activity actually decreases enhancing the effect of 

relatively higher expressed genes and protein expression increases 

resulting in a change in phenotype. Numerous studies have indicated 

that TFs are responsible for the change in gene expression that results 

from the differentiation of an ES cell to another cell lineage. 

 

Epigenetics has been defined as “the study of changes of gene 

function that are mitotically and/or meiotically heritable and that do 

not entail a change in DNA sequence” (Bibikova et al., 2008). 

Epigenetic factors that help define a particular cell state include: DNA 

methylation, transcription factors, changes in chromatin structure 

(through binding of histones), and possibly microRNAs. Understanding 

how these epigenetic factors affect various cell types is crucial to 
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elucidating the vary mechanisms that define differentiation. Scientists in 

the Yamanaka Lab have recently showed that introducing transcription 

factors to change cell epigenetics can results in changing a cell state, 

such as changing a fibroblast to an induced pluripotent (iPS) cell. It is 

known that ES cells have a non-condensed chromatin structure. This 

characteristic defines an ES cell as an undifferentiated cell or a cell in 

an early state that is transcriptionally active and is partially responsible 

for its ability to turn into any cell type or cell lineage. 

 

Gene Expression is Regulated by Epigenetic Modifications 

DNA methylation and histone modifications are two of the largest 

epigenetics mechanisms thought to regulate gene expression. DNA 

methylation is known to establish a silent chromosome state by 

collaborating with other proteins that help modify nucleosomes. DNA 

methylation can act to either activate or repress gene expression. 

Histone modifications also effect gene expression by keeping the 

organism’s DNA in an “open” or “closed” state having a profound 

effect on transcription. From the point at which the embryo is fertilized 

rapid demethylation across the genome occurs. As the zygote starts to 

mature and eventually differentiate into different cell types, de novo 

methylation occurs making those tissues less transcriptionally active. 
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Epigenetic factors such as DNA methylation and histone modifications 

are becoming increasingly understood and they have been shown to 

have significant effects on overall gene expression patterns in various 

cell types. We postulate that by introducing our predicted and 

endogenous TFs into Human embryonic stem cells (hESC), there will be 

fewer road blocks that will allow for better access of our TFs to DNA, 

thereby allowing us to better mimic the pattern of scleroderma-specific 

gene expression. 
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MATERIALS AND METHODS: 

Predicting Downstream Targets of Endogenous TFs with SynoR (a 

Genomic Miner for Synonymous Regulation) [http://synor.dcode.org/] 

TFs of interest ETF1 and VDR, were put individually into the TFBS 

cluster specifications box (NF-ΚΒ1 and POU3F2 were done previously in 

Chapter 3). Count, strand, and distance limitations between 

neighboring binding sites were all optimized to return fewer than 1000 

TFBS clusters. The base genome used was the Human genome build 18 

(hg18) and the comparison genome used was the Mouse genome 

build 9 (mm9). Output data was analyzed and downstream gene 

targets were selected based upon criteria discussed in the previous 

chapter 3. 

 

Cloning Transcription Factors and Vectors Used 

Cloning primers were designed and amplified from genomic 

complimentary DNA (cDNA). Linkers specific to the overexpression 

vector multiple cloning site (MCS) were added along with the Kozak 

Consensus Sequence, which plays a major role in the initiation of 

translation. The amplified gene of interest was extracted from 1% 

agarose gel using standard protocol for the Zymoclean Gel DNA 

Recovery and Cleanup Kits. The overexpression vector of interest, 
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(Figure #) pcDNA 3.0, was digested at its MCS and the VDR gene was 

ligated into it. The resulting overexpression vector was grown up and 

checked with sequencing. Of the 7TFs used, VDR was cloned and the 

other 6 were cloned or produced previously (Chapter 2). 

 

Cell Culture and Transfections 

Human embryonic stem cells (hESC) were thawed from cell stock 

and cultured in mTESR1 media by Stem Cell Technologies (mTESR1 Basal 

Medium plus 20% 5X mTESR1 Supplement) with penicillin-streptomycin 

bacterial antibiotic. Cells were passaged using Dispase and stored in a 

5% CO2, 37°C incubator on matrigel-coated plates. hESC were 

transfected using the standard Lipofectamin 2000 protocol provided by 

Invitrogen. 

 

Quantitative Polymerase Chain Reaction (qPCR) 

Total RNA was extracted from hESC cells using the Zymo RNA 

Purification Kit. cDNA was synthesized using the Fermentas Maxima First 

Strand cDNA Synthesis Kit. Primers were designed using sequence 

information from Ensembl and Primer3 to optimize conditions. The qPCR 

primers were designed to span exon-exon gap junctions to eliminate 

non-specific binding to possible genomic DNA contamination. Primers 
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for downstream targets of DiRE-predicted TFs, overexpressed TFs, and 

SynoR targets were the same as in Chapter 2 and 3. The 1 TF and 8 

additional SynoR targets used in this chapter have the following qPCR 

primer sets: 

 “Species-Gene-Direction-Exon” “Sequence” 

Hu-VDR-F-Exon4 TGACCCTGGAGACTTTGACC 
Hu-hVDR-R-Exon5 GTTGAAGGGGCAGGTGAATA 

  

Hu-GAA-F-Exon1 GATGAGGCAGCAGGTAGGAC 

Hu-GAA-R-Exon2 TCACTCCCATGGTTGGAGAT 

  

Hu-PCDH7-F-Exon1 AAAACACCAGGCCGTACAAG 

Hu-PCDH7-R-Exon2 TGGAATTCAGCCAAACACAG 

  

Hu-DIVA-F-Exon1 CCCCACTGTACACCAAGGTC 

Hu-DIVA-R-Exon2 AACTCTGAATGGGGCACATC 

  

Hu-ARID2-F-Exon4 GTTCATCATTTTGGGGAGGA 

Hu-ARID2-R-Exon5 CCACTTCATTTGGGAGTCCA 

  

Hu-PCDH1-F-Exon2 GCTTGACACCAATGACAACG 

Hu-PCDH1-R-Exon3 CAGGGTGCTTAGGTCCTCAC 

  

Hu-NOVA2-F-Exon3 CAGCTTTATTGCCGAGAAGG 

Hu-NOVA2-R-Exon4 ACCCATGCTCCTGACTGTTC 

  

Hu-QSER1-F-Exon5 ACTGGCGGTAACAGTCCATC 

Hu-QSER1-R-Exon6 ACCCACAGTGGTTGAGGAAG 

  

Hu-PRKCD-F-Exon2 TCTGTGCCGTGAAGATGAAG 

Hu-PRKCD-R-Exon3 CACGGTCACCTCAGACACTG 
 

qPCR protocol was conducted using a Roche480 Light Cycler and SYBR 

Green reagent with the following per sample mix: 
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Reagent: Volume (µL): 

SYBR Green 5 
Water 2 
Primer (10 pM) .5 
cDNA 2.5 
Total 10 

 

Recorded cycle numbers were input in Microsoft Excel in order to 

analyze relative gene expression, which was normalized to Human 

Gapdh. The ∆ ∆Ct method or the comparative method for quantifying 

relative gene expression data was used for analysis. 

 

Imaging : Microscopy 

Light and fluorescent images were taken of transfected cells in 

culture using Olympus MVX10 and Olympus BX51 microscopes. Software 

programs were used to adjust image settings, exposure time, etc.  

 

Immunohistochemistry 

Transfected hESC were removed from matrigel-coated plates 

with Trypsin in order to break hESC colonies into single cells. hESC were 

then washed and resuspended in PBS, and then cytospinned onto glass 

coverslips. Standard immunocytochemistry and immunofluorescence 

protocol by Abcam was used.  Samples were fixed in 3-4% 

paraformaldehyde in PBS at pH 7.4. PBS containing 0.25% Triton X-100 



72 

 

was used for permeabilization of cells. 1% BSA in PBST was used for 

blocking overnight at 4°C. Monoclonal rat VDR and rabbit NF-κβ (p65) 

primary antibodies were used in a 1:100 dilution. Goat anti rat Alexa 

Fluor 568 and goat anti rabbit Alexa Fluor 488 secondary antibodies 

were diluted 1:500 in PBS and used for visualization. Coverslips were 

mounted and dried overnight at 4°C in the dark. 
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RESULTS: 

Overexpressing DiRE-predicted and Endogenous TFs into Human 

Embryonic Stem Cells 

Thus far, DiRE and SynoR have proven to be somewhat predictive 

with 12 out of 49, or roughly 24.5% of downstream gene targets 

differentially expressed from a statistically significant viewpoint. While 

this is better than expected, only 5 of the 49, or approximately 10% of 

the total targets had an average change in expression greater than 

50% and just one gene was both significantly differentially expressed 

and had an increase in gene expression greater than 50%. One of the 

classic problems affecting gene expression involves epigenetic marks 

and chromatin modeling. Epigenetic modifications made to DNA over 

time or throughout development can determine what genes are 

expressed. A unique characteristic about stem cells are that they 

exhibit an earlier epigenetic state, therefore they have different 

epigenetic modifications and their chromatin is less condensed. This 

allows stem cells to have a more open form of DNA relative to somatic 

cells, thus allowing TFs better access to regulate downstream gene 

targets. Due to these properties of stem cells, we decided to transfect 

our DiRE-predicted and endogenous transcription factors into Human 
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embryonic stem cells (hESC) to discover the effect that it would have 

on the expression of downstream targets. 

 

A total of 7 TFs were chosen for this experiment and they 

included: YY1, ETF1, ELF1, NF-ΚΒ1, EGR2, POU3F2, and VDR. 6 (excluding 

VDR) of the 7 TFs were DiRE-predicted, but 2 (NF-ΚΒ1 and VDR) of the 7 

were also TFs that were a part of the 165 differentially expressed targets. 

6 of the 10 original DiRE-predicted TFs were used for the experiement, 

because those were able to be overexpressed. The fact that they were 

able to be overexpressed makes it easier to draw a correlation 

between overexpression of the TF and change in downstream gene 

expression. As determined from microarray analysis, both NF-ΚΒ1 and 

VDR were expressed higher in the scleroderma disease patient samples. 

If in fact, overexpressing scleroderma-specific endogenous TFs is the key 

to reprogramming the scleroderma disease phenotype as opposed to 

altering gene targets that were differentially expressed, then applying 

SynoR to these two TFs would be an interesting method to predict their 

downstream gene targets. Finally, in this experiment both DiRE-

predicted and endogenous TFs were combined not just to further 

validate DiRE and SynoR, but in order to see if hESC were more 

receptive to reprogramming. 
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All 7 TFs were pooled and transiently transfected into hESC along 

with a GFP reporter plasmid. After 24 hours, total RNA was extracted 

and gene expression was measured. 24 hours (different from 48 with 

fibroblasts) was chosen as a time point here, because hESC divide 

faster and they appear to differentiate after 48 hours of transfection 

(Figure 8A). In the initial experiment conducted, the hESC looked 

elongated and stringy similar to fibroblasts as opposed to small 

compact hESC that form a colony. If the hESC were allowed to 

differentiate and their cell state changed, then it is fair to say that their 

epigenetic state and gene expression would be altered, which would 

greatly affect the outcome of the experiment. Figure 8B displays the 

hESC after 24 hours of transfection maintaining their small, round, and 

compact morphology that is characteristic to stem cells (Note Figure 

8A is magnified many time relative to Figure 8B). Figure 9 displays the 

gene expression of each of the 7 transfected TFs. All 7 TFs were 

overexpressed more than 10 fold, with most of them being 

overexpressed at least 100 fold relative to control samples. 5 TFs were 

expressed greater than 100 fold, 3 were greater than 1000 fold 

expression, and the highest express TF was VDR with an approximate 

8500 fold overexpression.  
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The main purpose of this hESC experiment was to observe if cells 

that are in an earlier epigenetic state are more receptive to TFs and 

altering gene expression. First, the overexpression of the 6 TFs that were 

transfected into both dermal fibroblasts and hESC were compared. 

Table 8 details the overexpression of the 6 TFs in both BJ and hESC. Two 

of the 6 TFs had a decrease in overexpression in hESC relative to BJ 

Cells. The decrease in EGR2 overexpression was modest with an 11% 

decrease in overexpression, while the YY1 TF had an 89% decrease in 

overexpression in hESC relative to dermal fibroblasts, or the 

overexpression in hESC was 11% of that observed in dermal fibroblasts. 

The minor fluctuation in EGR2 overexpression might be due to different 

transfection methods (Electroporation versus Liquid Transfection) or the 

variation in overexpression plasmid amounts used between the two 

protocols. However, the drastic decrease in overexpression of YY1 is too 

significant to be attributed to protocol variations alone. It is possible 

that hESC have a large amount of YY1 expression relative to Bj cells 

making it more difficult to overexpress YY1. In fact, qPCR cycle numbers 

confirmed this as YY1 control samples had higher YY1 expression relative 

to the Gapdh control in hESC versus BJ cells. Cycle differences were 

approximately 2-3 cycles between cell lines. 
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Turning back to the larger picture, 4 out of the 6 TFs had drastic 

increases in expression in hESC relative to dermal fibroblasts, with 

POU3F2 having the largest increase in overexpression of 10,561%. 2 of 

those 4 TFs had different endogenous expression levels between cell 

lines. NF-ΚΒ1 was higher expressed in BJ cells and ETF1 was higher 

expressed in hESC. Part of the 432% change in overexpression of NF-ΚΒ 

may be due to the fact that it is lower expressed in hESC, while ETF1 

being higher expressed in hESC should have actually limited the 

change in overexpression. Worth noting, for the three changes of 

endogenous TF expression between cell lines we observed cycle 

differences of 1-3 cycles, so this should not cancel out the overall 

increase of TF expression in hESC relative to BJ cells. The average 

change in overexpression of these 6 TFs relative to BJ cells was 

observed to be 1952%.  

 

Observing Downstream Gene Target Expression in hESC Transfected 

with 6 DiRE-Predicted TFs 

Now that it is established that all 6 DiRE-predicted TFs were 

overexpressed in hESC, we wanted to quantitate the expression of the 

associated downstream gene targets to determine if their expression 
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was differentially regulated in hESC as opposed to dermal fibroblasts. 

One advantage of pooling the 6 TFs as discussed in Chapter 3, is that 

several TFs have common downstream gene targets. Therefore, by 

analyzing the expression of one gene, multiple targets are being 

analyzed simultaneously. Table 9 displays the 6 TFs, their overexpression 

levels, and the gene targets that DiRE predicts them to regulate. There 

are 25 targets in total and genes such as YWHAE are predicted to be 

regulated by 4 out of the 6 TFs.  

 

From our analysis of 12 downstream genes (25 targets total), 2 

genes, CCL5 and ACTG2, were differentially expressed. Expression 

graphs of both CCL5 and ACTG2 are displayed in Figure 10. CCL5 and 

ACTG2 have p values of 0.02 and 0.01, respectively. Table 10 shows p 

values for all 12 genes analyzed in both hESC and BJ cells (data from 

Chapter 2). While 2 genes (CCL5 and ACTG2) were differentially 

expressed in hESC, 3 genes (CCL5, YWHAE, and IL18) were differentially 

expressed in the original dermal fibroblast experiment with the same 6 

TFs. This change in the expression of the 12 gene targets could be due 

to the two different cell lines, or the pooling of the 6 TFs. Additionally, 

between both cell line-specific data sets, only one TF, CCL5, was 

consistently statistically significant and differentially expressed. Also, 
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between both data sets, only CCL5 had an average change in 

expression greater than 50%. The 5-fold increase of expression of CCL5 

when treated with NF-ΚΒ1 was consistent between both data sets with 

an average increase in gene expression of 427%.  

 

Measuring SynoR-predicted Downstream Gene Target Expression of 

hESC Transfected with Endogenous Transcriptions Factors 

From our initial transfection and analysis of SynoR gene targets 

(Chapter 3) we concluded that 1/3 targets were statistically significant 

and differentially expressed and that 2/3 targets had an average 

change in gene expression greater than 50%. While these initial results 

are promising, we wanted to look at more SynoR predicted targets to 

continue to validate the method for reprogramming and observe if 

changes in gene expression were noticed in hESC relative to dermal 

fibroblasts.  

 

Table 11 contains the 4 TFs (NF-ΚΒ1, ETF1, VDR, POU3F2) used for 

our SynoR analysis, their overexpression level in our hESC experiment, 

and their SynoR-predicted downstream gene targets. While only 2 TFs 

(NF-ΚΒ1 and VDR) were differentially expressed in scleroderma 

microarray data, we provided SynoR analysis for 2 additional TFs (ETF1 
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and POU3F2) to increase the numbers of targets analyzed for validation 

purposes. It is worth noting that overexpression of NF-κβ1 and VDR is 

consistent with the scleroderma phenotype, since they are both high 

expressed in scleroderma diseased samples. Also provided for each 

SynoR target, is the locus where the TFBS cluster exists, the length in 

base pairs of the cluster, and number of TFBSs in the cluster. The same 

selection criteria used in Chapter 3 for selection of targets was used for 

these targets. The one exception is that two targets have 4 TFBSs in the 

cluster, instead of 5 or more.  

 

P values for all ten targets measured are provided, except for 

DIVA, which was expressed too low in hESC to analyze. 3 out of 9 

targets analyzed displayed statistically significant changes in expression 

and their expression graphs are shown in Figure 11. The three 

differentially expressed targets were QSER1, ARID2, and BCAS3. The 

statistically significant change in gene expression of BCAS3 was 

consistent with our earlier findings (Chapter 3) however, BCAS3 and 

KREMEN2 did not have an average change in gene expression greater 

than 50% in the hESC experiment like they did in the earlier dermal 

fibroblasts experiment. The cause of the decrease in expression of these 

two targets is unknown, since both NF-ΚΒ1 and POU3F2 were 
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significantly more overexpressed in hESC relative to the BJ cell 

experiment. It is possible that the gene expression differences in hESC 

are great enough to affect the previous relationships observed before 

between NF-ΚΒ1 and POU3F2 and their SynoR-predicted targets. The 

only gene target that had an average change in expression of 50% or 

greater in this experiment was PCDH7, which had an increase in gene 

expression relative to control of 63%. From the data we gathered with 

this hESC experiment, SynoR appears to be somewhat predictive for 

downstream targets as 3 out of 9 targets analyzed were differentially 

expressed. 

 

Immunohistochemistry: Confirming the Expression of TF Protein 

In order for a TF factor to regulate a downstream gene target, 

the TF gene needs to be transcribed into messenger RNA (mRNA), then 

that mRNA needs to be translated into a TF protein, and the TF protein 

physically binds to its downstream gene and recruits various factors to 

begin transcription, so that the gene may be expressed. For our analysis 

of gene expression via qPCR, mRNA transcripts are isolated and 

measured to detect levels of gene expression. To confirm that observed 

changes in gene expression are due to the overexpression of TFs, 

Immunohistochemistry was performed to detect expression of TF 
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protein. 2 out of the 7 transcription factors transfected in this experiment 

were used for immunohistochemistry. After the hESC transfection was 

complete, all hESC were stained for NF-ΚΒ1 and VDR. 

 

Figure 12 provides ultraviolet (UV) light microscopy images of 

both control hESC (A and C) and hESC treated with 7 TFs (B and D) 

stained with primary antibodies (Abs) specific for NF-ΚΒ1 and VDR 

protein. All four images are also stained for 4',6-diamidino-2-

phenylindole (DAPI), which is a fluorescent stain that binds strongly to 

DNA. The DAPI stain is used to stain the nucleus of the hESC and it can 

be used a reference point when localizing NF-ΚΒ and VDR expression. 

The top two images, A and B, are stained green for NF-ΚΒ protein. From 

these images, it is clear that NF-ΚΒ protein is being made and 

overexpressed in the TF overexpression sample (B), relative to control 

(A). Also, images C and D are hESC stained for VDR protein in red. 

Similarly to NF-ΚΒ, VDR protein is clearly being produced and 

overexpressed in the 7 TF treated sample (D) relative to control sample 

(C) where little or no VDR protein is visualized. From these 

immunofluorescent images, it is clear that NF-ΚΒ and VDR protein was 

produced in hESC after transfection with overexpression vectors. 



83 

 

DISCUSSION: 

The purpose of the set of experiments contained in Chapter 4 

was to examine the effect Human embryonic stem cells would have on 

our ability to alter gene expression using DiRE-predicted TFs and SynoR-

predicted downstream targets. Our hypothesis was that hESC, which 

are in an earlier cellular state and have a less condensed chromatin 

structure, would be more “open” to reprogramming or the alteration of 

endogenous gene expression. All 7 of the TFs transfected into hESC 

were able to be overexpressed. In fact, when the overexpression of the 

TFs in hESC was compared to their overexpression in dermal fibroblasts, 

we found that the TFs had an average change in overexpression of 

1952% in hESC. These initial TF expression results support the tested 

hypothesis that hESC are more “open” than somatic cells, or they allow 

for greater expression of external TFs. 

 

In this hESC experiment, 2 TFs (CCL5 and ACTG2) out of 12 were 

differentially expressed and statistically significant. Of those two, only 

CCL5 had an average change in expression greater than 50%, which 

was consistent with previous results. Worth noting, ACTG2 had an 

increase in expression, which is consistent with the scleroderma 

phenotype. When comparing the gene expression of these 12 targets 
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with earlier results in dermal fibroblasts, the only target between the two 

cell lines to yield the same observations in expression was CCL5. It is 

possible that the difference in expression is due to the change in cell 

type. Of the 12 targets analyzed, 3 were differentially expressed in the 

dermal fibroblast single TF experiment and 2 in the hESC experiment. 

Unfortunately, there is not a large enough variation in differentially 

expressed targets between the two datasets to determine statistical 

significance or say that hESC allow for greater alteration of gene 

expression. To do this, a larger sample size is needed and more targets 

would need to be analyzed. 

 

Additional analysis of the SynoR approach that was previously 

tested in Chapter 3 was performed. This approach is interesting 

because it can allow one to overexpress TFs differentially expressed 

between scleroderma and normal skin phenotypes and predict 

downstream targets that they regulate. This approach provides an 

alternative to DiRE and our first attempt at reprogramming in that it is 

possible that the 15 endogenous differentially express TFs are 

responsible for the change in phenotype as opposed to the 150 other 

differentially expressed genes. This approach gives a method to predict 

the 15 TF’s downstream targets. The two endogenous differentially 
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expressed TFs between scleroderma and normal patient samples that 

were overexpressed were NF-ΚΒ and VDR. Both of these TFs were 

increased in scleroderma samples. Hence, when overexpressed, the 

downstream gene targets they regulate might have a role in the 

scleroderma disease phenotype. To increase our number of SynoR 

targets for analysis, we also examined SynoR targets of ETF1 and 

POU3F2 TFs.  

 

3 (QSER1, ARID2, and BCAS3) out of the 9 SynoR gene targets 

were differentially expressed and statistically significant. An average 

change in expression greater than 50% was only observed in PCDH7, 

which was not statistically significant. The differential expression of 

BCAS3 was consistent with earlier finding in Chapter 3, but it did not 

have a change in expression greater than 50% as observed in the 

earlier experiment. KREMEN2 also did not exhibit this increase. This may 

be due to the “pooling effect” of the TFs that was observed in Chapter 

3. It is impossible to say whether the number of TFBSs plays a role in 

differential expression of gene targets as there was a large variation (4, 

9, and 10). On the other hand, the length of base pairs of the TFBS 

cluster may have some correlation with gene regulation. In the 

differentially expressed targets, their cluster lengths were 34, 46, and 62 
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base pairs. The ratio in differential expression was 1:3 SynoR gene 

targets in both the BJ and hESC experiments, thus it is impossible to say 

whether hESC had a significant effect on our attempt to alter gene 

expression. Nonetheless, our results indicate that SynoR can be used to 

predict downstream gene targets for endogenous TFs. 
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Figure 8: hESC Transfected with emGFP: 48 hours vs. 24 hours 
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Figure 9: Overexpression Levels of 7 Transcription Factors in hESC 
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Table 8: Comparing Overexpression Levels of TFs in BJ Cells and hESC 

T.F. BJ O.E. Level hESC O.E. Level ∆ O.E. 

EGR2 3022X 2700x 89% 

YY1 455X 49x* 11% 

ELF1 150X 276x 184% 

NF-ΚΒ1 140X* 605x 432% 

POU3F2 38X 4013x 10561% 

ETF1 15X 65x* 433% 

Average Change in Overexpression in hESC Relative to BJ= 1952% 

* TF had higher endogenous expression in that cell line 
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Table 9: Quantitative Overexpression Levels and 25 Downstream Targets of 6 DiRE TFs 

T.F. O.E. Level 25 Downstream Targets 

EGR2 2700x NF-ΚΒ1, PARP1, THBS1, RELA, YWHAE 

YY1 49x IL18, CYC1, PPP2R2A, OAZ1, YWHAE, ACTG2 

ELF1 276x RELA, NF-ΚΒ1 

NF-ΚΒ1 605x PSME2, CCL5, YWHAE, RELA, PPP2R2A 

POU3F2 4013x TOP1, ACTG2  

ETF1 65x YWHAE, OAZ1, NF-ΚΒ1, PPP2R2A, THSB1 
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Figure 10: Gene Expression of 2 Differentially Expressed Targets Downstream of DiRE TFs in hESC 
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Table 10: Comparing Gene Expression of Downstream Targets for DiRE TFs in BJ Cells and hESC 

DiRE Target 

Measured 
hESC p-Value 50% ∆ 

BJ p-

Value 
50% ∆ 

YWHAE 0.59   0.01  ↑   

OAZ1 0.23   0.50   

PPP2R2A 0.90   0.08   

PSME2 0.74   0.20   

CCL5 0.02 ↑ √ 0.01 ↑ √ 

PARP1 0.06   0.30   

THBS1 0.83   0.59   

IL18 0.92   0.03 ↓   

CYC1 0.58   0.29   

RELA 0.40   0.89   

TOP1 0.41   0.07   

ACTG2 0.01 ↑   0.67   

↑↓ Up/Down ∆ in Expression, ↑↓ Consistent with Scleroderma 
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Table 11: Summary of Endogenous TFs and SynoR-predicted Targets 

TF 
O.E. 

Level 

SynoR 

Target 
Locus Length # TFBSs p-Value 50% ∆ 

NF-ΚΒ1 605x 

KREMEN2 chr16:2953432-2953522 91 bps 13 0.12   
QSER1 chr11:32870262-32870323 62 bps 4 0.05   
PRKCD chr3:53169917-53169964 48 bps 4 0.64   

VDR 8453x 

DIVA chr3:15180666-15180843 
178 
bps 10 

LOW LOW 

GAA chr17:75708463-75708921 
459 
bps 13 

0.37   

PCDH7 chr4:30330973-30331093 
121 
bps 5 

0.07 √ 

ETF1 65x 

ARID2 chr12:44409718-44409751 34 bps 10 0.02   
PCDH1 chr5:141238160-141238196 37 bps 11 0.97   
NOVA2 chr19:51168551-51168581 31 bps 5 0.08   

POU3F2 4013x BCAS3 chr17:56108782-56108827 46 bps 9 0.01   
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Figure 11: 3 Differentially Expressed SynoR-predicted Downstream Targets 
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Figure 12: Immunohistochemistry of hESC Transfected with 7TFs: Staining 

for NFKB and VDR Transcription Factor Proteins 
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CHAPTER 5 

Conclusion 
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The overall goal of this project was to induce a diseased/non-

diseased gene expression pattern. Our hypothesis is that TFs may be 

sufficient to reprogram a diseased/non-diseased gene expression 

pattern and possibly a diseased phenotype. In order to do this, our aims 

were to: 1) Find what TFs are predicted to interact with scleroderma-

specific genes, 2) Discover whether single or multiple TFs are sufficient to 

induce scleroderma phenotypes, and 3) Find the downstream targets 

of TFs that are differentially expressed in scleroderma and fibrotic cells. 

 

DiRE-predicted TFs were able to Induce Scleroderma-specific Gene 

Expression 

Our initial attempt to induce scleroderma-specific gene 

expression proved to be successful. We were successful at 

overexpressing our DiRE-predicted TFs in dermal fibroblasts via 

electroporation. By transfecting 10 individual DiRE-predicted 

transcription factors into dermal fibroblasts, we were able to 

differentially express 8 out of 36 total downstream targets. However, out 

of 8 of those targets, only CCL5 had an average increase in expression 

greater than 50%. This suggests that NF-κβ1 overexpression is able to 

evoke a greater change in gene expression of CCL5 relative to the 

other TF-gene target relationships. Differential gene expression 
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determined by a p-value less than or equal to 0.05 was the standard of 

comparison, since that was the basis of our analysis of the original 

microarray data. Previous studies have shown that relatively small 

changes in gene expression are powerful enough to evoke significant 

phenotypic changes. 

 

In an effort to increase the efficiency of our ability to induce 

scleroderma-specific gene expression, we pooled all 10 DiRE-predicted 

TFs to see if we can observe combinatorial or synergistic effects. In BJ 

cells, 1/5 or 20% of targets were differentially expressed. This target was 

CCL5, which was consistent with our previous findings. From this data, 

we did not observe a significant difference between pooling TFs and 

introducing them into cells individually.  

 

Additionally, we decided to test the 10 pooled TFs in 

keratinocytes to test whether or not the scleroderma gene expression 

pattern was cell-type specific. While fibroblasts are the major cell type 

of the dermis, keratinocytes occupy 95% of cells in the epidermis layer. 

Thus, it is plausible to assume that keratinocytes may have a function 

role in scleroderma disease gene expression patterns. After pooling and 

introducing the 10 TFs into the HaCaT (keratinocyte) cell line we did not 
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observe a change in CCL5 gene expression. Alternatively, changes in 

PPP2R2A and RELA gene expression were observed. While a statistically 

significant change in PPP2R2A gene expression was measured in initial 

dermal fibroblast single TF experiments, the same was not observed for 

RELA. This preliminary data suggest that multiple cell types may be 

responsible for the overall scleroderma gene expression pattern. In 

other words, in order to reprogram the scleroderma phenotype with TFs, 

multiple cell types may be required. 

 

SynoR Downstream Targets were Differentially Expressed by 

Endogenous Upstream Regulators (TFs) 

In further efforts to increase our ability to induce gene targets 

defined by the scleroderma phenotype, we employed a tool called 

SynoR, which predicts downstream regulators of endogenous TFs, or TFs 

we know to be differentially expressed between normal and 

scleroderma disease phenotypes. SynoR specifically analyzes the genes 

with regulatory elements that contain clusters of TFBSs. Initial analysis 

proved to be promising with 1 out of 3 targets differentially expressed. 

We continued this analysis of SynoR adding 7 targets in Chapter 4. Of 

the 9 targets analyzed in Chapter 4, 3 targets or 33% were differentially 

expressed. The only target that had an average 50% increase in gene 
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expression was BCAS3 when POU3F2 was overexpressed from an 

individual transfection (non-pooled method). The increased ratio of 

differentially expressed targets relative to the DiRE method (33% versus 

22%) suggests that predicting targets based upon using sequence 

information for clustering of TFBSs as opposed to a single TFBS is more 

predictive. 

 

Meta Analysis of SynoR Using PPARα Microarray Data 

With the initial SynoR results we analyzed, the bioinformatic 

approach appeared to be predictive. To further validate SynoR, we 

used raw microarray data to complete a meta analysis to determine 

the overall accuracy of SynoR. Raw microarray expression data was 

collected from Finck et al. Two sets of expression data were analyzed. 

One set was gene expression data for a wild-type mouse and the other 

was data from a transgenic mouse overexpressing PPARα. First we 

sorted out the differentially expressed genes between these two 

datasets and found 2,200 such genes. Next, we conducted a SynoR 

analysis of PPARα and found a total of 274 TFBS clusters. The 274 genes 

containing PPARα clusters were then sorted out of the 2,200 

differentially expressed genes and analyzed. 
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Of the 274 SynoR targets for PPARα, the differentially expressed 

genes are displayed in Table 12. The genes are sorted by the region in 

which the cluster is located (promoter, UTR, coding sequence, intron) 

and the expression ratio of PPARα overexpressing mice relative to wild-

type is displayed. The majority of the differentially expressed genes are 

upregulated. The portion of the 274 SynoR targets that had clusters 

within intergenic regions was excluded, because expression data 

specifically for these intergenic regions was not on the chip or included 

in the raw data file. Table 13 displays the results of our global validation 

of SynoR sorted by regions in which the clusters were located. Of the 

210 SynoR targets analyzed (excluding 64 intergenic targets), 203 or 

96.67% of the SynoR targets were on the chip and had gene expression 

data. “Hit” means that the SynoR target was differentially expressed, 

while “miss” means that it was not. Of the 203 SynoR targets we had 

gene expression data for, 27 or 13.3% of SynoR-predicted targets were 

in fact differentially expressed. Therefore, this global analysis of gene 

expression data proved SynoR to be predictable or for every 20 SynoR 

targets looked at, about 3 of them should prove to be differentially 

expressed. 
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Inducing Gene Expression with TFs in Human Embryonic Stem Cells 

The latest set of experiments carried out in this project involved 

human embryonic stem cells (hESC). Our hypothesis was that hESC 

would be more amenable to inducing gene expression via TFs due to 

their relative open chromatin structure when compared to mature 

somatic cells. After initial analysis of TF overexpression, we observed an 

average increase of 1952% in TF overexpression in hESC relative to BJ 

fibroblasts. Several epigenetic factors such as chromatin modifications 

and DNA methylation may have played a role in this increase in 

overexpression. This increase also provides support for our hypothesis 

that hESC would have fewer roadblocks to reprogramming. Of the 12 

downstream targets analyzed in hESC, 2 of them were differentially 

expressed. 3 of those same targets were differentially expressed in 

dermal fibroblasts. From this data, we can not say with certainty that 

hESC are significantly better than dermal fibroblasts for reprogramming. 

More data would need to be analyzed. Interestingly, only one 

differentially expressed target (CCL5) was in common between the two 

sets. It is possible that this end result is due to the difference in gene 

expression between the two cells types. Besides the increase in TF 

overexpression, no significant effect on our ability to induce 
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scleroderma-specific gene expression was observed in hESC in this 

experiment. 

 

Experimental Conclusions 

The three aims we set out to explore were: 1) Predict TFs, or 

upstream regulators of scleroderma disease gene targets, 2) Determine 

whether multiple or single TFs are required to induce scleroderma gene 

expression, and 3) Predict downstream gene targets of TFs differentially 

expressed in scleroderma. Our goal with this project was to quantify our 

ability to induce scleroderma gene expression. Overall, the introduction 

of predicted TFs into dermal fibroblasts, keratinocytes, and hES cell 

types were successful in inducing scleroderma expressed genes.  

However, the efficiency is poor with 1 out of 5 or approximately 20% of 

targets being differentially expressed. Also, primary sequence analysis 

of clusters of TFBSs (cTFBS) using SynoR is more predictive than just 

evolution or conservation-based approaches to predict relationships in 

gene expression. 

 

More importantly, this project represents a novel approach to 

treating or even curing disease by reprogramming the cellular state of 

a disease cell. These are the first steps taken to identify the TFs 
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necessary to reprogram the scleroderma phenotype. The hope of 

stably converting a disease phenotype back to a normal phenotype is 

of major interest to our lab. For future research, multiple cell types 

should be interrogated as they showed different capacities to 

overexpress TFs and activate downstream targets. Additionally, 

increasing the length of the experiment would allow scientists to look for 

phenotypic changes that could possibly be caused by these changes 

in gene expression. 

 

Every disease is represented by a change in phenotype. That 

subsequent change in phenotype is a result of a change in gene 

expression. Therefore, as gene expression prediction methods continue 

to improve, the possibility of curing disease by changing gene 

expression increases and becomes closer to a reality. 
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Methods: 

Global Analysis of PPARa Microarray Expression Data 

The GEO dataset GDS2289 was analyzed and wilde-type mice 

were compared to PPARα-overexpressing mice. Genes with differential 

expression with a p-value less than or equal to 0.1 were selected. This 

selection method resulted in 2200 such genes. These genes were then 

searched for in the results of our SynoR PPARα analysis of downstream 

gene targets. From there, were provided statistics on how many of the 

SynoR predicted downstream genes were differentially expressed 

sorted by region that the cTFBS existed in. 
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Table 12: List of Differentially Expressed Genes in SynoR Meta Analysis 

Region Gene 
Expression 

Ratio 

Promoter Lyl1 1.11 

Promoter Tceal3 0.87 

Promoter Cckbr 1.26 

UTR Mll2 1.23 

UTR Phkg2 1.10 

UTR Igf2 1.15 

Cds Adcy6 1.02 

Cds C77623///Hip1r 1.07 

Cds Slc7a4 1.07 

Cds Tmcc2 0.94 

Cds Pcbp4 0.92 

Cds Ces3 1.32 

Cds Ces3 1.31 

Cds D10Ertd610e 1.04 

Cds Chuk 1.13 

Cds Pclo 1.06 

Intron Sgpl1 1.07 

Intron Slc12a7 1.09 

Intron Bcl9l 1.04 

Intron Ttyh2 1.45 

Intron Tm9sf2 0.89 

Intron Ptprs 0.91 

Intron Sh3gl3 0.85 

Intron Ebf2 1.12 

Intron Wnt4 1.12 

Intron Dock9 1.07 

Intron 3110079O15Rik 1.02 
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Table 13: Summary of SynoR Meta Analysis by Region 

  Promoter UTR Cds Intron Total Targets 

Hits 3 3 10 11 27 

Misses 12 17 98 49 176 

Total 15 20 108 60 203 

Hit % 20.00% 15.00% 9.26% 18.33% 13.30% 

On Chip 15 20 108 60 203 

Not On Chip 1 1 3 2 7 

% On Chip 93.75% 95.24% 97.30% 96.77% 96.67% 

       

Total 16 21 111 62 210 
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