- Main
A general model of forager search: Adaptive encounter-conditional heuristics outperform Lévy flights in the search for patchily distributed prey
Published Web Location
https://doi.org/10.1016/j.jtbi.2018.07.031Abstract
A theoretical and applied literature has suggested that foragers search using Lévy flights, since Lévy flights can maximize the efficiency of search in the absence of information on the location of randomly distributed prey. Foragers, however, often have available to them at least some information about the distribution of prey, gained either through evolved mechanisms, experience and memory, or social transmission of information. As such, we might expect selection for heuristics that make use of such information to further improve the efficiency of random search. Here we present a general model of random search behavior that includes as special cases: area-restricted search, correlated random walks, Brownian search, and Lévy flights. This generative model allows foragers to adjust search parameters based on encounter-conditional and other heuristics. Using a simulation model, we demonstrate the efficiency gains of these search heuristics, and illustrate the resulting differences in the distributions of step-size and heading angle change they imply, relative to Lévy flights. We conclude by presenting a statistical model that can be fit to empirical data and a set of testable, quantitative predictions that contrast our model of adaptive search with the Lévy flight foraging hypothesis.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-