Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices

Abstract

This Methods/Protocols article is intended for materials scientists interested in performing machine learning-centered research. We cover broad guidelines and best practices regarding the obtaining and treatment of data, feature engineering, model training, validation, evaluation and comparison, popular repositories for materials data and benchmarking data sets, model and architecture sharing, and finally publication. In addition, we include interactive Jupyter notebooks with example Python code to demonstrate some of the concepts, workflows, and best practices discussed. Overall, the data-driven methods and machine learning workflows and considerations are presented in a simple way, allowing interested readers to more intelligently guide their machine learning research using the suggested references, best practices, and their own materials domain expertise.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View