Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Overexpression of Cystine/Glutamate Antiporter xCT Correlates with Nutrient Flexibility and ZEB1 Expression in Highly Clonogenic Glioblastoma Stem-like Cells (GSCs)

Abstract

Cancer stem-like cells mediate tumor initiation, progression, and therapy resistance; however, their identification and selective eradication remain challenging. Herein, we analyze the metabolic dependencies of glioblastoma stem-like cells (GSCs) with high-resolution proton nuclear magnetic resonance (1H-NMR) spectroscopy. We stratify our in vitro GSC models into two subtypes primarily based on their relative amount of glutamine in relationship to glutamate (Gln/Glu). Gln/GluHigh GSCs were found to be resistant to glutamine deprivation, whereas Gln/GluLow GSCs respond with significantly decreased in vitro clonogenicity and impaired cell growth. The starvation resistance appeared to be mediated by an increased expression of the glutamate/cystine antiporter SLC7A11/xCT and efficient cellular clearance of reactive oxygen species (ROS). Moreover, we were able to directly correlate xCT-dependent starvation resistance and high Gln/Glu ratios with in vitro clonogenicity, since targeted differentiation of GSCs with bone morphogenic protein 4 (BMP4) impaired xCT expression, decreased the Gln/Glu ratio, and restored the sensitivity to glutamine starvation. Moreover, significantly reduced levels of the oncometabolites lactate (Lac), phosphocholine (PC), total choline (tCho), myo-inositol (Myo-I), and glycine (Gly) were observed in differentiated GSCs. Furthermore, we found a strong association between high Gln/Glu ratios and increased expression of Zinc finger E-box-binding homeobox 1 (ZEB1) and xCT in primary GBM tumor tissues. Our analyses suggest that the inhibition of xCT represents a potential therapeutic target in glioblastoma; thus, we could further extend its importance in GSC biology and stress responses. We also propose that monitoring of the intracellular Gln/Glu ratio can be used to predict nutrient stress resistance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View