- Main
Frequency-specific SSFP for hyperpolarized 13C metabolic imaging at 14.1 T
Published Web Location
https://doi.org/10.1016/j.mri.2012.06.037Abstract
Metabolic imaging of hyperpolarized [1-(13)C] pyruvate co-polarized with [(13)C]urea by dynamic nuclear polarization with rapid dissolution is a promising new method for assessing tumor metabolism and perfusion simultaneously in vivo. Novel pulse sequences are required to enable dynamic imaging of multiple (13)C spectral lines with high spatiotemporal resolution. The goal of this study was to investigate a new frequency-specific approach for rapid metabolic imaging of multiple (13)C resonances using the spectral selectivity of steady-state free precession pulse (SSFP) trains. Methods developed in simulations were implemented in a dynamic frequency-cycled balanced SSFP pulse sequence on a 14.1-T animal magnetic resonance imaging scanner. This acquisition was tested in thermal and hyperpolarized phantom imaging studies and in a transgenic mouse with prostate cancer.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-