Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Role of endothelial cells in antihyperalgesia induced by a triptan and β-blocker

Abstract

While blood vessels have long been implicated in diverse pain syndromes (e.g., migraine headache, angina pectoris, vasculitis, and Raynaud's syndrome), underlying mechanisms remain to be elucidated. Recent evidence supports a contribution of the vascular endothelium in endothelin-1-induced hyperalgesia, and its enhancement by repeated mechanical stimulation; a phenomenon referred to as stimulus-induced enhancement of (endothelin) hyperalgesia (SIEH). SIEH is thought to be mediated by release of ATP from endothelial cells, to act on P2X3 receptors on nociceptors. In the present study we evaluated the ability of another vasoactive hyperalgesic agent, epinephrine, to induce endothelial cell-dependent hyperalgesia and SIEH. We found that epinephrine also produces hyperalgesia and SIEH. Both P2X3 receptor antagonists, A317491 and octoxynol-9, which attenuate endothelial cell function, eliminated SIEH without affecting epinephrine hyperalgesia. We further evaluated the hypothesis that members of two important classes of drugs used to treat migraine headache, whose receptors are present in endothelial cells - the triptans and β blockers - have a vascular component to their anti-hyperalgesic action. For this, we tested the effect of ICI-118,551, a β₂-adrenergic receptor antagonist and sumatriptan, an agonist at 5-HT1B and 5-HT₁D receptors, on nociceptive effects of endothelin and epinephrine. ICI-118,551 inhibited endothelin SIEH, and attenuated epinephrine hyperalgesia and SIEH. Sumatriptan inhibited epinephrine SIEH and inhibited endothelin hyperalgesia and SIEH, while having no effect on epinephrine hyperalgesia or the hyperalgesia induced by a prototypical direct-acting inflammatory mediator, prostaglandin E₂. These results support the suggestion that triptans and β-blockers interact with the endothelial cell component of the blood vessel to produce anti-hyperalgesia.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View