Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism.

Abstract

We demonstrate that cortical interneurons derived from ventral eminences, including the caudal ganglionic eminence, undergo programmed cell death. Moreover, with the exception of VIP interneurons, this occurs in a manner that is activity-dependent. In addition, we demonstrate that, within interneurons, Calcineurin, a calcium-dependent protein phosphatase, plays a critical role in sequentially linking activity to maturation (E15-P5) and survival (P5-P20). Specifically, embryonic inactivation of Calcineurin results in a failure of interneurons to morphologically mature and prevents them from undergoing apoptosis. By contrast, early postnatal inactivation of Calcineurin increases apoptosis. We conclude that Calcineurin serves a dual role of promoting first the differentiation of interneurons and, subsequently, their survival.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View