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Abstract

Causes and consequences of unsteady crustal magma transport

by

Leif Karlstrom

Doctor of Philosophy in Earth and Planetary Science

University of California, Berkeley

Professor Michael Manga, Chair

Magma transport pathways through Earth’s crust span 12–15 orders of magnitude in
time and space, with unsteadiness at all scales. However emergent organization of this sys-
tem is widespread, recorded by spatial loci of volcanism at the surface and large–scale, rapid
outpourings of magma throughout the geologic record. This thesis explores several mecha-
nisms for the organization and time evolution of magma transport, from the deep crust to
the surface. A primary focus (Chapters 2–5) is the filling, stability and drainage of magma
chambers, structures which function both as reservoirs feeding individual volcanic eruptions
and as stalling points in the crust where magma accumulates and differentiation occurs. We
show that magma chambers may dictate the spatio–temporal organization of magma rising
through crust (Chapters 2–3), control the surface eruptive progression of extreme mantle
melting events (Chapter 4), and actively set the size of calderas that form during shallow,
crystal rich eruptions (Chapter 5). Each of these chapters explores variations on a hypoth-
esis: interactions between magma chamber stresses and the rheology of surrounding crustal
materials evolve during magma transport and this unsteady process helps determine the
magnitude, location, and timing of surface eruptions. The last part of this thesis (Chapters
6–7) focuses on surface transport processes, the meandering of melt channels on the surface
of glaciers and lava flows. We show that the meandering instability is a generic feature
of flow over an erodable substrate, despite significantly different fluid characteristics and
erosion mechanics.
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Chapter 1

Introduction

Volcanism is the surface manifestation of gradual and continuous upwelling and melting of
Earth’s convecting mantle. Beginning in the earliest stages of planetary evolution, volcanism
will continue until heat generated through accretion, differentiation and radioactive decay is
dissipated for billions of years. Remarkably, although melt production may be steady over
geologically significant time intervals (∼10–100 million years), eruptions are episodic and
spatially variable over time scales as small as decades. Where and when volcanism occurs
depends on a complex interplay between the processes of melt transport, and external forces
related to tectonics, climate perturbations, tides, and seismicity. Although challenging,
deducing these key controls is a critical issue in Earth Science. Over time scales of human
lives, understanding the recurrence and longevity of eruptions is crucial for assessing hazards
and for characterizing the significant effects of volcanic forcing on climate. Over geologic
time, the distribution and rate of volcanism largely govern atmospheric composition and
the growth of continents. Volcanic events are implicated in the largest mass extinctions of
life on Earth, but also provided a locus of heat and nutrients for the first life. Continual
volcanic cycling thus provides a fundamental and direct coupling between the solid Earth,
atmosphere, hydrosphere and biosphere.

Melting of mantle rocks drives surface volcanism through two primary endogenic mecha-
nisms,1) the lowering of melting temperatures due to volatile addition, and 2) decompression
[Turcotte and Schubert, 2002]. These mechanisms provide a basic framework for understand-
ing where volcanic activity occurs on Earth. Subduction of oceanic crust introduces volatiles
to mantle rocks, and volcanoes occur above subducted plates. Upwelling of hot and/or chemi-
cally distinct mantle induces anomalously rapid decompression and thus melting. Seismically
imaged structures underlying oceanic volcanic centers such as Hawaii and Galapagos [e.g.,
Villagomez et al., 2007], as well as intra–continental “hotspots” such as Yellowstone [Smith
et al., 2009] provide strong evidence that upwelling is ongoing under these regions. The ther-
mochemical mantle convection responsible for transporting heat from within the Earth to
the surface is thus our basic paradigm for understanding magma generation on geologic time
scales. However, melting of mantle rocks is only the first step leading to surface volcanism.

Melting occurs first at grain boundaries [e.g. Cooper and Kohlstedt, 1984, Holtzman
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et al., 2003], and buoyant magma must segregate from the mantle matrix before it can
ascend. Primary melt ascent rate is thus limited by its ability to segregate and accumulate.
Initial porosity is low but grows as melting progresses, and two phase buoyancy instabilities
may enhance or suppress melting as porous flow is superimposed on larger scale upwellings
[Hernlund et al., 2008]. This is the first of many occasions where unsteady processes may
modulate a more steady base transport state. Once segregated, reactive and thermal erosion
may channelize rising melts, creating porosity waves that enhance ascent rates and discretize
previously homogeneous porous flow [e.g., McKenzie, 1984, Spiegelman, 1993].

Magmas must ascend through the Mohorovic̆ić discontinuity, a sharp chemical transition
that defines the base of the crust. The density decrease associated with this interface may
cause magmas to stall, mix, and mingle with surrounding rocks [Hildreth and Moorbath,
1988]. Accumulations of melt reach large volumes at these depths [Cox, 1993], and discrete
batches of melt generated lower in the transport network may accrue enough overpressure
to actively fracture surrounding rocks, creating dikes that propagate on elastic timescales
and drain a broad source region. Dike propagation occurs while driving pressures remain
high (another source of unsteadiness in transport) [Rubin, 1995b], perpendicular to the least
principle stress in the crust. They are guided upward by a decreasing lithostatic load, remote
stresses due to tectonics and other local overpressurized sources. Dikes become the most
efficient transport mechanism through an increasingly inhospitable thermal and mechanical
environment in the upper crust, and frozen dikes are pervasive in exposed mid to lower
crustal terrains (Figure 1.1, [Dumond et al., 2007]).

Crustal rocks transition from ductile to brittle on geologic timescales as the cool surface
environment is approached and hydrothermal circulation modulates the geothermal temper-
ature gradient. Depending on the rheological structure of the crust [Bürgmann and Dresen,
2008], background stresses associated with tectonics take over from those associated with
magma transport as the principle stress guide for dikes. Stalled magmas will chemically
evolve more rapidly in the shallow crust, be affected by surface loads, and reach depths at
which water, the primary volatile dissolved in magmas, begins to exsolve. Ascent through
upper portions of the crust depends critically on supply, as the input of enthalpy necessary
to traverse this cool thermal environment increases. Magmatism at this stage integrates
deeper unsteady transport with forcing on scales relevant to surface processes: loading and
unloading from glaciers [e.g. Jellinek et al., 2004] and landscape evolution [Woods et al.,
2002], triggering by earthquakes (static as well as perhaps dynamic stress changes) [Manga
and Brodsky, 2006], and hydrothermal interactions [Reid, 2011]. These processes impose
fluctuations in the thermomechanical background of the crust, and thus affect pathways and
speed of magma ascent.

Background forcing also affects the properties of the magma itself. Stalled magma may
partially crystallize or lose volatiles, dramatically increasing its viscosity and allowing for
magma mixing during transit as fluid batches with different ascent speeds interact. A
tremendous variety of magma transport processes are possible, as documented by frozen
and uplifted crustal sections (Figure 1.2) [e.g, Miller and Paterson, 2001], surface eruption
structures [e.g., Hildreth, 2007], and indirect observation (geodetic and seismic measurements
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[e.g. Anderson et al., 2010]) of active eruptions. At the surface, monogenetic cones represent
transient batches of magma with little interaction or modification by the crust, while evolved
volcanic centers such as stratovolcanoes require variable and evolving reservoirs that capture
some batches of rising magma but not others [Hildreth, 2007]. Caldera–forming eruptions
are sourced from long–lived, high crystallinity shallow magma storage zones that are con-
structed over 100s of thousands to millions of years [Bacon and Lanphere, 2006], well mixed
and thermally buffered to high crystal volume fractions [Huber et al., 2009] in a locked state
before rapid mobilization and catastrophic evacuation during eruption.

Modern eruptions provide the clearest window into magma transport processes, even
though all but the surface emplacement is hidden. Remote measurements provide con-
straints on active subsurface transport, while a record of ascent (rate as well as pressure,
temperature, and composition) on eruptive scales is recorded by textural features of erupted
magmas [e.g., Houghton et al., 2004], crystallization in the conduit [e.g., Blundy and Cash-
man, 2005], and bubbles locked in frozen melt [e.g., Manga et al., 1998]. Historical eruptions
provide analogs to all but the largest volume (“super–eruptions”) and hottest (kimberlitic)
frozen eruptions. These modern examples demonstrate that eruption style reflects magma
ascent rate and viscosity [Gonnermann and Manga, 2007]. Transitions from Plinian erup-
tions to lava dome formation, and from explosive to effusive basaltic eruptions, can be largely
predicted on the basis of these two parameters (Figure 1.3 and [Gonnermann and Manga,
2011]). Such seemingly simple control parameters disguise a much more complex story: both
ascent rate and magma viscosity reflect the integration of deeper magma transport processes.
Considering that unsteadiness in volcanic eruptions may occur on minute timescales, the full
range of processes reflected in a given eruption spans up to 12–15 orders of magnitude in time
(eruption unsteadiness to mantle melting over millions of years) and space (microscale grain
boundary melting to dike transport over thousands of kilometers). This range is estimated
for all relevant magma transport processes in Table 1.1.

A mechanistic synthesis of magma transport processes covering the range of important
spatiotemporal scales is not yet possible. The regime diagram for eruption dynamics (Figure
1.3) is an important part of this synthesis, and further refinements will bring transitions
in eruption style into clearer focus, but prediction of deeper controls on crustal magma
transport is still an unrealized goal in volcanology. Such controls allow exploration of magma
transport dynamics as a function of the eruptive control parameters, magma ascent rate (e.g.,
what triggers eruptions and determines maximum basal pressures for conduit flow?) and
viscosity (e.g., what deep processes are responsible for the observed multimodal distribution
of arc magma compositions?). It may also be possible to invert active eruption processes for
transport history, or back out transport dynamics from the eruptive record.

This thesis provides several steps towards understanding magma transport (Table 1.1).
Focusing primarily on magma storage processes, the first three chapters identify generic con-
trols on the filling and stability of magma chambers and with application to spacing of arc
volcanoes and the duration of Large Igneous Province “main phase” eruptions. These appli-
cations are not intended to be exhaustive, but rather represent the potential for synthesizing
models for unsteady magma transport with geologic data. Chapter four studies the drainage
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Figure 1.1: Examples of dike networks at a variety of scales in exposed mid to lower crustal
terrains [Dufek et al., 2011]. a) Pegmatite dikes cross cutting gneisses on the 670-m-high
Painted Wall, Black Canyon of the Gunnison CO. b) Orthogonal dike network of granite
and pegmatite cross cutting grandiorite in Upper Granite Gorge, Grand Canyon AZ. c) Four
generations of granite dikes in Lower Granite Gorge, Grand Canyon AZ.

of shallow magma chambers during caldera forming eruptions, coupling multiphase conduit
flow with magma chamber deformation with application to the geologic record of caldera
forming eruptions. Chapters five and six focus on surface transport processes, unsteady
channelization instabilities (meander formation) in supraglacial streams and lava channels.
The modeling in these chapters identifies common fluid/solid instabilities as the origin for
meandering channels in very different environments. This work demonstrates that, while
the mechanics of mass transfer may differ significantly across geologic settings, instabilities
that determine larger scale structures may be largely insensitive to mechanism in some cases.
Identifying such features in subsurface magma transport is a promising direction for future
work.
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Figure 1.2: Examples of magmatic plumbing and their associated volcanic surface expres-
sions. a) Monogenetic cone from the San Francisco volcanic field, AZ and cartoon of simple
dike feeder. b) Evolved stratovolcoanes in the Cascade arc (Three Sisters, OR), with implied
storage at one or more locations within the crust. c) The caldera at Crater Lake National
Park, OR, an example of eruption from a shallow and extensive magma chamber requiring
prolonged assembly.
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Unsteady process Time scales Spatial scales References
Melting of mantle matrix 1010 − 1013 s 10−3 − 10−6 m [1]

Melt extraction from mantle matrix 1010 − 1013 s 104 − 105 m [2,3]
Melt channelization 107 − 109 s 10−1 − 102 m [4,5]

Dike formation ? 100 − 102 m [6]
∗Dike propagation/interaction 104 − 108 s 100 − 104 m [7]
∗Magma chamber formation ? −1013 s 102 − 105 m [8,9]
∗Magma chamber drainage 103 − 108 s 102 − 105 m [10,11]

∗Conduit flow 100 − 104 s 10−2 − 104 m [12]
∗Surface eruption/transport 100 − 104 s 100 − 104 m [13,14]

Background forcing:
Tectonics 1012 − 1013 s 104 − 105 m [15]

∗Edifice construction 107 − 1012 s 103 − 104 m [16]
Climate 107 − 1012 s 104 − 105 m [17]

Geomorphic unloading 103 − 1010 s 102 − 104 m [18]
Basal loading (from mantle) 1011 − 1013 s 104 − 105 m [19]

Table 1.1: Processes occurring during magma transport from source region to surface, with
the range of temporal and spatial scales over which these processes are unsteady. Stars
indicate topics addressed in this work. References are [1] Holtzman et al. [2003], [2] Hernlund
et al. [2008], [3] citeMarsh:1974aa, [4] McKenzie [1984], [5] Spiegelman [1993], [6] Rubin
[1995b], [7] Ito and Martel [2002], [8] Pinel and Jaupart [2003], [9] Karlstrom et al. [2009],
[10] Jellinek and DePaolo [2003], [11] Karlstrom et al. [2010a], [12] Gonnermann and Manga
[2007], [13] Griffiths [2000], [14] Gurioli et al. [2003], [15] Gottsmann et al. [2009], [16] Muller
et al. [2001], [17][Huybers and Langmuir, 2009], [18] Jellinek et al. [2004], [19] Farnetani and
Richards [1994]
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Figure 1.3: Regimes of eruption styles and associated conduit processes, as a function of
magma viscosity and ascent rate [Gonnermann and Manga, 2011].
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Chapter 2

Organization of volcanic plumbing
through magmatic lensing by magma
chambers and volcanic loads

2.1 Introduction

The presence of volcanic edifices requires a focusing of magma ascending from the mantle
and lower levels of the crust. The spatial extent and processes of magma transport beneath
volcanoes that govern the discrete morphology and spacing of volcanic centers are, however,
difficult to constrain because the transport network is buried beneath the surface, and it
evolves on timescales that range from hours (volcanic eruptions [e.g., Stasuik et al., 1993,
Petcovic and Dufek, 2005]) to ∼ 106 years (crustal melt flux [e.g., Dimalanta et al., 2002,
Dufek and Bergantz, 2005]).

Melt ascending from the upper mantle must negotiate structural controls imposed by
material and rheological boundaries within the crust, as well as an increasingly cool thermal
environment, that act to slow and sometimes stall magma ascent. In addition, tectonic
stresses and near-surface faults may often play a significant and location-specific role in
the organization of volcanism [e.g., Nakamura et al., 1977, Vigneresse et al., 1999]. These
background features determine the environment through which magma migrates, and may
influence the locations of deep-seated magma chambers [e.g., Kavanagh et al., 2006] as well
as the pathways available to volcanism [e.g., Galland et al., 2007]. Within the confines of
these initial conditions, the processes of magma transport organize the volcanic plumbing
system into discrete centers that then are expressed as volcanoes on the surface. These
centers in turn affect the background state of the crust, and represent thermomechanical
anomalies that will exert increasingly long-range influence over their active lifetimes.

Two general approaches are typically followed to explain the formation and evolution
of volcanic centers. These take either a “bottom up” or “top down” perspective, whereby
processes occurring at the melt source region or at the surface dominate the organization



CHAPTER 2. ORGANIZATION OF VOLCANIC PLUMBING THROUGH
MAGMATIC LENSING BY MAGMA CHAMBERS AND VOLCANIC LOADS 9

and focusing of rising magma. Implicit in both approaches is the assumption that boundary
conditions at the top or bottom interface of the transport region dominate internal dynamics.
The “top down” models account for the effect of volcano building on the stress state in
the underlying crust [e.g., Pinel and Jaupart, 2000, Muller et al., 2001], and the role of
lithospheric flexure in the formation and subsequent organization of volcanoes [ten Brink,
1991, Hieronymus and Bercovici, 1999]. Volcano loading and subsequent flexural stresses
can have a significant effect on subsurface processes, though it is of note that all “top down”
studies to date require the presence of an initial volcano to focus magma. “Bottom up”
models [e.g., Marsh and Carmichael, 1974, Olson and Singer, 1985, Ihinger, 1995], on the
other hand, establish discrete volcanic centers much earlier in the transport network. Here,
fluid dynamic instabilities (Rayleigh-Taylor type) generate zones of enhanced melting in the
mantle source region; subsequent ascent and eruption of these melts generates edifice spacing
corresponding to the spacing of the melting zones.

There is, however, an additional possibility for the organization of a magma plumbing
system, in which localization occurs intermediate to the “top” and “bottom” regions, prior to
the first eruption. It has been recognized that individual components of the magmatic trans-
port system (dikes, chambers) can significantly alter the mechanical and thermal properties
of their surroundings [e.g., Ito and Martel, 2002, Jellinek and DePaolo, 2003, de Silva and
Gosnold, 2007]. Here we show that localization via surface or source boundary conditions
are end-member cases for the formation of volcanic centers, and that magmatic plumb-
ing systems may be actively self-organized in the subsurface through interactions between
magma chambers and dikes in addition to volcanic edifices. These focusing processes are not
mutually exclusive, nor are they necessarily part of a mechanistic hierarchy. Rather, inter-
facial, structural, and internal dynamic controls on magmatic localization form the basis of
a general physical framework for understanding volcanic centers.

We propose a new addition to this framework, and develop a simple static model of dike
focusing due to an overpressured and buoyant magma chamber beneath a free surface. This
chamber growth mechanism (hereafter referred to as “magmatic lensing”) is an effective way
to localize rising magma, and we show that it may dominate the static effects of surface
loading in many cases. Temporal evolution of the mechanical system, including thermally
induced rheological modulation of crustal stresses and chamber rupture are not considered
here, but are the subject of a companion paper [Karlstrom et al., 2009] that considers the
stability of magma chambers that grow via dike focusing. Magmatic lensing is a process that
has implications for the formation of magmatic plumbing, and extends previously proposed
ideas for the formation of discrete volcanic centers.

As a qualitative application of our model, we then show how the spacing of magma cham-
bers controlled by magmatic lensing might be used to interpret arc volcano spacing, and to
constrain chamber sizes and depths. We compile a database of spacing between discrete
Holocene stratovolcanoes around the Pacific Rim, and show that the observed average spac-
ing between centers may be produced in our model by dike-lensing magma chambers. We
are unable to uniquely constrain chamber depth or size, but show that chambers at mid to
lower crustal depths with a range of volumes fit the observational data equally well. We find
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that circum-Pacific volcano spacing is not correlated with plate convergence rate or crustal
thickness (for crust thicker than 20 km), consistent with the idea that long-term magma
storage modulates spacing. Based on our calculations and observations of Pacific Rim arc
volcanoes, we hypothesize that volcanic plumbing is a self-organizing system that evolves
to a given surface morphologic expression constrained – but not solely determined – by the
surface and source-region boundary conditions.

2.2 Methods

We model a magma chamber in two spatial dimensions as a pressurized and buoyant cylin-
drical cavity in an elastic half space [e.g., Odé, 1957, Gudmundsson, 2006], as depicted in
Figure 2.1. This model is static, in that we do not directly address dike propagation or time-
dependent stresses such as might arise from viscoelastic or yielding rheology, and we neglect
any buoyant rise of the magma chamber. However, even in the lower crust dike propagation
timescales should be shorter than both the viscoelastic relaxation timescale of the country
rock and the Stokes rise time of the chamber [Karlstrom et al., 2009], and evidence of per-
vasive diking in mid to lower crustal terrains (10-25 km depth) [e.g., Dumond et al., 2007]
provides observational support for the assumption of some elastic behavior at depth. As our
present purpose is to compare the mechanical properties of magmatic lensing to other melt
focusing proposals at a range of depths, such a simple analysis is justified. In this level of
analysis, we also neglect depth-dependent density [Grosfils, 2007], and the more complicated
chamber geometries inferred for real volcanic systems [e.g., Newman et al., 2006].

Solutions are obtained to the equations of linear elasticity by the method of stress func-
tions [Fung, 1965]. Boundary conditions at the chamber wall are:

σn = ∆P + ∆ρgR cosφ (2.1)

σt = 0 (2.2)

and at the free surface y = 0
σn = 0 (2.3)

σt = 0 (2.4)

where σn is the normal stress and σt is the tangential stress, ∆P is the chamber pressure
over lithostatic, ∆ρ is the density difference between magma and the country rock, R is the
radius of the chamber, g is gravity and r cosφ = y defines the polar coordinate system used
to write down boundary condition equation 2.1 (Figure 2.1). Using the bipolar coordinate
system [e.g., Jeffery, 1921], we obtain approximate stress functions (detailed in the Appendix)
from which displacements and deviatoric stresses may be determined. We use the convention
that positive stresses are compressive.

To evaluate the influence of a volcanic edifice for which an analytic solution is not possible,
we calculate stresses due to a chamber and a triangular surface load with the Direct Boundary
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Integral code BEMECH [Gao and Davies, 2002]. We discretize the free surface with 150
quadratic boundary elements extending 5000 times the volcano width to approximate an
infinite boundary, and use exponential node spacing near the corners of the volcanic edifice
to more accurately resolve the load; the edifice is exponentially discretized with 23 elements.
The surface satisfies the boundary conditions

σn =

{
ρbgh

(w−|x|)
w

if −w ≤ x ≤ w
0 otherwise

(2.5)

σt = 0 (2.6)

with h the height of the volcano, w its half-width, and ρb = 3000 kg/m3 an upper bound for
density (Figure 1). The circumference of the magma chamber is described by 176 uniformly
spaced quadratic boundary elements. We assume a lithostatic background stress field for the
simulations here, but do address the qualitative effects of regional deviatoric tectonic stress, a
possible scenario in many realistic circumstances [e.g., Muller et al., 2001]. Mesh refinement
does not change our results significantly, and comparison with available analytical solutions
for the case of no edifice (equations 2.19-2.21) confirms the accuracy of the method.

2.3 Magmatic Lensing

The magma chamber is supplied by melt contained in rising dikes, and represents a location
where migrating magma stalls or accumulates. We assume that dikes propagate in a direc-
tion perpendicular to the least compressive principal stress at the dike tip [e.g., Anderson,
1951]. Dikes are often modeled as two-dimensional fluid filled mode-I fractures driven by
overpressure and buoyancy [Rubin, 1995a]. Dikes propagate, in the most general sense, when
the potential energy released through propagation is sufficient to fracture rock at the crack
tip [Griffith, 1920]. This is a threshold energy criterion for propagation, and is a feature
of all “critical” dike propagation models, though so-called “sub-critical” dike propagation
[Atkinson and Meredith, 1987] may also be an important magma transport mechanism over
short distances [Chen and Jin, 2006].

We use the less general but more convenient Stress Intensity Factor formulation of Linear
Elastic Fracture Mechanics [e.g., Rubin, 1995b], from which the simplest model of a dike is
derived: a uniformly pressurized elliptical crack that propagates when the stress intensity
factor K exceeds the critical value K ≥ Kcrit = ∆Pdike

√
L . Here Kcrit is the critical Stress

Intensity Factor or facture toughness of the host rock, ∆Pdike is the dike overpressure, and L is
the length of the dike. We take Kcrit = 106 Pa m1/2 [Rubin, 1995b], with the understanding
that this value is not well constrained for crustal materials, and may vary dike to dike as
well as with depth [e.g. Atkinson and Meredith, 1987]. Therefore, the threshold stress for
dike propagation in our model is 106 Pa (but see below), and far-field deviatoric principal
stresses in excess of this value may re-orient the trajectory of a rising dike.

It should be emphasized that our threshold approach is a simplification because the
evolving stress field generated by the dike itself must be accounted for to determine the true
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propagation direction. Indeed, a detailed numerical calculation of dike propagation from
volcanic centers [Meriaux and Lister, 2002] reveals that calculation of dike trajectories solely
from the ambient stress field may be inaccurate. Nevertheless, Meriaux and Lister [2002]
show that the qualitative aspects of dike re-orientation remain unchanged, and that mag-
matic lensing effects may even be amplified when the more detailed mechanics are included.
The re-orientation of dikes has been found to be significant even when more geometrically
detailed propagation is accounted for [Muller et al., 2001], and more realistic ellipsoidal
chamber geometries [e.g., Gudmundsson, 2006] do not affect the first order stresses. Some
treatments of dike propagation neglect the strength of crustal rocks [e.g., Pinel and Jaupart,
2000], on the grounds that its contribution to the overall force balance is negligible. We note,
however, that processes occurring at the dike tip still control the propagation direction, and
that any other “critical” dike model will also contain a threshold driving stress criteria for
propagation.

Our approach is a class of parameterization that captures the physics of interest. We
expect our results to be most accurate in the limiting case when chamber stresses are much
larger than dike stresses, a situation that may be typical (see Discussion) even though dike
overpressures (determined by dike length and buoyancy) may vary. We also expect that
our choice of 1 MPa as a threshold stress for dike re-orientation is an upper bound, as the
fully coupled problem reveals that dikes may be much more easily affected by background
deviatoric stresses [Meriaux and Lister, 2002]. Our criteria for dike reorientation should thus
provide a conservative estimation of magmatic lensing.

For chambers that are significantly overpressured or buoyant with respect to regional
stresses there exists a region below the chamber inside which stresses are larger than the
critical stress of 1 MPa, and trajectories of rising dikes are focused toward the magma
chamber (Figure 2.1). We quantify this region through the notion of a “capture radius” at a
given depth below the magma chamber, measured from the center of the chamber parallel to
the free surface (Figure 2.1, 2.2.a), and defined by the distance for which chamber stresses
are large enough to affect rising dikes. Because chamber stresses fall off rapidly in magnitude
away from the chamber, this capture radius depends on the depth at which it is evaluated
(Figure 2.2.b), and we arbitrarily choose 10 km below the chamber as the depth at which
we evaluate dike capture.

2.4 Magma Chamber Overpressure

The importance of magmatic lensing depends critically on the magnitude of stresses exerted
by the magma chamber, but bounds for chamber stresses are poorly constrained. Chamber
overpressure develops through a variety of processes that include volatile exsolution, mag-
matic differentiation, melting or solidification of wall rocks, and injection of new magma into
the chamber [e.g., Tait et al., 1989, Folch and Marti, 1998, Annen and Sparks, 2002]. Of
these, the largest elastic pressures ∆P are generated through injection of largely incompress-
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ible magma through dikes or melting of wall rocks, and follow

∆P =
1

β

∆V

V
, (2.7)

where ∆V is the change in chamber volume V , and β ∼ 10−11 Pa−1 is the magma compress-
ibility [Tait et al., 1989]. Because the initial generation of melt (with ∆V = (1.1 − 1.15)V
upon melting [e.g., Rapp and Watson, 1995]) may induce enormous pressures through equa-
tion 2.7 (modulated heavily by anelastic processes such as compaction, and porosity shock
waves dues to permeability contrasts in the magma source region [e.g., Spiegelman, 1993]),
dikes that remain at high melt fraction during propagation should very often have higher
pressure than magma chambers. An upper bound on magma chamber overpressure in this
case is given by the stress at which chamber rupture occurs, resulting in a draining of magma
from the chamber, and a decrease of chamber overpressure (also following equation 2.7).

However, the mechanisms by which chamber rupture occurs are not well understood.
A number of studies [e.g., Sartoris et al., 1990] use the criterion that chamber rupture
occurs when tensile stresses at the wall of the chamber exceed the tensile strength of rocks.
This leads to maximum overpressures on the order of 1-10 MPa, for laboratory-determined
values of rock failure [Atkinson and Meredith, 1987, Gudmundsson, 1988]. This is likely an
underestimate of maximum chamber overpressure at depth, which may also be a function
of tectonic regime, as rock failure depends on confining stresses and background deviatoric
stresses. The rheology of magma chamber wall rocks will be strongly affected by prolonged
heating, and thus “critical” brittle fracture may not be the dominant mode of initial chamber
rupture. Anelastic processes, such as the viscous blunting of dike tips, and viscoelastic
relaxation of deviatoric stresses around the chamber have been shown to strongly affect
the initiation and propagation of cracks [e.g., Dragoni and Magnanensi, 1989, Jellinek and
DePaolo, 2003, Chen and Jin, 2006]. However, these processes are not straightforward to
quantify, so other criteria are currently more reliable for estimating maximum chamber
overpressures.

Thermal considerations of long-distance dike propagation by Rubin [1995a] have been
used to place bounds on pressures needed to drive a dike from magma chamber to surface
[Jellinek and DePaolo, 2003]. By balancing the elastic propagation of a dike and the gradual
solidification of dike walls, critical driving magma chamber pressures are 10-100 MPa for
a range of material properties. This critical overpressure depends on the composition and
tectonic setting of the chamber [Jellinek and DePaolo, 2003], and provides an upper bound
on the driving pressures needed for propagating dikes to overcome the geothermal gradient
(avoid freezing) between chamber and surface.

Another approach to estimating chamber overpressure comes from volcano geodesy, where
ground deformation in volcanic areas due to inflating magma chambers can be measured.
Geodetic measurements of this kind are now standard at many active volcanoes worldwide
[e.g., Massonnet et al., 1995, Pritchard and Simons, 2004, Yun et al., 2006], and provide
estimates for the theoretical chamber overpressure necessary to produce observed ground
deformation. While strongly model dependent, there are some examples which may be used
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with reasonable confidence to be representative of true chamber overpressures. In particular,
Newman et al. [2001, 2006] estimate magmatic overpressure in the Long Valley Caldera over
a several year period using a viscoelastic magma chamber model, and find that geodetic data
are well fit for overpressures in the range of 10-70 MPa, depending on the chamber model
geometry. These pressures are not an upper bound on chamber overpressure, as the Long
Valley Caldera did not erupt during the period of observation. It is of note that a purely
elastic model also fit the data but required overpressures of up to 500 MPa, several times
lithostatic pressure [Newman et al., 2001], a result that is common in studies that use solely
elastic models. Such high overpressures are unrealistic for long term deformation, but may
be possible as transient overpressure before rupture. Houlie et al. [2009] combine seismicity
and geodesy to infer a time series of magma chamber pressure at La Piton de la Fournaise
volcano that exceeds 100 MPa (and lithostatic pressure) on several occasions over a 20 year
period [Houlie et al., 2009].

We can assume, based on these observations, that magma chamber overpressure can grow
quite large, during the inflation period prior to eruption. We use 100 MPa as a large but not
unreasonable upper bound for magma chamber overpressure, and acknowledge that there is
significant uncertainty in this quantity. We also quantify the magmatic lensing mechanism for
lower magma chamber overpressure (Figure 2.7). However, as chamber inflation is to first
approximation due to influx of magma, magmatic lensing constitutes a positive feedback
(larger overpressures generated by magma influx result in a larger capture radius) that
provides a means for magma chambers to attain the largest possible overpressure. We also
note that once chamber rupture occurs and magma leaves the chamber, overpressure will
rapidly decrease according to equation 2.7.

2.5 Results

For a magmatic plumbing system containing a chamber but no surface volcanic edifice, the
capture radius at any depth may be calculated implicitly by setting the maximum deviatoric
principal stress equal to the critical stress of 1 MPa. Figures 2.3 and 2.4 show details of the
analytic solution. We observe that for overpressure in the range of 10-100 MPa and chamber
depths from 5-30 km below the surface, the capture radius is much larger than the chamber
radius (set for the purposes of illustration to 3.5 km in Figure 2.3). The capture radius may
exceed 10 times the chamber radius for overpressures under our estimation of maximum
possible overpressure (100 MPa). This suggests that magmatic lensing may be a first-order
transport process whenever an overpressured inclusion dominates the local stress field. We
also observe that the presence of a free surface has a profound effect on the magnitude of
principal stresses for shallow chambers. Whereas the stresses around a two dimensional
chamber in an infinite medium fall off as ∆P/r2 + ∆ρg/r ≈ ∆P/r2 (because overpressures
are likely several orders of magnitude larger than buoyancy effects), the stress-free boundary
acts to concentrate deviatoric principal stresses near the surface on the sides of the chamber,
and reflect these stresses below the chamber.
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Surface stress reflection has important consequences for the initiation of dikes from a
magma chamber [Pinel and Jaupart, 2003], and for shallow chambers it results in a dramatic
increase in capture radius at depth (Figures 2.3 and 2.4). The seemingly discontinuous cap-
ture radius at 5 km depth in Figure 2.3 is due to the particular choice of 1 MPa for the
threshold “critical stress” of dike capture, as well as the size of the chamber, and occurs
much more dramatically for less conservative estimates of dike capture. An expanded pa-
rameter space is represented in Figure 2.4, where two choices of critical stress are plotted as
isosurfaces, varying chamber depth and chamber radius. This figure contains the information
in Figures 2.3 and 2.2 as a subset of a higher-dimensional depiction of the parameter space.
It also summarizes important features of the analytical solution, Equations 2.19-2.21, rele-
vant to magmatic lensing. Capture radius at 10 km depth below the chamber (Figure 2.2.a)
may be directly read off of this figure by fixing chamber radius and depth, then traversing
along the distance axis from 0 km until the critical stress surface of interest is reached. This
distance is the capture radius for these parameters. For example, from Figure 2.4, a 2.5 km
radius chamber at 5 km depth has a capture radius of ∼ 10 − 15 km if the critical stress
is 1 MPa (as used in this paper, and represented by the blue isosurface), whereas it would
have a capture radius of ∼ 50 km for a critical stress of 0.2 MPa (upper orange isosurface).
In this way, the particular choice of threshold chamber stress strongly affects the capture
radius (compare blue 1 MPa isosurface to orange 0.2 MPa isosurface in Figure 2.4). For
shallow chambers, deviatoric principal stresses are concentrated in lobes on either side of the
chamber (Figure 2.4): the imposition of a stress threshold produces a seemingly discontinu-
ous increase in capture radius as chamber depth decreases and overpressure increases (e.g.,
Figure 2.3 and Figure 2.2.b ). At first glance it might appear that because of the stress
reflection, shallow chambers exert a stronger influence on rising dikes than deeper chambers
(Figure 2.4a., orange surface). However, as capture radius is a function of overpressure and
a choice of critical stress, different choices of these parameters can result in the opposite
dependence (Figure 2.4, lower blue surface and Figure 2.3).

The effect of an edifice is quantified using a triangular normal load with a density of 3000
kg/m3. We chose 2 representative triangular volcano shapes to demonstrate the effect of
edifice loading on magmatic lensing: one that is 2 km across and 1 km high, and one that
is 4 km across and 1 km high. These are not meant to fit all real volcanoes, but illustrate
concentrated versus more broadly dispersed surface loading. They are comparable to lower
density Cascade Volcanic Arc, USA, volcanoes, which are of course not triangles and not
two dimensional [Hildreth, 2007]. Figure 2.5.a shows the greatest principal deviatoric stress
field due to the edifice loading alone, along with eigenvectors depicting approximate dike
trajectories. As shown by Muller et al. [2001], a volcanic edifice alone may capture rising
dikes, because load-induced stresses decay with depth approximately as 1/r (the limiting
case of a surface line load - “Flamants solution” [Fung, 1965]).

However, the presence of a pressurized and buoyant magma chamber below an edifice
changes the overall stress landscape significantly. In this case, principal deviatoric stresses
at the top boundary of the chamber are opposite in sign to the edifice stresses and there is a
resulting cancellation: this is a fully coupled problem, and the resulting far-field stresses are
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hence different than those predicted by either limiting case. Figure 2.5 graphically illustrates
details of these mechanical interactions. Figure 2.5.c shows the greatest principal deviatoric
stress field due to a chamber and a compressive edifice load (least principal deviatoric stress
magnitudes are exactly equal but opposite in sign), a model for the stresses due to a relatively
small volcano (2 km wide by 1 km high) with a 2 km radius magma chamber beneath it. By
comparing this to the case of no edifice load (Figure 2.5.b) it is clear that, particularly in the
region between the chamber and the surface, a direct cancellation of stresses has occurred
(however, normal stresses for the case in 2.5.c do not exhibit this cancellation). In contrast,
Figure 2.5.d depicts the stresses due to the combined effects of a chamber and a tensile
edifice load. While this particular geometry does not have a direct geological interpretation,
it is meant to illustrate the force balance: deviatoric stress gradients due to the load and
chamber are in the same direction between the load and the chamber, so the magnitude
of the combined stresses in this region are larger than those of a chamber alone. It is also
interesting to note that the stress trajectories for the volcano-chamber system focus towards
the edifice and a central conduit system. This implies that surface eruptions most likely
occur from within the volcano, consistent with observations and the theoretical results of
others [Pinel and Jaupart, 2003], although the vent locations may move towards the base of
the edifice if a central conduit is not well established [Kervyn et al., 2009].

By varying chamber radius and depth with constant edifice load, overpressure and buoy-
ancy, we evaluate the capture radius of the combined chamber-edifice system for two example
volcano sizes (Figures 2.6 and 2.7). Overpressure ∆P is set to 100 MPa (except for Fig-
ure 2.7), and ∆ρ to 300 kg/m3. Principal deviatoric stresses are evaluated 10 km below the
chamber (Figure 2.2) to determine the capture radius. This allows us to evaluate the relative
importance of the surface and the edifice at different depths. For small volcanoes, edifice
loading has only a first-order lensing effect for shallow systems (< 10 km) with small magma
chambers. At a depth of 5 kilometers (Figure 2.6.a), the effect of increasing chamber size
is to reduce the capture radius, until it disappears altogether for chambers of 1 km radius
(for the smaller volcanic load). At greater depths, an edifice load acts in a similar way,
though with fading influence as chamber depth is increased. The stress cancellation of the
combined chamber-edifice system results in a decreased capture radius at depth, although
chamber lensing is often the dominant mechanism. In fact, a comparison of the edifice plus
chamber system to the chamber alone (Figure 2.6.b-.d) shows that the effect of an edifice
on the capture radius 10 km below a chamber becomes negligible at a chamber radius that
scales with depth. For these chambers, the edifice is at most a 10% effect. Finally, Figure
6.d shows that the free surface ceases to influence chambers deeper than roughly 20 km, and
the capture radius approaches that of a chamber in an infinite medium.

The relative size of the volcanic load determines the efficacy of the magma chamber to
focus dikes, even if the load alone has no direct influence. This follows from the longer
range 1/r scaling of stress magnitude with distance from the load. The transition from
edifice-dominant to chamber-dominant capture occurs at greater depths, with edifice influ-
ence reaching all the way to 20 km depth for small chambers (Figure 2.6.b-.c). Mechanical
interaction between chamber and edifice results in an increase in capture radius over the half
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space solution at 10 and 20 km depths for large chambers (> 4 km radius), while it decreases
the capture radius for smaller chambers.

The effect of magma chamber overpressure is quantified in Figure 2.7. We choose a
particular chamber depth (10 km), and vary chamber overpressure at a fixed radius to find the
capture radius 10 km below the chamber (20 km below the free surface). At this depth, only
the larger (4 km width) volcano exerts stresses over the 1 MPa threshold. These calculations
demonstrate the strongly coupled nature of the combined chamber-edifice loading, and the
importance of even small magmatic overpessure. Large chambers (> 2 km radius) strongly
affect the capture radius, and increasing chamber overpressure results in a transition from
edifice-dominated to chamber-dominated lensing. Also plotted are chambers with a smaller
(2 km width) volcano, for which only the (albeit rather unrealistic) 4 km radius chamber has
a capture radius at this depth (Figure 2.6.b), demonstrating the influence of edifice loading
on lensing even when the edifice alone cannot reorient rising melt.

Although we do not treat background stresses explicitly in the present study, regional
deviatoric stresses are common in volcanic settings. Muller et al. [2001] show that the effect
on edifice lensing of a regional deviatoric stress that increases with depth is to decrease the
capture radius. We expect a similar effect for chamber lensing. Regional tensile stresses,
such as found in extensional tectonic environments such as the Basin and Range, USA, may
be qualitatively evaluated as similar to the tensile load imposed in Figure 2.5.d. Regional
extension will concentrate deviatoric stresses vertically, and hence decrease the capture ra-
dius.

We treat cylindrical magma chambers in this study, but pressurized magma chambers
of more complicated geometries will exhibit stress concentration in regions of high curva-
ture. Seismic observations [e.g., Barker and Malone, 1991, White et al., 2008] and geodetic
inversions from active volcanic areas [e.g., Newman et al., 2006] suggest ellipsoidal magma
chambers at a few kilometers depth, and we expect enhanced lensing (for a given overpres-
sure) in the near field for ellipsoidal chambers of high aspect ratio.

2.6 Discussion

A magmatic plumbing system is a transport network composed of channels, dikes and magma
chambers that, in the case of volcanic centers, drains an area of melt to a discrete point on
the surface where it is expressed as a volcano. Except in very special cases (e.g., Hawaii
[Okubo et al., 1997]) the subsurface topology and temporal evolution of magmatic plumbing
are difficult to observe and are poorly known. There remains considerable debate about
the general extent to which intrusive and extrusive igneous processes are connected [e.g.,
Bachmann et al., 2007], and whether plutonic scale magma chambers exist at all [e.g., Glazner
et al., 2008]. However, even if such large chambers may not necessarily exist at high melt
fraction for extended periods of time, the existence of calderas indicates that shallow high
melt fraction, extensive, and continuous bodies of magma exist at least transiently. Moreover,
long-lived magma storage is often invoked to explain mineral crystallization ages in arc
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[e.g., Cooper and Reid, 2003] and continental [e.g., Simon and Reid, 2005] settings, and
lower crustal melt accumulation and transport has been documented in a number of arc
sections (e.g, Talkeetna [Hacker et al., 2008] and Kohistan [Jagoutz et al., 2007], where
concentrically zoned mafic and ultramafic intrusive rocks are suggestive of a large deep
chamber). Pressurization, and hence magmatic lensing, should occur whenever an inclusion
of ascending melt stalls or accumulates.

We have shown that dike focusing by components of the plumbing system can be first-
order processes and that, while not unique or necessarily mutually exclusive, these effects
should be considered viable mechanisms for volcanic center localization. “Bottom up” mod-
els, based on fluid [e.g., Marsh and Carmichael, 1974] or elastic [Vogt, 1974] instability
originating from the melting source region are difficult to test, in part because fundamental
aspects of the “bottom” of the magmatic plumbing system are still poorly understood. A
“top down” perspective is more straightforward to relate to real volcanic systems because
the shape and size of volcanic loads are known, and faults can be mapped at the Earth’s
surface. Previous work has demonstrated that edifice building may affect the volume and
compositional evolution of erupted lavas [e.g., Pinel and Jaupart, 2000, Ban and Yamamoto,
2002], and may affect the trajectories of rising dikes [Muller et al., 2001]. Elastic plate flex-
ure due to edifice loading [e.g., ten Brink, 1991, Hieronymus and Bercovici, 1999] provides a
mechanism for volcano spacing as well as dike focusing, although as noted by Muller et al.
[2001], it is most effective when the volcano half-width is greater than 1/4 times the elastic
plate thickness.

However, a solely top-down view of magmatic transport process and organization must
still reconcile localization with the need for an initial load. And the presence of calderas
whose size dwarfs the pre-existing volcanoes [e.g., Lipman, 1984] suggests that edifice loading
or shallow structural control alone cannot serve to concentrate these prodigious melt bodies.
Fluid instability-driven models [e.g., Marsh and Carmichael, 1974, Olson and Singer, 1985]
take the perspective that localization occurs near the magma source region, however this class
of models must reconcile a timescale problem relating diapir ascent directly to volcanism,
which occurs over a different range of timescales and rheologies [e.g., Canon-Tapia and
Walker, 2004]. Still, the presence of diapiric melt instabilities cannot be ruled out, and recent
tomographic images of the mantle wedge do reveal interesting large-scale upper mantle low
seismic velocity structures beneath arc volcanoes in the Japan Trench [Tamura et al., 2002].
Seismic imaging is a promising means of defining active magmatic structures in the crust,
and has been successful particularly at shallow (generally < 10 km) depths where it can be
corroborated with independent petrologic evidence [e.g. Auger et al., 2001, Scaillet et al.,
2008]. Yet deeper magmatic systems remain difficult to observe and interpret [Lees, 2007].

We suggest that discrete volcanic centers may also be organized between the source and
the surface, through the internal dynamics of magma transport. Several authors have re-
cently begun to explore this possibility, and shown that particular components of a magmatic
system (dikes, magma chambers) can co-evolve to simultaneously structure and mechanically
stabilize the system [e.g., Ito and Martel, 2002, Jellinek and DePaolo, 2003]. This perspec-
tive is in some ways a compromise between the “top down” and “bottom up” models, in
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that features of both fit into the present framework as end member cases, but it provides a
way for maturing magma plumbing to actively modulate the crustal environment over the
lifetime of melt supply.

2.7 Spacing of volcanic centers around the Pacific

Rim

The magmatic lensing mechanism provides a natural lengthscale for the spacing of volcanic
centers: the capture radius of the chamber (Figure 2.1). However, as demonstrated in
Figure 2.3, the depth at which the capture radius is evaluated (or equivalently, the distance
below the chamber from which dikes may be focused) and the depth of the magma chamber
beneath the free surface both affect this lengthscale. As rheological and material interfaces
provide a natural location for the formation of large magma chambers [e.g., Kavanagh et al.,
2006], we hypothesize that for volcanic systems that develop large magma reservoirs, the
spacing of volcanoes may be controlled by the capture radius of a magma chamber at a mid
to lower crustal structural discontinuity, such as the Mohorovic̆ić discontinuity (Moho) or
the brittle-ductile transition. We compile and analyze a database of volcanoes to test this
hypothesis below, noting that there are other plausible alternative hypotheses for chamber
depth under arc volcanoes that could be treated in a similar way [e.g., Pinel and Jaupart,
2000]. At this stage, we are merely interested in testing whether a simple geometry for
arc plumbing systems results in an internally consistent model prediction in the magmatic
lensing framework, fully realizing that other localization processes operate in reality.

The spacing of volcanoes on the Earth’s surface has been used for decades to compare
with models for magmatic plumbing [Marsh and Carmichael, 1974, Vogt, 1974, Mohr and
Wood, 1976, ten Brink, 1991, de Bremond d’Ars et al., 1995, Muller et al., 2001], but the
scatter in spacing is large and it is difficult in many cases to define a single volcanic center
from which to base spacing measurements. Indeed, based on this scatter, there exists the
opinion that simple measures of volcanic spacing do not support idealized transport theories
[e.g., de Bremond d’Ars et al., 1995, Hildreth, 2007]. Some studies of volcano spacing try
to circumvent the natural variability in volcano spacing by focusing on particular localities,
so that regional differences in style and geometry of tectonics might be avoided. However,
the continued development of several relevant worldwide geophysical databases provides the
opportunity to compare volcanic systems on a global scale, such that it is possible to look for
generic features of volcanic processes at increasing levels of detail [e.g., Hughes and Mahood,
2008].

We use the volcano database of the Smithsonian Institute’s Global Volcanism Program
[Siebert, 2002], and select stratovolcanoes around the circum-Pacific volcanic belt that clearly
correspond to a single center as a proxy for volcanic systems that likely reflect magmatic
storage over their lifetimes [e.g., Cooper and Reid, 2003]. Because we hypothesize that
volcanic plumbing is self-organized in the subsurface, we use only Holocene volcanoes as an
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estimation of recently active volcanic centers. Stratovolcanoes alone are used in an attempt
to include volcanic centers that experience roughly the same dynamic evolution and that
may have reasonably long-lived magma chambers. Extinct centers and the extinct volcanoes
above them are not considered, but should not contribute significantly to the organization
of subsequent systems, provided magma chambers develop beneath the Holocene volcanoes.
By hypothesizing the presence of deep storage beneath arc volcanoes, we are assuming that
shallow reservoirs do not contribute significantly to volcano spacing; these assumptions define
an upper bound on lensing-induced spacing.

We employ stringent criteria for choosing data points within the catalogued volcanoes
in the Smithsonian database. We follow the general selection method of de Bremond d’Ars
et al. [1995], who performed a similar analysis on an earlier version of this database. Details
of the selection process may be found in de Bremond d’Ars et al. [1995] and we provide
only a brief summary of our approach. By examining each potential volcanic center, we
exclude those that either 1) correspond to the same geographic “center” as another volcano
(i.e., are part of the same edifice or edifice complex, which may form after the initial edifice
load is established [Kervyn et al., 2009]) or 2) are sufficiently close to other convergent
margins that complicated tectonic stresses are likely (i.e., multiple trenches within a few
tens of kilometers, or volcanoes that are significant outliers from the trench axis). We do not
consider any volcanoes in the South Pacific because of criteria (2), and 27 listed Holocene
stratovolcanoes in other locations are excluded by criteria (1) and (2). We included some
arc volcanoes not classified as stratovolcanoes (submarine volcanoes in the Mariana Arc
[Fryer, 1996]). These volcanoes were included to populate our database in areas with thin
crust, and each included point was checked to ensure that it is a discrete, recently active
volcanic center. This leaves 341 volcanoes in the American Cordillera, Kamchatka and
Japan. Details of all volcanoes, included and excluded, are provided in the supplementary
data. We calculate volcano spacing by finding the spherical arclength between all points in
our database with the Haversine Formula. We then run a minimization algorithm to find
the nearest neighbor to each volcano. This is an approximation to the more rigorous spacing
analysis of de Bremond d’Ars et al. [1995], who calculate spacing via a coordinate system
local to each arc. We find similar results, and hence do not consider their approach necessary
here.

With this spacing data, we use the CRUST 2.0 global crustal model (http://mahi.ucsd.edu/
Gabi/rem.html) to find the crustal thickness (including sediment) beneath each volcano. The
resolution of this model is fairly low at 2x2 degrees, but it is useful nonetheless as it picks
out broad-scale regional variability in crustal thickness. The largest model crustal thickness
used in this study is 70 km in the Chilean Arc, and the smallest is 6.57 km in the Mariana
Arc, encompassing the range of crustal thicknesses found on Earth.

To facilitate visualization of the resulting plot of crustal thickness versus spacing, we
bin data points according to crustal thickness, in 10 km bins. Different choices of bin size
maintain similar average spacing. The resulting average spacing for each bin along with its
standard deviation are shown in Figure 2.8, along with a histogram of the datapoints in each
bin. We find that average volcano spacing is 31- 43 km in crust thicker than ∼ 20 km and
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is wider, 56.6 ± 31.7 km, for crustal thicknesses less than ∼ 20 km. It appears, despite the
large variance, that there is no significant correlation between crustal thickness and volcano
spacing for crust thicker than 20 km, and that for thinner crust there are hints of an anti
correlation (Figure 2.8). Our finding is in contrast to a similar study of volcanoes in the
East African Rift Zone [Mohr and Wood, 1976], that found a positive correlation between
spacing and lithospheric (rather than crustal) thickness. However we note that Mohr and
Wood [1976] include data from all Tertiary volcanoes, as well as calderas and other classes
of volcanic edifice, which we excluded from our analysis.

These observations, while exhibiting large variability, are generally consistent with our
model. Hypothesizing in this case that the primary magma reservoir for arc volcanoes lies
at the Moho [e.g. Kavanagh et al., 2006], the parameters that vary most between arcs are
the convergence rate, which likely controls melt production rate [e.g., DeMets et al., 1990,
Davies and Bickle, 1991], and crustal thickness. However, based on other studies [e.g.,
de Bremond d’Ars et al., 1995] and our own calculations, there is no obvious correlation
between plate velocities and arc volcano spacing. Such an observation is consistent with the
presence of long-term magma storage in arcs, and that magma transport is heavily modulated
subsequent to melt generation. Muller et al. [2001] find a rough linear trend between volcano
size and spacing in the Cascadia arc, and suggest that this supports “top down” focusing.
We do not discount the possibility that edifice loading affects spacing, but note that edifice
size is influenced by eruption volumes and frequency, which may also be related to magma
chamber size and magmatic lensing. Additionally, Muller et al. [2001] use volcanoes of all
types in their analysis, while we restrict ourselves to volcanoes active in the Holocene.

As to the relationship between crustal thickness and volcano spacing, Figure 2.6 implies
that below ∼ 20 km depth, the presence of a free surface (or an edifice load) has a negligible
effect on capture radius. This is what we observe in Figure 2.8, where spacing is largely
insensitive to increasing crustal thickness for bins greater than ∼ 20 km. At shallow depths,
it is possible that the increase in apparent volcano spacing is a result of discontinuous stress
“reflection” from the free surface (Figure 2.4), and similar arguments would imply a general
anti correlation between the depth of magmatic lensing and crustal thickness in arcs. How-
ever, a number of complicating factors make this direct comparison more tenuous. As noted
by Fryer [1996], the distribution of volcanism in the Mariana arc appears to be controlled
by faults relating to the processes and geometry of subduction. In such shallow systems,
we expect that such features exert dominant control on the organization of the plumbing
system. Tectonically-induced structural control on shallow features of magmatic systems is
likely important in other arcs as well, such as Cascadia [Hildreth, 2007]. However, discrete
centers are still observed along strike of these faults, and it is possible that focusing due to
magma chambers and volcanic loads operates in conjunction with tectonics to produce the
local variability in volcano spacing we observe.

With the understanding, then, that our or any idealized model cannot hope to capture the
variability in Figure 2.8, we are nonetheless interested in calculating the spacing implied by
the magma lensing model (with no edifice load). Model predictions that fit the observational
data are non-unique, as there is a trade-off between chamber size and overpressure for a given
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result. To produce a capture radius of ∼ 15 − 20 km at depths greater than ∼ 20 km, a
1.5 km radius magma chamber at the Moho would need to have 100 MPa of overpressure,
while a 4 km radius chamber needs 20 MPa. Our observations and calculations are thus self-
consistent, resulting in a reasonable range of values for both chamber radius and overpressure
to produce the observed mean volcano spacing.

2.8 Conclusion

As has been recognized in both field-based and statistical studies of volcano spacing in arcs,
there is little support for the idealized view of arc volcanoes as single or double chains
of evenly-spaced edifices. However, the existence and distribution of volcanoes as primary
surface expressions of terrestrial magmatism requires explaination. Our calculations suggest
a mechanism by which magma chambers can organize and modulate transport processes
within the crust. This magmatic lensing should be considered an extension of the proposed
focusing of rising dikes by volcanic edifices, and it is an independently operating mechanism
within the initial confines of local structures and tectonics; we have shown that magma
chamber lensing of dikes is more effective than edifice lensing in many cases. While the
maximum capture radius of an edifice alone (in an isotropic background stress field) is
on the order of 10-20 times the edifice size [Muller et al., 2001], the capture radius of a
magma chamber alone is greater or equal in magnitude for realistic chamber overpressures.
Shallow magma chambers and long-lived, high volume reservoirs should dominate mechanical
organization of the system. Further, we have shown that the combined stresses of a chamber
and an edifice are strongly coupled, and that in fact the presence of an edifice acts to reduce
the capture radius of the system when the dimensions of the chamber and edifice are the
same order of magnitude.

It has been suggested [e.g., Pinel and Jaupart, 2000] that these coupled systems form
due to edifice loading, which creates a density trap at shallow depths below the edifice. Such
chambers do not resolve the question of initial volcanic center discretization, but may provide
a stabilizing feedback to the spacing of the system once it is established. Discrete magmatic
centers may form before a volcanic edifice is built, however, if a deeper chamber forms prior
to the first surface eruption. It seems plausible that in fact multiple chambers exist within a
given plumbing system, set by the various rheological boundaries and structures that exist
between the source region and the surface, stabilized by the internal lensing dynamics. The
apparent dichotomy between small closely spaced centers and larger widely spaced edifices
that has been observed in some arcs (e.g., Cascadia [Hildreth, 2007] and the Central Andes
[Savant and de Silva, 2005]) may in this light reflect the interaction of tectonics and magmatic
lensing at different levels within the crust.

Systems that operate via magmatic lensing, particularly if multi-level magma storage
occurs, should sample magmas of potentially diverse composition. These chambers could
then function as places of magma homogenization similar to the proposed MASH zones of
the lower crust [e.g. Hildreth and Moorbath, 1988]. Erupted lavas in these systems would
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then represent the integrated hybridized upwelling magmatic signal from a broad region of
the crust.

Magma chambers need not be present under all volcanoes, especially sites (often as-
sociated with oceanic islands) that more directly sample primitive magmas, and in these
environments it may be that surface loading controls the focusing of rising magma into dis-
crete centers [Hieronymus and Bercovici, 1999]. But a broad array of volcanological settings
do require magma storage prior to eruption, and in these cases we suggest that magma
chambers play an organizational role in the formation of volcanic centers. The subsequent
longevity and stability of the center may also be governed by magma chamber dynamics
[Jellinek and DePaolo, 2003] resulting from the combined interaction of thermally induced
rheological evolution of the country rock, melt supply, and chamber depth [Karlstrom et al.,
2009], which in turn depend on tectonic environment.

Finally, we note that pressurized dikes exhibit a focusing behavior similar to the magma
chambers presented here [Ito and Martel, 2002, O’Neill et al., 2007], and so may be expected
to play a role in developing plumbing systems. However, despite a range of interesting dike
interactions [Ito and Martel, 2002], in the presence of a larger background stress (such as a
large magma chamber or volcano), these effects will be heavily damped. Dike interactions,
and the smaller scale stress-induced re-orientation of channelized melt, may be most impor-
tant where far-field loads are not present, and may be responsible for the creation of sizeable
magma chambers.

Lensing of rising melt by the components of a magmatic plumbing system such as dikes,
chambers and volcanic edifices is a concise theoretical framework for understanding active
localization of volcanic activity on Earth’s surface. The structure of the plumbing system,
and which of the above dominates lensing, should depend on tectonic environment, struc-
tural controls and magma supply rate, and hence vary from place to place. It is likely that
edifice morphology, lava composition, and erupted volumes are also a strong function of
the subsurface topology; a better characterization of these plumbing systems is certainly
warranted to further explore this possibility. However, we suggest that magmatic lensing
plays an important role in the set of processes that govern volcanic plumbing, and provides
a mechanism that, once established, may evolve to modulate structural anisotropy and in-
homogeneity in the crust. In this way, it provides a means of affecting regional tectonics and
sustaining long-lived, multi-level magmatic systems.

2.9 Appendix

Solutions to the equations of linear elasticity in two dimensions may be found by the method
of stress functions [Fung, 1965] whereby the equilibrium equations are satisfied by a scalar
function χ satisfying the biharmonic equation:

∇4χ = 0 (2.8)
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and the appropriate boundary conditions. With this function stresses, in a two dimensional
orthogonal coordinate system in which the coefficients of the metric are equal, are given by

σ11 = h
∂

∂q2

(
h
∂χ

∂q2

)
− h ∂h

∂q1

∂χ

∂q1

(2.9)

σ22 = h
∂

∂q1

(
h
∂χ

∂q1

)
− h ∂h

∂q2

∂χ

∂q2

(2.10)

σ12 = −h∂
2(hχ)

∂q1∂q2

+ hχ
∂2h

∂q1∂q2

, (2.11)

where q1 and q2 are spatial coordinates, and h is the coefficient of the metric [Love, 1944].
We use the bipolar coordinate system, given in terms of cartesian coordinates by the

complex mapping [e.g. Jeffery, 1921, Pinel and Jaupart, 2000]

x+ iy =
k(sinhα + i sin β)

coshα− cos β
. (2.12)

Here α and β are spatial coordinates; curves of constant α and β trace orthogonally inter-
secting circles, i =

√
−1, and k is a dimensional constant equal to one half the distance

between the two foci of the coordinate system, curves of constant α [Jeffery, 1921]. In this
coordinate system, the problem of a circular cavity in a half space is naturally posed: the
cavity and the free surface are given by α = α0 and α = 0. The radius of the cavity is then

R = k csch(α0), (2.13)

and the straight-line distance from the free surface to the center of the cavity is

d = k tanh (α0/2). (2.14)

Boundary conditions (equations 2.1-2.4) are now given by

σαα|α=α0 = ∆P + ∆ρgy = ∆P + ∆ρgk

(
1 + 2

∞∑
n=1

e−nα0 cos (nβ)

)
, (2.15)

σαβ|α=α0 = σαα|α=0 = σαβ|α=0 = 0. (2.16)

Stress functions that satisfy equation 2.8 and these boundary conditions take the general
form

χ =
∞∑
n=0

fn(α) cos (nβ). (2.17)

We find that a three term expansion of this sum captures the details; the contribution of
higher order terms is small. Therefore, we use the following approximate stress function:



CHAPTER 2. ORGANIZATION OF VOLCANIC PLUMBING THROUGH
MAGMATIC LENSING BY MAGMA CHAMBERS AND VOLCANIC LOADS 25

χ = A1αk +
1

h
(B1 (cosh (2α)− 1) + C1 sinh (2α)) cos (β) + (2.18)

1

h
(A2 (cosh (3α)− cosh (α)) +B2(sinh (3α)− 3 sinh (α))) cos (2β)),

where h = k−1(coshα − cos β) and the An and Bn are constants evaluated to satisfy the
boundary conditions. After doing so, the final stress components are:

σαα(α, β) = e−3α0

(
sinh (α)
sinh (α0)

)2
(e3α0(∆P + k∆ρg) + csch(α0)(− k∆ρg cos (3β)

(cosh (α)− cosh (α− 2α0) + sinh (α) + 7 sinh (α− 2α0))+
k∆ρg cos (2β)(2 + 3 cosh (2α)− 3 cosh (2(α− α0))− 2 cosh (2α0)+
15 sinh (2α0) + 21 sinh (2(α− α0))− 14 sinh (2α0))− eα0 cos (β)
((∆P + 10k∆ρg) cosh (α− 3α0) + k∆ρg(cosh (α− α0)−
11 cosh (α + α0) + 30 cosh (α0) sinh (α) + 8(sinh (α− 3α0)−
2 cosh (α) sinh (α0)))−∆P (cosh (α− 3α0) + sinh (α− 3α0)+
sinh (α + α0))))),

(2.19)

σββ(α, β) = 1
4
e−3α0csch2(α0)(−2e3α0(∆P + k∆ρg)(1 + cosh (2α))+

2e−2(α+α0)(−9e2α0k∆ρg − 11e4α0k∆ρg + e6α0(∆P + k∆ρg)+
e2α(−1 + e2α0)(k∆ρg(3 + 4e2α0 + e4α0) + ∆Pe4α0)+

e4α(k∆ρg(9 + 12e(2α0) − 2e4α0) + ∆Pe4α0)) cos (β)
(

cosh (α)
sinh (α0)

)
−

e−2(2α+α0) cos (2β)csch(α0)(e2α0(−6− 18e2α − e4α + 24e6α+
9e8α)k∆ρg + 2e2α+6α0(∆P + 2k∆ρg)− 2e4α0(k∆ρg(6 + 11e2α−
2e4α + 2e6α) + e6α∆P ) + 6e6αk∆ρg(3 + cosh (2α) + 2 sinh (2α)))−
k∆ρg cos (3β)csch(α0)(cosh (α + 2α0) + 15 sinh (α)− 25 sinh (3α)+
7(2 sinh (α− 2α0)− 5 sinh (3α− 2α0) + sinh (α + 2α0)))),

(2.20)

σαβ(α, β) = −1
2
e−7α0(1 + e4α0)(cos (β)− cosh (α))csch3(α0)sech(2α0) sin (β)

sinh (α)(e−α+6α0(∆P + k∆ρg)− 6(1 + 3e2α)k∆ρg cos (β)− e4α0

(k∆ρg(−32 cos (β) cosh2 (α) + sinh (α)(3− 16 cos (β) sinh (α))+
sinh (α)∆P ) + cosh (α)(∆P + k∆ρg(1 + 48 cos (β) sinh (α))))−
2e2α0k∆ρg(cos (β)− 3 sinh (α) + 3 cos (β)(cosh (2α) + 5 sinh (2α)))).

(2.21)
Deviatoric stresses, from which the conclusions in the text are based, follow from the

tensor equation
σdev = σ − tr(σ), (2.22)

and principal stresses are eigenvalues of the corresponding component matrix.
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Figure 2.1: Geometry of the model problem. A circular magma chamber, overpressured
and buoyant with respect to its surroundings, lies beneath a volcano sitting on an otherwise
free surface. Chamber stresses focus rising dikes from a region defined by the magnitude of
principal deviatoric stresses around the chamber. The “capture radius” of the chamber is
the horizontal extent of this region, defined at a given depth below the chamber.
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Figure 2.2: (a) Contours of least compressive deviatoric principal stress around a 2.5 km
radius chamber at 5 km depth below the surface. ∆P = 100 MPa, and ∆ρ = 300 kg/m3. The
region in which dikes may be affected by chamber stresses is shown with a thick grey contour.
This region defines the “capture radius,” which is shown at 10 km below the chamber. (b)
Capture radius as a function of chamber overpressure, for the geometry depicted in (a).
Note that capture radius depends on depth below the chamber, and that (for this example)
depths of < 2.5 km below the chamber experience a discontinuous increase in capture radius
(see text). A smaller threshold stress (here set to 1 MPa) will result in a significantly larger
capture radius.
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Figure 2.3: Capture radius as a function of overpressure for a chamber with no edifice load.
Chamber radius is set to 3.5 km, and buoyancy to ∆ρ = 300 kg/m3. The capture radius is
evaluated 10 km below the center of the chamber (see Figure 2.2), for five example depths.
The discontinuity present for the 5 km depth chamber is a result of this particular choice of
chamber radius, and is not present for chamber radii < 3 km. See Figure 2.4 for details of
a larger parameter space, and the text for discussion of this surface reflection of deviatoric
stresses.
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Figure 2.4: Isosurfaces of greatest principal deviatoric stress from equations 2.19-2.21, to
illustrate how varying chamber size and depth affects the capture radius 10 km below the
chamber. The upper orange surface corresponds to 0.2 MPa, and the lower blue surface
to 1 MPa, representing different theoretical choices of threshold deviatoric stress needed to
focus rising dikes. Axes are chamber depth, chamber radius, and horizontal (x-coordinate in
Figure 2.1) distance from the chamber center. Holding chamber depth and radius constant,
the chamber’s capture radius may be found by traversing from 0 to one of the isosurfaces
and reading off the horizontal distance at which this occurs. Note the increase in capture
radius for large shallow chambers (‘lobes’ on the blue and orange surfaces), and the effect of
smaller threshold stresses for dike capture.
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Figure 2.5: Numerical calculations of tensile deviatoric principal stresses in a 10 km x 10 km
area just below the surface. (a) A triangular edifice load with a width of 2 km and height of
1 km on a free surface. Contoured are tensile deviatoric principal stresses (eigenvalues), and
selected stress trajectories (eigenvectors) of deviatoric compressional principal stress. (b) A
pressurized and buoyant chamber (shaded white for visualization) under a free surface, with
no edifice load. Chamber radius is 2 km, depth is 5 km, ∆P = 100 MPa and ∆ρ = 300
kg/m3. Contours and stress trajectories are the same as in part (a). (c) Chamber with
the edifice of part (a). There is a cancelation of deviatoric stresses above the chamber in
this case. (d) Chamber with tensile ‘edifice’ load. Here the stress gradients are in the same
direction, resulting in amplified stresses and longer range focusing.
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Figure 2.6: Capture radius of the combined chamber and edifice system, evaluated 10 km
below the chamber, at four depths. Chamber overpressure is set to 100 MPa, and buoyancy
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Figure 2.7: Capture radius of the combined chamber and edifice system 10 km below the
chamber, varying magma chamber overpressure. Chamber depth is set to 10 km, and ∆ρ =
300 kg/m3. Curves represent chambers of different radii, with two examples of surface
volcano loading: a 4 km wide volcano (solid curves), and a 2 km wide volcano (dashed
curve). Note from Figure 2.6.b that only 4 km radius chambers have a capture radius
at this depth. Plotted for reference is the capture radius of the larger volcano load alone
at this depth (25 km below the surface). The smaller load alone does not affect dikes at
this depth. The strongly coupled nature of this system is observed for a range of magma
chamber overpressure, as is the transition from edifice-dominated to chamber-dominated
lensing. Deeper chambers will dominate lensing to a greater degree.
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Figure 2.8: Volcano spacing plotted versus crustal thickness for the circum-Pacific Rim
volcano database described in the text. Total number of entries is 341. Individual volcano
pairs are binned according to crustal thickness (shown in the histogram), then averaged to
produce the spacing data points shown. Error bars show one Standard Deviation. Right
hand scale goes with the histogram, and left hand scale with the average spacing data. The
minimum number of entries in a bin is 9 (50-60 km).
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Chapter 3

Magma chamber stability in arc and
continental crust

3.1 Introduction

Magma transport within the crust is a fundamental and poorly constrained component
of volcanism. It provides the only physical link between melting processes in the mantle
and volcanic eruptions, and is responsible in large part for the assemblage of its own sub-
strate - both oceanic and continental crust - through the emplacement and solidification of
magma chambers, dikes, and sills. Crustal magma chambers are of particular importance in
this transport system, as they form the largest-scale reservoirs that store rising melt, and
modulate both the composition and dynamics of higher-level transport including volcanic
eruptions. These structures reside at multiple levels of the crust and on large spatial scales:
exposed calderas (e.g., Bachmann et al. [2007]), plutons (e.g., Paterson et al. [1995]), lay-
ered mafic intrusions (e.g., Ernst and Buchan [1997]), as well as deeper structures inferred
to be magmatic intrusions from remote imaging methods, such as lower crustal cumulate
bodies (e.g., Cox [1993]). Yet it remains poorly understood where and how melt reservoirs
are emplaced, what distinguishes one class of intrusion from another, and to what extent
such intrusive igneous processes are linked to volcanism (Canon-Tapia and Walker [2004]).
Many aspects of magma chamber growth and evolution subsequent to emplacement also re-
main controversial, especially in regards to the formation of large (10-100 km scale) intrusive
structures.

Ultimately, what must dictate the longevity of a magma transport system is melt supply.
However a variety of other factors may influence whether rising magma erupts to the surface,
solidifies within the crust, or forms an active storage system as chambers. Rheological and
material interfaces (such as the Moho or the brittle-ductile transition) provide a natural
initial density trap for rising magmas (e.g., Kavanagh et al. [2006]), and structural hetero-
geneities in the near surface may re-orient and capture dikes (e.g., Valentine and Krogh
[2006]). Large background deviatoric stresses will do the same - for example, extensional



CHAPTER 3. MAGMA CHAMBER STABILITY IN ARC AND CONTINENTAL
CRUST 35

tectonic stresses can promote vertical dike transport without storage (Gudmundsson [2006]),
while the presence of volcanic edifice loads or pressurized magma chambers tend to focus
dikes subvertically, and may trap magmas (Pinel and Jaupart [2003]). Thermal viability is
also important. Magma chambers and dikes in a long-lived transport system must survive
the geothermal gradient, and thus transport enough enthalpy to remain liquid over long
distances (Barboza and Bergantz [2000], Rubin [1995b]).

It is also likely that many of the transport processes operating in the crust are strongly
coupled to each other (Meriaux and Lister [2002], Melnik and Sparks [2005]) and to the
rheological evolution of the crust as whole (e.g., Dufek and Bergantz [2005]). In a previous
paper (Karlstrom et al. [2009]), we addressed some mechanical aspects of this coupling by
modeling the focusing or “lensing” of dikes by a combined magma chamber and volcanic
edifice system (Figure 3.1). Here we extend this analysis to determine the thermal stability
of such a system, focusing on the growth of initially small (∼ 1 km) chambers. We model the
time evolution of a magma chamber fed by a spatially and temporally stochastic distribution
of rising dikes, and by doing so address

1. Rheological and stress evolution associated with long-lived high melt fraction systems
in a geothermal temperature gradient.

2. Average compositional evolution of the magma chamber and assimilation of country
rock.

3. Stability of the system: will the magma chamber rupture, freeze, or exist in dynamic
equilibrium within the crust for the lifetime of constant melt supply?

4. The possibility for large-scale growth of a high melt fraction reservoir.

This procedure aims to identify the key dynamical regimes to expect from dike-fed magma
chambers in a viscoelastic crust.We map out a 3 parameter (initial volume, lower crustal melt
flux, depth) magma chamber “stability field” for two end member emplacement scenarios -
an arc setting where the country rock is amphibolite, and the intruding basalt is hydrous
(2 weight % H2O), and continental crust composed of tonalite with intruding magmas of
anhydrous basalt.

We find that the evolution of chamber volume and composition are strong functions
of depth and composition, and generally that steady-state (“stable”) chamber volumes are
more likely to exist for realistic lower crustal melt flux in hydrous environments. We also
find a range of physical parameters for which chamber growth is roughly exponential in time
and mechanically stable (i.e., no eruption occurs) that we refer to as “runaway”, suggesting
that rapid large-scale growth of magma chambers is possible under some circumstances,
provided melt is continually supplied. While the details vary, stable or runaway chambers
result from lower crustal melt flux values that range from ∼ 10−4 to ∼ 10−1 m3/m2/yr for
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mid to lower crustal depths and both compositions in this study, with deeper and/or drier
compositions produced a slightly broader range of runaway unstable chambers. The stability
field results are then compared in a qualitative way to three classes of magmatic intrusions:
caldera-forming shallow magma chambers, mid-crustal plutons, and layered mafic intrusions.

3.2 How to grow a large crustal magma chamber:

magmatic lensing

A magma chamber is commonly and loosely defined as a reservoir of high melt-fraction
magma in the crust or upper mantle (possibly only transiently), that acts as a capacitor for
magma ascent and as a place of chemical evolution through a combination of fractionation
and melting (e.g., DePaolo [1981], Marsh [1989], Bachmann and Bergantz [2003]). The
mixture inside the chamber may become buoyant and/or over-pressured in time due to
a variety of processes, including fractional crystallization, volatile exsolution and magma
recharge, leading to deviatoric stresses in the country rock that may be tens of MPa in
magnitude (e.g., Tait et al. [1989], Jellinek and DePaolo [2003], Fowler and Spera [2008]).
This stress field is geometry-dependent, and for all but the most symmetric chamber shapes
(spheres), stresses at the chamber margin are concentrated in areas of high curvature (e.g.,
Sartoris et al. [1990], Gudmundsson [2006], Grosfils [2007] ). If the chamber overpressure is
high enough, dikes will emanate from these locations of high deviatoric stress and transport
magma from the chamber, thereby lowering the overpressure. This has been studied in a
number of cases, for simple geometries (e.g., Meriaux and Lister [2002], Pinel and Jaupart
[2005]).

It is not well established how magma chambers are recharged, or whether melt in the
lithospheric mantle and lower crust travels through diapirs (e.g., Miller and Paterson [1999],
Gerya et al. [2004]), dikes (e.g., Clemens and Mawer [1992]), or in a network of channels
(e.g., Spiegelman and Kenyon [1992]). Feeder dikes have been inferred to supply large mafic
intrusions (e.g., Ernst and Buchan [1997]), lower crustal terrains (e.g., Williams et al. [2009]),
and must exist for thermally viable long distance transport (Bruce and Huppert [1989]).
We assume here that dike transport is important, and that the propagation direction of
rising melt should be broadly governed by the principle stresses in the surrounding medium,
involving contributions from the rising magma itself and any background stresses (e.g., Muller
et al. [2001]). Dikes will propagate in a direction orthogonal to the least compressive principle
stress in the medium at the dike tip. Therefore, magma chambers that are buoyant, over-
pressured, or both may generate stresses that affect the trajectories of rising dikes by focusing,
or “lensing,” dikes from a distance greater than the footprint of the chamber at depth -
potentially many times the radius of the chamber for realistic overpressures (Karlstrom
et al. [2009]). Magmatic lensing is a mechanism in which magma chambers can attain the
largest possible overpressures through recharge, although our model is consistent with any
mechanism of unsteady magma supply.
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3.3 A thermomechanical model

We develop a two-dimensional coupled thermal and mechanical model of dike focusing due
to an over-pressured and buoyant cylindrical chamber with a viscoelastic shell (Figure 3.1)
in an otherwise infinite elastic medium to study the time evolution of a crustal magma
plumbing system at different levels in the continental geotherm. The model contains a
thermodynamic description of the chamber and its surroundings, a temperature- and time-
dependent country rock rheology, and a mechanical model for chamber stresses based on the
mechanism of magmatic lensing. Interactions between magma chamber and host rock are
primarily responsible for determining the stability of the system. Emphasis is on simplicity
in the model components; we do not strive for details of transport mechanics, focusing only
on a few generally dominant processes. This approach seems a necessary first cut at a fully
coupled crustal magma transport model.

Further simplification follows from a consideration of the important timescales involved in
this process, summarized and quantified in Table 3.1. These are the magma supply timescale
τd (the time for a dike to ascend from the source to the chamber), the Maxwell viscoelastic
relaxation timescale τve, the elastic pressurization timescale τe, and the timescale for thermal
diffusion through the thickness of the viscoelastic shell τt (for typical shell thicknesses of
102−103 m). We assume that dike ascent speed Vdike is limited by the viscosity of the basaltic
magma ηd, and subsequently find that dike ascent times are several orders of magnitude
smaller than the others for timescales of interest (Table 1).

In evaluating the timescales above we assume two dimensional elliptical dikes of aspect
ratio H/L = 10−3 (Figure 3.1) that propagate with a constant overpressure ∆Pd (see model
description below for details). We take the viscosity of primitive basaltic melt ηd = 102−104

Pa s, dike transit length scales of D = 104 − 105 m, thermal diffusivity of κ = 10−6 m2/s,
the viscosity of wall rocks ηwr = 1018 − 1025 Pa s, and Young’s modulus E of wall rocks
1010 Pa. Chamber volume Vc and average melt flux Qavg are taken in the range discussed in
the Implementation section, Rc is the maximum capture radius of the magma chamber, and
other geometric parameters are defined in Figure 3.1.

Given these rough relations, we model the temporal evolution of the transport system in
an iterative sequence of three one- and two-way coupled steps: 1) Dike propagation leading
to mechanical chamber expansion, 2) Thermal evolution of the chamber and country rock
3) Viscous relaxation and rheological evolution around the chamber. The second and third
steps of this process are two-way coupled. Though simplified, this model allows a rich variety
of interactions (Figure 3.2) that lead in time to chamber rupture, freezing or stable growth.
In fact, consideration of Figure 3.2 with respect to the timescales in Table 1 leads to a
spectrum of model chamber dynamics (Results section).

The magma chamber

A magma chamber in the crust is modeled as an over-pressured and buoyant cylindrical
inclusion surrounded by a viscoelastic shell and imbedded in an infinite elastic medium
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Name Scaling Range of times
Dike transit timescale

τd ∼ DηdL
∆PdH2 104 − 108 sec

Elastic timescale
τe ∼ ∆PcritVc

EQavgRc
104 − 1012 sec

Viscoelastic timescale
τve ∼ ηwr

E
108 − 1015 sec

Thermal diffusion timescale

τt ∼ (R2−R1)2

κ
1010 − 1012 sec

Table 3.1: Important timescales for magma chamber - host rock interactions. Dike transit
timescale measures ascent from source region to chamber, Elastic timescale measures pressur-
ization due to magmatic lensing of dikes through capture radius Rc, Viscoelastic timescale
is the Maxwell relaxation time of the heated chamber wall rocks, and the Thermal diffu-
sion timescale is measured over the typical thickness of the viscoelastic shell (102 − 103 m).
Variables are defined in the text.

(Bonafede et al. [1986], Dragoni and Magnanensi [1989]). Our modeling takes place on a
two dimensional slice of this system, making all volume estimates in this paper a function
of the cylinder radius. The chamber grows through the addition of magma from dikes, and
in some cases because of wall rock melting. Overpressure relative to lithostatic pressure in
the chamber generates deviatoric stresses outside the chamber that decay with distance r
as ∼ ∆P/r2 + ∆ρg/r, where ∆P is the chamber overpressure, ∆ρg is the magma buoyancy.
Deviatoric stresses re-orient rising dikes that travel within a region where these deviatoric
stresses are large enough to affect dike propagation. We pick a simple model for dike propa-
gation (discussed below) that results in dike focusing around the chamber where deviatoric
stresses are ≥ 1 MPa (Karlstrom et al. [2009]).

This region may be quantified at any depth below the chamber through the notion of a
“capture radius,” measured from the center of the chamber at a given depth to the point
where the magnitude of greatest deviatoric principle stress falls below 1 MPa (defined in
Figure 3.1). The capture radius will be zero at sufficient depth below the chamber, but may
be several times the chamber radius at depths of 5-10 km below the chamber (Karlstrom
et al. [2009]). Rising magma will pass through the largest capture radius of the chamber on
its way to the surface. Although this capture radius is geometry dependent, and is affected
strongly by the presence of a free surface (e.g., Pollard [1973], McTigue [1987]), capture by
small or deep-seated magma chambers is well approximated by an infinite space solution (see
Results section), and the far-field stresses calculated from a spherical chamber are similar to
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more complex geometrical formulations (e.g., Sartoris et al. [1990], Yun et al. [2006]).
Geometric effects and material interfaces represent corrections to simple elastic cavity

solutions in the appropriate limits, and are most pronounced in the near-field (where, in-
cidentally, much of the interesting physics occurs). Our treatment of chamber stresses is
not meant to capture all quantitative aspects of chamber rupture, and we retain an analyt-
ical approach to study a few clearly defined aspects of this problem, namely, the dynamic
regimes that arise from a particular parameterization of chamber stresses and mechanical
constitutive relations as well as free surface effects. A fully numerical treatment coupling
advection, multicomponent magma thermodynamics and elasticity would be an interesting
extension of this model, but is not attempted here.

In calculating the stresses in an infinite space, we apply the equilibrium equations of
linear elasticity (equation 3.11), with boundary conditions

σrr,in|r=R1 = ∆P + ∆ρgR1 cosφ (3.1)

σrφ,in|r=R1 = 0 (3.2)

σrr,in|r=R2 = σrr,out|r=R2 (3.3)

Ur,in|r=R2 = Ur,out|r=R2 (3.4)

where σin and σout refer to stresses inside and outside the shell, Uin and Uout are displace-
ments inside and outside the shell, ∆P is the chamber overpressure, ∆ρg is the buoyancy
of the magma chamber, R1, R2, and φ are defined in Figure 3.1. Boundary conditions for
the free surface case are slightly different, outlined in Appendix A. Our parameterization
of gravitational body forces (equation 3.1) provides a means of coupling thermally-induced
buoyancy evolution in the chamber to stresses, and absorbs a reference buoyancy of the
magma into the overpressure ∆P . Buoyancy is small compared to other sources of devia-
toric stress in our model. We neglect the depth-dependent density of the crust, noting that
density differences alone do not significantly affect the location of reservoir failure (Grosfils
[2007]).

Viscoelastic solutions are then found via the correspondence principle (Fung [1965]), from
which time-dependent stresses are found (Appendix A). These solutions have the property
that deviatoric stresses in the viscoelastic shell decay in time at a rate determined by the shell
viscosity (Figure 3.3), although there are some differences between pressurized and buoyant
chambers in this regard, as well as free surface effects (Appendix A). Viscous relaxation
of chambers stresses may prevent chamber rupture, and is a possible mechanism for the
growth of large over-pressured chambers (e.g., Jellinek and DePaolo [2003]). Viscoelastic
relaxation of stresses affects rising dikes as well, because the bulk crust is assumed elastic on
dike-rise timescales, and dikes propagating in the country rocks (r > R2) will still experience
deviatoric chamber stresses (Figure 3.3). Viscous creep effectively increases the chamber size
by propagating elastic normal stress boundary conditions on the inner radius of the shell
(r = R1) to the outer radius (r = R2) on the Maxwell timescale τve (Appendix A).
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The extent of the viscoelastic shell is determined through thermal considerations with
a one-parameter melt fraction curve to relate crystal content of the magma to temperature
(discussed below), and the viscosity is taken to be time and temperature dependent, but
constant throughout the shell. This couples thermal evolution to mechanical effects. Ther-
mal expansion of the magma and shell is neglected in the calculations leading to equations
3.12-3.17, as the expansivity of magma is roughly 6 orders of magnitude smaller than the
compressibility.

Not all chambers will exhibit a viscoelastic shell as formulated above, and indeed this is
an important component of our model. Chambers that receive a sufficiently high melt flux
through dikes will mechanically expand more rapidly than the thermal diffusion timescale,
erupting before a shell forms. This condition requires that the Peclet number for cham-
ber recharge (taken to be the ratio of chamber expansion from recharge and heat diffusion
timescales in our model) must be larger than one:

Pe =
QavgRc

R2
1

R2
1

κ
=
QavgRc

κ
> 1. (3.5)

Under these conditions a magma chamber may quickly rupture to drain mass and over-
pressure. Because we are primarily interested in those magma chambers that drive surface
eruptions, we assume that chamber draining occurs only when dikes propagate to the surface.
While certainly not strictly true in reality, as is evidenced by relic dikes and sills that ter-
minated in the crust (e.g., Rubin [1995a]) and long-distance lateral transport through dikes
(Ernst et al. [1995]), this assumption simplifies the analysis as an end-member scenario.

We use a thermal criterion to determine the “critical” overpressure needed to drive dike
propagation to the surface. By balancing the freezing and elastic opening of a crack, Rubin
[1995b] and Jellinek and DePaolo [2003] derive the pressure required to propagate a dike from
the source region to the surface. This pressure necessarily exceeds the tensile strength of rock,
leading to chamber overpressures in our model that exceed the threshold dike propagation
stress. We find values of this critical overpressure in the range of 20-100 MPa, consistent with
magma chamber overpressures inferred from ground deformation measurements in volcanic
areas (e.g., Newman et al. [2001], Yun et al. [2006]), noting that inferences of magma chamber
overpressure in shallow systems are sensitive to depth, and thus cannot be directly applied
to rupturing of deep chambers.

Purely elastic formulations of reservoir failure that include tensile failure and gravitational
loading in a self-consistent way (e.g., Grosfils [2007]) require rupture-inducing overpressures
that exceed lithostatic in some cases. Conversely, chamber rupture based on laboratory
tensile-failure experiments (e.g., Gudmundsson [1988]) implies dike overpressures that are
too low to overcome the geotherm (Rubin [1995a]), and that reservoir failure may happen
frequently. In place of a more complete failure model, we choose a constant “critical” over-
pressure of 75 MPa to rupture the magma chamber. This choice reflects uncertainty in the
specific mechanisms of reservoir failure, which may involve different physics than we model
here (e.g., Chen and Jin [2006], Lengline et al. [2008]). We expect that this value is an ap-
proximate upper bound on the chamber overpressure necessary to trigger an eruption, and
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models a (silicic) magma viscosity of 107 Pas, surface heat gradient of 68 mW/m2 (Rudnick
et al. [1998]), static Young’s modulus E of 70 Gpa, Latent heat L of 400 kJ/kg, heat capac-
ity of 1100 J/Kg K, and thermal diffusivity κ of 1 mm2/s.While different choices of these
parameters will change the minimum critical overpressure needed for eruption, our main
results are not sensitive to a particular choice.

Dike transport

Many quantitative dike models in the geologic literature are based on the assumptions of
Linear Elastic Fracture Mechanics, and that dikes resemble fluid-filled pressurized and/or
buoyantly driven opening-mode cracks (Rubin [1995a]). Cracks propagate when the potential
energy released through propagation is sufficient to fracture rock at the crack tip (Griffith
[1920]). This is a threshold energy criterion for propagation, and is a feature of all “critical”
dike propagation models, though so-called “sub-critical” dike propagation (e.g., Atkinson
and Meredith [1987]) is a viable magma transport mechanism over short distances (Chen
and Jin [2006]). It is also possible that, in regions of partial melt, transport is dominated by
porous flow and channelization (e.g., Spiegelman and Kenyon [1992], Holtzman et al. [2003]),
though thermally viable long-distance transport is achieved through melt coalescence into a
dike.

We model a dike as a uniformly pressurized ellipse of constant aspect ratio (Jaeger and
Cook [1969]) in an infinite medium. In a polar coordinate system centered around the dike
tip, taking ξ to be the radial coordinate and θ the angle from long axis of the dike, principle
stress eigenvalues and (un-normalized) eigenvectors take the form

σdike± =
K

(2ξ)1/2
[cos (θ/2)± 2 sin (θ)] v± (3.6)

v± = eξ + [cos (3θ/2)± tan (3θ/2)] eθ (3.7)

.
Here σdike± are the magnitudes of principle stresses oriented along v±, eξ and eθ are unit

vectors centered on the dike tip, and K is the Stress Intensity Factor of a modified Griffith
theory (e.g., Rubin [1995a], Roper and Lister [2005]). Dikes propagate in this scheme if
K = ∆Pd

√
l ≥ Kc, where Kc is the “critical” Stress Intensity Factor (Rubin [1995a]) and

∆Pd is the dike overpressure. We assume that dikes propagate with this minimum condition
K = Kc = 106 Pa m1/2 at all times as a lower bound for continuous propagation (Karlstrom
et al. [2009]). Far-field deviatoric principle stresses in excess of dike stresses around the
crack tip then re-orient the trajectory of the rising dike. This dike model captures the
physics of interest in the present application - (1) a dike will not propagate unless it is
sufficiently driven (a threshold model), and (2) a dike exerts a stress field that helps to
determine its own trajectory. We note that our approach to dike propagation in an external
field is an approximation to the dynamics of truly coupled dike-chamber interactions, and
may actually underestimate the efficacy of magmatic lensing (Meriaux and Lister [2002]).
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However, qualitative aspects of dike focusing are unchanged in more detailed studies. We
exclude stress interactions between dikes, although such interactions can lead to interesting
organization of magma transport (Ito and Martel [2002], Kühn and Dahm [2008]). In the
presence of large background stresses (such as the magma chamber considered here), dike
interactions should be of lower order importance, although they may be important for the
initial formation of magma reservoirs (Kühn and Dahm [2008]). We also note that while
dikes are emplaced elastically, this does not mean that their surroundings (particularly the
magma chamber and wall rocks) are strictly elastic. Hence, dike interactions and chamber
evolution may occur over different timescales (Table 3.1).

While magma supply to the lower crust is not certain, a variety of studies have generally
found lower bounds on the order of 10−3 m3/m2/yr to 10−4m3/m2/yr in arc settings (see
Dufek and Bergantz [2005] for a compilation of this data). We use the stochastic framework
of Dufek and Bergantz [2005] to model continued melt supply through dikes. Dikes are
intruded randomly in space and in time at the base of our simulated domain, constrained
only to conform to a long-term average volume flux. We use a Monte Carlo algorithm (Manno
[1999]) to produce a spatially random distribution of dikes with a Gaussian distribution of
melt volume (and therefore size). These dikes propagate vertically unless far-field deviatoric
stresses exceed stresses near the dike tip, at which point dike trajectories are re-oriented to
follow the least compressive principle stress.

Thermochemical model

Much effort has been devoted to understanding the thermal evolution of magma chambers.
While complex multi-component convective processes may occur throughout the lifetime
of the chamber (e.g., Turner and Campbell [1986], Ruprecht et al. [2008]), the enormous
crustal thermal resistor ensures that conduction will be the primary mode of heat transfer
near the wall of a magma chamber, driven both by the sensible and latent heat content of
the magma chamber. The rate-limiting factor in both cooling/crystallization and possible
heating/melting events is therefore conductive heat transfer between the chamber interior
and the host rock (Carrigan [1988], Marsh [1989]).

While simple analytic conductive cooling models have been used widely to investigate the
thermal evolution of magma bodies (e.g., Younker and Vogel [1976], Spera [1980], Hort [1997],
de Silva and Gosnold [2007]), models that take into account laboratory melt crystallization
experimental results (e.g., Annen and Sparks [2002], Dufek and Bergantz [2005]) and multi-
component heat transfer (e.g., Spera and Bohrson [2001], Gerya et al. [2004]) allow for more
detailed petrologic predictions. We use a nonlinear melt fraction-temperature curve as a
proxy for composition in two end-member cases: country rock of amphibolite (Dufek and
Bergantz [2005]) or tonalite (Petcovic and Dufek [2005]) bulk composition, and intruding
basalt that is either anhydrous or contains 2 weight % H2O (Appendix B). Evolution of
melt fraction can then be used as a proxy for compositional evolution of a magma chamber,
including chamber buoyancy and the mixing of melt from country rock and dikes.

We use an Alternating Directions Implicit (ADI) finite difference numerical scheme to
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solve the time-dependent heat conduction problem based on the treatment of Dufek and
Bergantz [2005], but modified to include a more general local enthalpy to couple a mechanical
model to the thermal model. Conservation of energy for the system dictates:

∂H(x, t)

∂t
=

∂

∂x
kmix

(
∂

∂x
T (x, t)

)
(3.8)

where H(x, t) is the local enthalpy at point (x, t), given by

H(x, t) = ρmix

∫ T (x,t)

Tref

cmixdT + ρmixf(x, t)L+ PδV (x, t). (3.9)

We use enthalpy to parameterize local energy, because it remains a continuous function
through phase changes. x is the position vector of the local energy balance, t is time, L = 400
J/Kg is the latent heat of fusion, and T (x, t) is temperature. The variables kmix, cmix and
ρmix refer to mixture quantities, defined in appendix B, that allow us to treat mixing and
melting of the country rock in the magma chamber. The work term PδV (x, t) is a local
quantity that reflects the addition of new magma to the chamber due to dike lensing, and
f(x, t) ∈ [0, 1] is the local melt fraction. We impose a steady state geothermal gradient
upon the country rock with a surface heat flux of 68 mW/m2 and a surface temperature
of 10 degrees C, using reflecting temperature boundary conditions on the sides of the 2D
numerical domain. More details about the specifics of this thermal model can be found in
Dufek and Bergantz [2005], although we assume here that dike transit does not significantly
affect the background geotherm, because of the difference in timescales (Table 3.1).

The crystal content of a magma has a profound impact on its rheology (e.g., Marsh
[1981]), and we use melt fraction as a proxy for purely viscous, visco-elastic or elastic behavior
in the mechanical model. Regions that contain 0.6 or higher melt fraction (equations 3.58 -
3.62) are considered purely viscous (radius r < R1 in Figure 3.1), and regions with 0.05 melt
fraction or lower are considered purely elastic (r > R2). Melt fractions between 0.05 and
0.6 (R1 < r < R2) are modeled with a Maxwell viscoelastic rheology, with an exponential
temperature dependent viscosity (Appendix B). Viscosities calculated in this way are a crude
approximation to more detailed parameterizations of magma viscosity based on dissolved
water content, crystallinity and silica content (e.g., Scaillet et al. [1998], Hui and Zhang
[2007]).

Important model approximations

Studies that have focused on magma chamber convection have shown that mixing processes,
e.g. driven by the injection of basaltic melt into a more evolved silicic chamber, may have
important consequences for the rejuvenation and eruptibility of large silicic systems ( Bach-
mann and Bergantz [2003]), as well as cooling and crystallization rates (e.g., Hort [1998]).
External eruptive triggering (e.g., Roche and Druitt [2001]) or volatile exsolution in shallow
chambers may have similar first order effects (e.g., Tait et al. [1989], Huppert and Woods
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[2002]). However, these processes are not within the scope of this work. Here we exclude
explicit dynamics within and around the magma chamber, and assume that the interior is
well mixed at all times.

By excluding advection in our simulations, we also assume that lower crustal rheology
is elastic on the timescales of magma chamber evolution, with the diapiric rise of a large
buoyant magma chamber within the crust being negligible on the timescale of magmatic
lensing. This assumption is readily justified both observationally and theoretically. The
Stokes rise-velocity for a magma chamber scales as ρgR2

1/µ ∼ 10−10 − 10−12 m/s, much
slower than typical dike speeds, and abundant field evidence for diking in lower crustal
terrains (e.g., Dumond et al. [2007]) demonstrates that the mid to lower crust is elastic on
sufficiently short timescales.

We use an analytic solution to determine viscoelastic stresses and a numerical solution
for thermal evolution, so there are a number of approximations necessary to make the ther-
mal and mechanical calculations consistent. While the analytical solution limits the extent
to which the chamber can respond to an anisotropic thermo-mechanical environment, this
approximation significantly simplifies the calculations and reduces the parameter space that
must be explored. It allows us to focus on the dynamic behavior that results from interac-
tion between heat diffusion, viscoelastic relaxation and elastic pressurization in a relatively
simple system. The evolution of damage due to repeated diking is neglected, although it
is almost certainly an important component of magma transport (especially in the shallow
crust), as propagating dikes will be influenced by structural heterogeneities (Gaffney et al.
[2007]). To maintain a circular magma chamber that thermally evolves in a vertical tem-
perature gradient, we impose circular symmetry on the magma chamber by organizing the
entire melted region after each timestep into 7 circular rings of constant melt fraction. The
innermost ring is completely liquid (f(x, t) = 1.0), the next has f(x, t) = 0.8, and so on.
For rings that are below the critical melt fracion of 0.6 (viscoelastic rheology), we use the
highest ring temperature to determine the viscosity of the entire shell. This choice does
optimize the viscoelastic relaxation effects, and thus represents a lower bound for the shell
viscosity. Particular choices of melt fraction curve (Appendix B) result in shell viscosities of
∼ 1019−1022 Pas for both tonalite and amphibolite. The re-organization of melt in this way
is a crude approximation for mixing processes inside the chamber, and is consistent with the
dynamical assumption that the chamber interior is well mixed at all times.

Differences in the petrology of amphibolite and tonalite require that we treat the melting
of these country rocks in different ways. Amphibolite is a mafic end-member proxy for lower
crustal compostion in arc settings, and its major element composition is similar to basalt
(e.g., Helz [1982], Wolf and Wyllie [1994]). We therefore treat the melting and solidication
of basalt and amphibolite country rocks interchangeably, by assimilating melted country
rock into the chamber melt at each time step. This is consistent with the assumption of
a mixed chamber, and ensures a stable solution. The more evolved nature of amphibolitic
partial melts is not accounted for, as it should constitute a negligible perturbation to the
bulk chamber composition.

Tonalite, however, is chemically dissimilar to basalt, being essentially in the second stage
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of its petrological evolution (Wolf and Wyllie [1994]). As such, we treat the melting of
tonalite country rocks with two separate binning procedures for basaltic and tonalitic melt,
with tonalitic melt always placed outside the intruded basalt. Because tonalite has a lower
melting temperature than the anhydous basaltic input, this can result in a “jelly sandwich”
configuration, where partially solidified basaltic material is sandwiched between high melt
fraction tonalite and basalt. We choose the inner melt rings (basaltic composition) to deter-
mine the extent of the viscoelastic shell. This procedure does not treat the mixing processes
that must occur between these two magmas, but our conclusions should depend more on a
consistent treatment of melting than on detailed advective dynamics.

Finally, while we use the mechanism of magmatic lensing to model chamber recharge,
subsequent thermal evolution is consistent with other means of unsteady magma supply
through dikes. While details will vary, the main dynamic regimes that we find depend
primarily on the average supply of enthalpy to the chamber, not the specifics of the magma
deliver system.

3.4 Implementation

We implement the magmatic system model in three steps, capturing an averaged thermo-
mechanical coupling between components of the plumbing system.

Step 1. Magmatic lensing
We use a dynamic model of dike propagation in which a stochastic distribution of dikes,

with (2D) volumes that satisfy the mean lower crustal melt flux at the base of a discretized
rectangular domain, rise toward a magma chamber. Dikes propagate incrementally; if the
chamber stress field at a grid point is greater than the dike-tip stress field, we re-orient the
dike along the greatest principle stress eigenvector. Otherwise, the dike moves vertically. We
use the infinite space solutions (equations 3.12 - 3.17) to calculate the stresses for simulations
at 20 and 40 km depth, assessing the free surface effects separately.

If a dike intersects the magma chamber, the chamber volume increases according to
Vnew = Vold + Vdike, and chamber overpressure according to the thermodynamic condition
Pnew = Pold + β−1(Vnew − Vold)V −1

old + δPpc. This assumes that pressure changes propagate
throughout the chamber very rapidly, so that local phase changes contribute to the entire
chamber pressure. Magma compressibility β is calculated assuming a basaltic composition
(Dobran [2001]), and thermal expansivity is neglected. Pressures induced by phase change
δPpc (determined by the thermal calculation) are included. We assume that, as an upper
bound, there is a 15% volume change due to melting or solidification of magma (Dobran
[2001]). Although this volume change varies with mineral phase (Ghiorso and Carmichael
[1987]), most important phases (with the exception of plagioclase) exhibit a negative volume
change upon solidification, and we assume that holds for the bulk magma here. The liquid
interior of the chamber is assumed to have a basaltic dike composition initially, but we
track chamber bulk compositional evolution through the mixture quantities (equations 3.64
- 3.66). Dike propagation continues until all dikes either reach the chamber or the top of the
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numerical domain. If a dike intersects another dike, dike volumes are additive.
Step 2. Thermal evolution
Using the updated chamber volume (and heat content) from the dike, we discretize melt

into rings of constant melt fraction (7 total for amphibolite/hydrous basalt, and 14 total
for tonalite/anhydous basalt). We next implement the ADI scheme to determine the new
temperature field solving equation (3.8), using local differences in melt fraction to update
the latent heat. The work term added to equation (3.9) is assumed constant over the volume
of the chamber at each timestep. We iterate until convergence is achieved, then update melt
fraction according to equations (3.58) - (3.62), and calculate inner and outer chamber radii.
If the outer radius reaches the boundary of the domain, the simulation is stopped. These
cases are then run with a larger domain, however, there are parameters under which chamber
growth exceeds all domain sizes tested (see Results).

Step 3. Viscoelastic relaxtion
With the inner and outer radii determined by the thermal calculation, we first check for

either 1) possible chamber eruption due to excess of deviatoric stress at anywhere within the
viscoelastic shell, i.e. σrr,in − σφφ,in > ∆Pcrit (Jellinek and DePaolo [2003]), or 2) chamber
freeze-out R1 ≤ 2 grid cells (where R1 ≤ 60 − 150 m, depending on the chamber size). If
either occur, the simulation is stopped. If not, we calculate new stresses throughout the
domain according to equations (3.12) - (3.17), with timestep t = 500 years (a step size
consistent with long-term averaged melt supply). In these calculations, the constant shell
viscosity is updated to match the highest temperature in the shell, and we check that other
choices (for example the average shell temperature) do not significantly affect the results.

This sequence is repeated for 2000 time steps (1 million years), or until eruption/freezing
occurs. The model as formulated contains five variable parameters: Lower-crustal melt flux,
initial chamber radius (R1 = R2), initial chamber overpressure (∆P ), bulk composition of
the dike and country rock (equations (3.58) - (3.62)), and depth below the surface. However,
because of the coupling between thermally and mechanically determined overpressure, choice
of the initial ∆P is somewhat arbitrary, as both pressure and buoyancy are determined at
each time step to ensure consistency between thermal and mechanical models. ∆P is set to
an intial value of 106 Pa in all runs.

We run simulations with 8 choices of averaged lower crustal melt-flux (Qavg = 10−5m3/m2/yr−
100m3/m2/yr). This range encompasses observed estimates of lower crustal melt flux in arcs
(Dimalanta et al. [2002]), as well as the higher values estimated from decompression melting
mantle plume models (Olson [1994], Farnetani and Richards [1995]). We use 4 values of
initial radii (100, 500, 1000 and 2500 m), and 2 chamber depths (20 and 40 km) to test the
effect of mid to lower crustal temperature profiles on chamber stability. A more thorough
test of chamber depth using a halfspace viscoelastic solution (equations 3.41-3.46) is also
performed for a few cases to ensure that neglect of the free surface does not affect results,
and to test the depth dependence of dynamic chamber stability. However, shallow chambers
are not the main focus of this study. We also test 2 end member compositional scenarios.
Amphibolite composition country rocks are used as a proxy for arc environments, and are
also similar to expected lower crust compositions (e.g., Christensen and Mooney [1995]).
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We do 32 runs at 20 km and 40 km depth for amphibolite. Tonalite composition country
rocks are to be expected in more compositionally evolved settings. Because rocks of this
composition partially melt at lower crustal depths, we do 32 runs at 20 km depth only. The
total number of simulations is thus 96. Repeat simulations were undertaken in all cases
where the stochastic distribution of dikes seemed to affect results, however, in most cases
the results are robust to multiple runs. Resolution tests are performed in both space and
time to determine the consistency and stability of solutions, and we ensure that energy is
conserved to within 1 % through each timestep (Appendix B).

3.5 Results

We find four dynamic regimes of magma chamber evolution. Chambers of any size tested
are unstable in many cases, either “freezing” or “erupting” (pressure exceeds the critical
overpressure), due to an insufficient or excess melt flux rising from the base of the crust,
respectively. However, there are parameters for which chambers rapidly reach a stable size
(steady state) as long as melt supply is constant. There is also a “runaway growth” regime,
in which viscous relaxation prevents chamber deviatoric stresses from growing while melt
influx is still high enough for chamber growth. This regime is rendered finite in most cases,
because wall-rock viscosities are bounded from below by the solid-liquid transition, which
limits the stress relaxation timescale.

Typical snapshots of the simulations are shown in Figure 3.4. Figure 3.5 shows ex-
ample time evolution of volume. Model results for all parameter choices are compiled in
dimensionless “stability field” representations for amphibolite and tonalite average crustal
compositions in Figures 3.6 - 3.7. To make compilations, each run is averaged temporally
in these parameters (change in melt fraction, overpressure, shell viscosity, melt flux received
by the chamber), and the dynamic results of the run are expressed in terms of averages.
Each point on Figures 3.6 - 3.7 corresponds to an averaged set of model runs, and is colored
according to the end result.

Figure 3.6 shows the stability field in terms of initial chamber size and melt flux through
the crust. Figure 3.7 plots the same data, but cast in terms of physical timescales. The
abscissa is the total number of timesteps in a given run. Small values indicate that the final
result occurred very quickly, and represents a thermally or mechanically unstable system.
Values approaching 106 years represent a thermally stable system. The ordinate is a ratio of
average elastic and average viscoelastic timescales (Table 3.1). Large values (generally > 1)
represent systems that are viscously dominated, with a low shell viscosity. Systems with
small values of this ratio (generally < 1) are elastically dominated, growing and pressurizing
in response to melt influx. Because of the nonlinear melt fraction curves used (Appendix
B), there are compositional differences between the lines dividing elastically- or viscously-
dominated dynamics, such that τe/τve = 1 does not strictly define regimes in Figure 3.7.
This representation does separate the model results, however, and is useful for deciphering
which set of processes determines the outcome in a given run.
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Dynamic regimes of chamber evolution

Frozen chambers

In the case of chambers that freeze, melt volume supplied by dikes in each time step (500
years) is a small fraction of the chamber volume, and does not supply enough enthalpy to
prevent progressive solidification. Such a situation is aided by a net negative volume change
of solidifying magma, which causes under-pressurization of the chamber and negative work,
although it incurs a positive latent heat contribution to the enthalpy balance (equation 3.8).
Mechanically, the decrease in pressure decreases the capture radius of the magma chamber
(Figure 3.1), and hence the chamber focuses less melt from dikes. Progressive cooling of wall
rocks (and hence progressive increase in wall rock viscosity) in a slowly solidifying chamber
also feeds this process; because of the assumption of an Arhennius-type viscosity, this effect
is exponential in time. Freezing thereby constitutes a negative feedback loop. In our model,
chambers that receive less than ∼ 10−4 m3/m2/yr melt flux freeze irrespective of size or depth
in the geotherm, although smaller and shallower chambers are slightly more susceptible to
freezing. As is exemplified in Figure 3.5, deeper chambers generally freeze-out more slowly
than shallow chambers, although the stochastic nature of melt supply causes some exceptions
to this rule.

Erupted chambers

Chamber eruption is caused by exactly the opposite feedback processes. In this case, en-
thalpy supplied by dikes balances heat lost by conduction, and high melt influx results in
rapid chamber expansion. If expansion and pressurization is larger than the rate of thermal
diffusion, no viscoelastic shell forms and the chamber erupts on the elastic pressurization
timescale. Likewise, eruption occurs if a shell exists but chamber pressurization occurs
more quickly than the viscoelastic timescale. Net melting results in positive volume change,
and hence positive work, with positive chamber overpressurization and negative latent heat.
Magmatic lensing is amplified, resulting in a larger influx of magma. Such feedbacks lead
to very high overpressures, and chamber rupture can occur on short timescales (Figure 3.7).
Chamber eruption occurs in most model runs if the flux is sufficiently high (greater than
∼ 10−1 m3/m2/yr), and are represented by red symbols in Figures 3.6 - 3.7. However, erup-
tion is a strong function of depth and size: larger, deeper chambers are the most stable
(Figure 3.6).

Red-blue symbols in Figures 3.6 - 3.7 denote a “transitively eruptive” regime in which
chambers progressively freeze, but sometimes erupt before the inner radius shrinks to zero.
This occurs because freezing is accompanied by an (exponential) increase in shell viscosity.
Chambers that receive sufficient melt influx to pressurize significantly despite progressive
solidification may then erupt as the shell viscosity increases. These results are run-dependent.
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Stable chambers

Dynamic equilibrium is achieved for model runs that balance the competing dynamics, with
Pe ∼ 1 and τe/τve ∼ 1 (equation 3.5 and Table 3.1). There are both a temporally stable and
a transient or unstable regime in which this occurs. Stable equilibrium results when chamber
growth decreases asymptotically in time until subsequent volume changes are less than 0.5 %
of the chamber volume, and deviatoric stresses relax in the viscoelastic shell. These results
are represented by green symbols in Figures 3.6 - 3.7. Such chambers necessarily have an av-
erage elastic timescale larger than the Maxwell time (Figure 3.7 ), and grow thick viscoelastic
shells (Figure 3.5) - although this thickness is composition dependent. Amphibolite melts
past the critical melt fraction more readily than tonalite, so shell thicknesses are smaller
in these settings. Total melt volume of both country rock plus basaltic magma (i.e., the
chamber volume) remains approximately constant in time (Figure 3.8), but melt fraction of
country rock increases. In fact, large assimilation of country rock occurs primarily in stable
chambers. Progressive heating of the domain does ultimately make this stable period finite,
as does the slow build-up of stresses in some cases.

Runaway chambers

Transient dynamic equilibrium, or “runaway growth” occurs when the elastic pressurization
timescale is smaller than the thermal diffusion time (Table 3.1), such that chamber growth
occurs in each timestep but the ratio of pressurization time to Maxwell time is near unity
(Figure 3.7). This results in deviatoric stress relaxation, however, continued melt influx
causes the slow but continuous build-up of these stresses. Enthalpy is supplied to the system
through dikes in large enough quantity that growth exceeds solidification. Such dynamic
equilibrium is a “runaway growth” regime, and can result in rapid growth of chambers.
However, the build-up of deviatoric stresses over long times (up to ∼ 100 ka for amphibolite,
slightly longer for tonalite) due to the continued influx of largely incompressible fluid into
the chamber results in eventual chamber rupture.

This runaway growth regime is a direct result of the nonlinearity built into our model
system by the imposition of a critical melt fraction, which places a lower bound on the
magnitude of the wall rock viscosity, and hence an upper bound to the relaxation of stresses
in the viscoelastic shell. Model runs in which runaway growth was accompanied by increasing
shell stresses are represented by purple-red colored symbols in Figures 3.6 - 3.7; runs in which
growth was not accompanied by significant build-up of shell stresses are colored purple or
purple-green (depending on whether the results were run-dependent). Some stable cases may
still eventually erupt, however, because finite numerical domain width precludes assessment
of a possible final chamber size for some of these fastest growing transient equilibrium model
runs. Maximum average growth rates are ∼ 0.004±0.0005 km2/yr, implying that a chamber
may grow from 1 km radius to 10 km in ∼ 100 ka. This is roughly of the same order as the
timescale for deviatoric stresses to become large, thus 100-fold increases in magma chamber
volume are realistic in this system, provided that lower crustal melt flux is constant over this
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period.

The effects of magma and country rock composition

We find that, all other parameters the same, magma chambers operating in each end member
compositional scenario differ substantially in final behavior. The tonalitic proxy composition,
(defined by equation 3.60), contains less modal hydrous minerals, and has a correspondingly
higher solidus and liquidus (Appendix B). Seismic velocities of the lower crust are more
consistent with an amphibolite-like composition grading to granulite facies in arc settings,
while tonalite grading to granulite is expected in continental environments (Christensen
and Mooney [1995]). In our simulations, chambers in tonalitic country rock are less stable
than their ‘wet’ counterparts, having little to no equilibrium regime, both freezing and
erupting more quickly. In addition, these chambers melt more crustal material, leading to
thicker viscoelastic shells. Crustal melting in the “runaway growth” regime is responsible for
inhibiting “equilibrium” chambers (Figure 3.6), and it is this large degree of crustal anatexis
that is the most significant difference between the compositions.

Assimilated percentages are measured with respect to the magma that reaches the cham-
ber and do not necessarily represent the total fraction of assimilation in crustal melt, as dikes
that are not captured by a magma chamber leave the system in our model. Total crustal
melt does not exceed ∼ 40% by volume of intruded magma, consistent with other studies
that invoke other mechanical processes (e.g. crustal extension Hanson and Glazner [1995])
to localize and maintain the mafic enthalpy to assimilate large volumes of crust. Stable
chambers in a bulk amphibolitic country rock can assimilate up to ∼ 50% by volume of their
surroundings as melt, whereas the same chamber in a tonalitic environment may assimilate
more, up to ∼ 60− 70%.

This difference may be attributed to the sharp step in the melt fraction curve (equation
(3.60)) associated with the melting of plagioclase feldspar (Appendix B). Prolonged heating
of tonalite will therefore produce a higher melt fraction shell than similar heating of amphi-
bolite, over the range of 850-950 degrees C. A significant volume of tonalite country rock
melts completely in the “runaway growth” regime chamber, and thus can initiate a switch
from a predominantly mafic magma chamber to a mostly felsic - but still high melt fraction -
chamber as the anhydrous basalt with its higher solidus and liquidus slowly cools. Chambers
that assimilate large fractions of crust by necessity need a large supply of enthalpy. Because
there are dynamically stable chambers within a range of lower crustal melt flux (Figure 3.6),
the average percentage by volume of total crustal melt in a stable chamber is ∼ 20% for our
“wet” compositions, and ∼ 40% for “dry” compositions.

Examples of the difference between anatexis “wet” and “dry” settings are illustrated
in Figure 3.8. While by no means an exhaustive paramater space search, these curves are
nonetheless representative of the controls exerted on chamber melting by a combination of
depth, melt flux, composition and initial size. It is evident that composition plays a leading
role in assimilation of country rock, although melt flux is still the most important parameter,
as it sets the space of stable and runaway chambers in which significant melting can occur.



CHAPTER 3. MAGMA CHAMBER STABILITY IN ARC AND CONTINENTAL
CRUST 51

The water content of the intruded magma also plays an important role in long-term
chamber evolution. While we choose a relatively narrow range of basaltic compositions
with 0 and 2 weight % H20 as dike material (compared to the upper observed limits of
up to ∼ 6 − 8 weight % water in arc settings (Wallace [2005])), the melt fraction curves
of these choices are nonwithstanding quite different (Appendix B). We emphasize that the
one-paramater melting curves in our model are proxies for real rock melting behavior, which
will have different modes and hence a more complicated melting process.

Because we consider “end member” compositional scenarios in which “wet” basalt is
paired with “wet” country rock and “dry” basalt is paired with “dry” country rock, it is
natural to expect that our results represent end member dynamical regimes. The fact that
we do find significantly different long-term behavior of chambers in these scenarios, however,
is an indication that composition does have a significant effect on magma chamber evolution,
and that chambers in more anhydrous environments will tend to be less stable and less long-
lived (at least at high melt fraction). It is possible that large magma bodies may exist for
long time periods at low melt fraction (e.g., Bachmann and Bergantz [2003], Huber et al.
[2009]). Because we end our simulations when the liquid-like portion (meltfraction > 0.6)
of the magma chamber freezes, this is a scenario we cannot address. In both compositional
cases, time evolution results in a bulk density that decreases in time, in accord with the
differentiation and mixing processes that are taking place (equations (3.64) - (3.66)). Short-
lived chambers do not experience significant density evolution in our scheme.

Chamber pressurization and stress evolution

We use a numerical domain that is ∼ 10 times the chamber diameter, so that melt flux
reaching the chamber at the start of each run is much less than the total. However, contin-
ued pressurization and growth of the magma chamber increases its capture radius, thereby
focusing more melt from a larger region. Underpressurization or net freezing of the chamber
decreases the capture radius and the amount of melt focused. In other words, feedbacks in
the magmatic lensing process (Figure 3.2) strongly affect the evolution of melt supply to
the chamber, particularly the coupling of thermal to mechanical evolution. Because of the
assumed 15 % volume change that accompanies melting or solidification (Dobran [2001]),
large pressures are induced by melting and freezing of magma, and this acts in concert with
rheological effects to amplify or damp elastic pressurization stresses (Figure 3.10). Without
consideration of these effects (including the threshold rupture criteria), chamber overpres-
sures reach unrealistically high values that approach lithostatic, as illustrated for a chamber
with an evolving shell of 100-300 meters in Figure 3.10. Chamber pressurization also affects
the energy balance, and hence thermal evolution, through the work term in equation (3.8)
that accounts for work due to melting or solidification at each timestep. However, evaluation
of this effect shows that it contributes little to the total energy budget, on the order of a few
percent at each timestep.

As is discussed in Jellinek and DePaolo [2003], the most import aspect of viscoelastic
rheology around magma chambers is to relax stresses that might otherwise rupture the
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chamber and generate volcanic eruptions. This is the process responsible for the “stable
equilibrium” regime of chamber growth, but strong coupling to the thermal evolution of
the shell means that the dynamics are time dependent. It is possible for viscoelastic effects
to “shut off” as well as “turn on” chamber rupture. The blue-red symbols in Figures 3.6
- 3.7 denote this behavior. However, temperature affects deviatoric stresses in a doubly
exponential manner, through the relaxation timescale τve (e.g., Dragoni and Magnanensi
[1989]) and the temperature-dependent viscosity law (equation 3.63):

σdev(x, t) ∼ σdev(x)e−t/τV E ∼ σdev(x)e−t(EA
−1enRT (x,t)/Q) (3.10)

where σdev(x, t) is the deviatoric stress at position vector x and time t, E is the Young’s
modulus of chamber wall rocks, T (x, t) is temperature, and all other constants are defined
in Appendix B. The viscosity used to define the viscoelastic timescale τve in equation (3.10)
is strictly a function of both stress and temperature, however, the doubly exponential effect
of temperature will dominate, such that deviatoric stresses relax in a narrow temperature
range. This feature of the stress evolution may have implications for the possible timescales of
eruptibility, as dike propagation (in our formulation) will not occur to drain the chamber. To
erupt such a chamber, other processes (such as volatile exsolution, roof collapse or external
triggers) not considered here must operate.

The effects of depth

For magma chamber stability, the proximity of a stress free surface has two major effects.
The first is to concentrate deviatoric stresses on the sides of the chamber (e.g., Pinel and
Jaupart [2003], Grosfils [2007]), which acts to destabilize the chamber and promote ring
fracture formation. The second is to modulate the capture radius of the chamber, which
upon shallowing exhibits a decrease, and then a sharp increase in the immediate vicinity of
the free surface (Karlstrom et al. [2009]). For chambers surrounded by viscoelastic country
rocks, both of these effects are time dependent.

This is illustrated in Figure 3.9, for choices of chamber size (R1 = 1 km, R2 = 2 km),
depth (5 km), shell viscosity (ν = 1019 Pas) and overpressure (∆P = 100 MPa) that em-
phasize the differences between this case and the symmetric overpressure solutions in an
infinite medium. The free surface generally begins to affect normal stress concentration at
the wall of an elastic chamber when the ratio of depth d to radius R satisfies d/R < 3
(Grosfils [2007]). However the time evolution of viscoelastic stresses (plotted in Figure 3.9.a
as the first stress invariant) makes the surfaces effects more pronounced because the effective
normal stress boundary conditions expand in time (Appendix B). The capture radius begins
to be significantly affected at depths more shallow than 20 km for the small chambers we
consider here (Figure 3.9.b).

Because of the added complexity of near-surface effects, and the complexity of the ana-
lytical half-space solution (equations 3.41-3.46), we leave a more complete parameter search
of shallow chambers for future work. For the 20 and 40 km depth chambers, additional
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stress concentrations due to free surface effects are less than 15 %, and would not change
the results significantly. However, we have run a number of test cases at shallow depths to
explore the general trends. Picking the same initial size and melt flux as in Figure 3.5, we
find that the effect of decreasing depth is generally to inhibit the stable regimes of chamber
growth. For example, a “wet” composition run using 1 km initial radius, 10−3 m3/m2/yr
melt flux (which is stable 20 and 40 km depths in Figure 3.6) enters an eruptive regime at
10 km depths. This is due to the stress concentration effects (easier to rupture a chamber)
and the cool country rocks (higher shell viscosity, more solidification).

We anticipate that a more thorough study of these effects may have applications to the
conditions for caldera-forming chambers, and to active shallow volcanic areas, where ground
deformation measurements (e.g., Newman et al. [2001]) provide insight in to short-term
chamber dynamics. Within the framework of our model, geodetic measurements may be
inverted not only for chamber geometry and pressure, but for lower-crustal melt flux and
dynamic regime (which bounds the active lifetime).

3.6 Discussion

Summary of model results

It will be useful in the following discussion to summarize model results in terms of the four
dynamical processes of interest laid out in the introduction.

1. Rheological and stress evolution associated with long-lived high melt fraction systems
in a geothermal temperature gradient.

The development of a viscoelastic shell around magma chambers has a profound effect
on their long-term dynamics. The ratio of elastic to viscoelastic timescales governs
the relaxation of deviatoric stresses that prevents chamber rupture. By coupling this
process to the thermal evolution of a magma chamber, and to particular parameteriza-
tions of rock composition, we find that such temperature-induced rheological changes
are strong functions of the local geotherm and composition. Deeper chambers and
chambers surrounded by more felsic country rocks generally have the greatest rheolog-
ical impact on their surroundings.

2. Average compositional evolution of the magma chamber and assimilation of country
rock.

In our simplified treatment of magma chamber processes, we are unable to address
the details of compositional evolution within the chamber (e.g. Gerya et al. [2004]).
However, we do address crustal assimilation, and find that melting of country rocks
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by magma chambers is a strong function of their composition and water contents. We
find assimilated tonalitic country rock of up to ∼ 70% the total chamber volume in
“runaway growth” chambers (Figure 3.8). Amphibolitic end member chambers, on the
other hand, assimilate up to 50 % by volume country rock only in the “stable” regime.
We note that these are the extreme values of crustal melting that are achieved over
long periods of continued enthalpy supply without eruption. “Freezing” or “eruptive”
chambers rarely assimilate more than a few percent by volume of country rock (Figure
3.8), which may be considered to be more average.

3. Stability of the system: will the magma chamber rupture, freeze, or exist in dynamic
equilibrium within the crust for the lifetime of constant melt supply?

The stability of magma chambers is governed primarily by lower crustal melt sup-
ply (3.6). Melt flux smaller than ∼ 10−4m3/m2/yr does not transport enough enthalpy
to thermally sustain magma chambers, and these chambers freeze in all cases. The
range of stable chambers is a function of depth and composition, but encompasses
melt fluxes consistent with the upper estimates of melt flux in arc settings (∼ 10−3

m3/m2/yr, which is also comparable to the average melt flux per kilometer of mid-ocean
ridge, e.g., Chen [1996]). We emphasize that a more three dimensional treatment of
this problem will almost certainly decrease this stable range of melt flux, because cham-
bers will both lose more heat via conduction and focus rising melt more efficiently in
three dimensions. Chamber eruption is found for melt flux exceeding 10−1 m3/m2/yr
in most cases, however, deep chambers with an initially large size are less sensitive to
large melt influx, and may be in the “runaway growth” regime for melt fluxes of this
magnitude. Mantle plume-scale melt flux may therefore, in principle, sustain rapid
but stable growth of deep-seated magma chambers, and magmatic lensing provides
one mechanism by which large radiating dike swarms associated with these features
(Ernst et al. [1995]) might be emplaced.

4. The possibility for large-scale growth of a high melt fraction reservoir.

The “runaway growth” regime of magma chambers depends critically on both a suffi-
ciently high melt flux, and a shell viscosity that remains low enough to relax the large
stresses generated by this melt influx. Runaway growth, therefore, depends greatly on
depth and composition. Magma chambers in tonalitic country rocks are more prone to
this behavior, but large scale growth occurs for some range of parameters in all of the
depths and compositions tested in this study. This growth may occur very rapidly, with
100-fold volumetric increases in 100 ka, but will likely be shut off by shell viscosities
that can no longer relax chamber stresses.
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Application to Terrestrial magmatic systems

The construction of large igneous intrusions in the Earth’s crust has been argued to result
from either diapir-dominated or dike-dominated transport processes (Petford [1996], Miller
and Paterson [1999]). We assume here that the latter is more realistic, although the two
may share significant similarities, and base our arguments on 1) the short dike rise timescale
compared to the Stokes velocity of a melt diapir in the crust, and 2) the mechanism of
magmatic lensing, whereby a stalled pressurizing inclusion of melt may focus rising melt to
attain a large volume. There is considerable field evidence to support dike transport of melt
in middle to lower crustal terrains (e.g., Jagoutz et al. [2006], Dumond et al. [2007]), but
kilometer scale viscous advective processes have also been inferred (e.g., Zak and Paterson
[2005]). While we cannot hope to address specific field observations and analytical studies
directly with the simplified modeling framework presented here, general features of magmatic
transport processes and timescales may be constrained.

Predictions of our model include chamber growth rates, bulk assimilation of crustal rocks,
and constraints on lower crustal melt flux needed to produce stable and/or large chambers.
The broad dynamical regimes of chamber evolution that result are physically general, and
should translate to real intrusions. In this framework, it is interesting to ask whether various
classes of intrusion (e.g., calderas, plutons, layered mafic intrusions) might be differentiated
by dynamic regime alone. In addition, we would like to point out some specific measurements
of transport processes that our modeling addresses.

Caldera-forming chambers

Calderas are the best geologic evidence for large (up to ∼ 100 km scale) high melt fraction
crustal magma chambers, and are the center of much controversy regarding spatiotemporal
pluton-volcano connections (e.g., Lipman [2007], Glazner et al. [2008]). While there are
many complementary ways to approach this problem, remote sensing of deformation in
calderas provides important constraints on processes that are difficult to obtain from the rock
record. For example, Newman et al. [2001] model surface deformation at Long Valley caldera
assuming inflation is due to an inflating shallow magma chamber with a viscoelastic shell.
They infer a shell viscosity (∼ 1016 Pa s) that is much lower (and perhaps more realistic)
than our estimated bound on wall-rock viscosity (∼ 1019 Pa s, Appendix B), especially for
shallow chambers in a normal geotherm. Our modeling indicates that the size of viscoelastic
shell is composition- and depth-dependent, with 1 ≤ R2/R1 ≤ 2 for tonalitic country rocks,
and 1 ≤ R2/R1 ≤ 1.5 for amphibolite in deeper chambers, and generally very small for 5-10
km deep chambers. In fact, because shallow stable or runaway chambers are very difficult
to achieve in a “normal” geotherm, we suspect that the crust must be pre-warmed to form
large, high melt fraction bodies in the shallow crust.

Because constant magma addition increases chamber overpressure to values that approach
lithostatic in a purely elastic model, rupture will occur unless chamber stresses are relaxed.
Indeed, as demonstrated in Figure 3.10, the use of purely elastic pressurization as a proxy
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for magma chamber dynamics both results in unrealistically large overpressure and misses
important time-dependent dynamics (Results section). We note that the “runaway growth’
regime of magmatic lensing accommodates chamber growth in 105−106 year, which is similar
to the range of timescales postulated in other studies of caldera-forming eruptions (e.g.,
Hanson and Glazner [1995], Bachmann and Bergantz [2003], Simon et al. [2008]). Caldera
roof collapse depends on the concentration of deviatoric stresses and the development of
ring fractures (e.g., Gudmundsson [1988]). If the wall rocks are viscoelastic (equations 3.41-
3.46, Figure 3.12) the concentration of these stresses occurs only after ∼ 1 Maxwell time,
suggesting a lag between melt pressurization and collapse in caldera-forming eruptions.

Hughes and Mahood [2008] compile a database of calderas around the Pacific Rim, finding
that calderas are typically found in regions of local compressive tectonic stresses. This may
be explained through consideration of the mechanical aspects of magmatic lensing (Karl-
strom et al. [2009]), whereby the capture radius of the chamber (and therefore the incoming
melt flux) is increased with background compressive stresses. As pointed out by Jellinek and
DePaolo [2003], extensional stresses promote storage of an already-existing magma chamber
by providing strain to accommodate melt influx and decrease chamber overpressures. How-
ever, for small chambers, extension also serves to shut off the magmatic lensing mechanism
by creating more horizontally oriented least compressive stresses and decreasing the capture
radius of the chamber. This will inhibit the interaction of rising dikes with already-existing
magma chambers. Hence it is possible that local tectonic extension may both inhibit the
growth of small magma chambers and promote the stability of larger ones.

Plutons and Layered Mafic Intrusions

Recent detailed geochronology indicates that some (and perhaps most) intrusive suites have
crystallization histories of several million years (e.g., the Tuolomne Intrusive Suite and Mt.
Stuart Batholith, Miller et al. [2007]), and individual plutons may have been constructed
over 1 Ma (Coleman et al. [2004]). In the Sierra Nevada Batholith, plutons were emplaced
at depths ranging from 5 km in the East (e.g. the Bridgeport “Low P” zone) to > 25 km
in the South and Southwest (Ague and Brimhall [1988], Pickett and Saleeby [1993]). If
we use directly modern estimates for arc melt flux as a proxy for melt flux at the time of
emplacement of the Sierra Nevada Batholith, and assume intrusion depths of 20 km we find
that it is indeed possible to achieve chambers in the stable equilibrium or freezing regimes
(Figure 3.6). Based on this evidence, it does appear possible that 1-10 km scale chambers
could in principle exist at high melt fraction for extended periods (≥ 1 Ma). If the crust
were prewarmed by previous episodes of intrusion, stable chambers (perhaps caldera-forming
de Silva and Gosnold [2007]) would be more likely in the shallow crust.

Particular examples of well-exposed pluton-country rock contacts in the Sierra Nevada
offer other field evidence for the dynamic regimes of chamber growth. For example, the
Jackass Pass pluton (McNulty et al. [1996]) displays structural evidence for dike-assembled
magma chambers and for ductile creep that would imply a rheological gradient at the cham-
ber margin. Distinct absence of ductile flow markers and a sharp pluton-wall rock contact in
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the Piute Meadow (Albertz [2005]) pendant could be the result of a rapidly freezing intrusion,
or chambers in a “runaway growth” or “eruptive” regime that expand without forming a
viscoelastic shell. On the other hand, observations of increasing strain intensities toward the
pluton in the Saddlebag Lake pendant (Albertz [2005]) are consistent with the development
of rheological gradients. It seems clear that pluton assemblage is a complex and variable
process, and that relic batholithic structures represent time-integrated portraits of multiple
chambers in different dynamical regimes, associated with different and discrete volcanic cen-
ters, as high precision dating of plutons (Matzel et al. [2006]) and possible analog volcanic
systems (de Silva and Gosnold [2007]) are beginning to suggest.

Layered Mafic Intrusions found in predominantly cratonic settings form another class
of intrusions with which to compare our model. Based on estimates of total volume and
emplacement time, Cawthorn and Walraven [1998] estimate that the Bushveld complex (total
volume ∼ 106 km3) filled at an average rate of 9 − 15 km3/yr, and suggest that eruptive
removal of magma is required in order to fit the estimated cooling rates. By extrapolation
to 2D using a spatial dimension of 100 km for the Bushveld, this volumetric influx rate is
comparable to the highest melt fluxes that we model (100 m3/m2/yr), which are an estimate
of mantle plume melt rates (Farnetani and Richards [1995]). This is a possible source for
Bushveld melt (Hatton [1995]). Geobarometry on pelitic gneiss suggests that the depth
of crystallization for at least part of the Bushveld Complex was ∼ 20 km (Stevens et al.
[1997], Johnson et al. [2003]), though others have argued, based on geochemical evidence,
for a deeper-seated “staging chamber” (e.g. Harris et al. [2005]). Extensive isotopic analyses
(e.g., Harris et al. [2005], Majer et al. [2000], Kruger [2005]) also suggest significant crustal
assimilation, which may have reached upwards of 40 % of the total melt volume (Harris et al.
[2005]).

Based on these observations, we speculate that the Bushveld magma chamber may have
been in the “runaway growth” regime of our model. Leucosomes and migmatitic textures
Johnson et al. [2003] extend orthogonally into the country rocks 400 − 700 m from the in-
trusion, suggesting a lower bound to the viscoelastic shell around the chamber. If these
estimates of shell thickness are correct and representative (even within an order of mag-
nitude), this implies a very thin thermally altered region (less than 1 % of the Bushvelds
North-South extent), and hence very rapid emplacement. Detailed thermal modeling of
phase equilibria for the aureole beneath the Bushveld Complex (Johnson et al. [2003]) re-
sult in a melt fraction-temperature parameterization that most qualitatively matches our
tonalite curve for the range of melt fractions modeled in that study (≤ 0.3 volume fraction
melt). Crustal assimilation similar to the 40 % inferred for the Bushveld is quite possible in
our model (Figure 3.8), though we again stress that this is a qualitative comparison, as in
particular our chamber geometry is highly idealized. If the Bushveld Complex represents a
“runaway growth” regime magma chamber, the rapid emplacement of such a high volume
chamber in the mid crust is quite possible in ∼ 75 ka (Cawthorn and Walraven [1998]), and
chamber rupture is an inferred consequence of this mode of emplacement.
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Conclusion

Within the conceptual model developed here, we have shown that (1) there are four distinct
dynamical regimes for chamber gowth: long-lived (≥ 1 Ma) and thermally viable magma
chambers are possible at a range of depths, as are thermally viable chambers that can rapidly
grow, (2) viscoelastic properties of the coupled chamber/country rock system can “shut off”
as well as “turn on” chamber rupture, and (3) magma chambers may assimilate a range
of crustal rocks, depending on the dynamical regime. While most chambers in eruptive or
freezing regimes will not assimilate more than a few percent by volume of crust, a narrow
range of dynamically stable chambers may assimilate > 60% by volume of the surrounding
crust if the crust is relatively evolved and dry, and up to ∼ 40% by volume for “wet”
magma within amphibolitic country rock. These percentages are relative to the amount of
melt reaching the chamber, and should not be necessarily considered to represent the bulk
assimilated fraction of crustal melt, nor necessarily a firm characteristic of all long-lived
chambers.

Comparison of our models to realistic systems are largely speculative at this stage, how-
ever we believe that highly disparate intrusive structures may be reasonably cast into a
framework of dike-fed magma chamber growth. Our approach suggests that differences in
magmatic intrusions worldwide are due to differences in local physical parameters and not
physical processes. Lower crustal melt flux is the most important of these parameters, and
this likely determines the overall stability and size of a given intrusion. However, crustal
composition, background stresses and depth of emplacement are also important and may
strongly modulate chamber behavior. In particular, the influence of tectonics will strongly
affect the rise of magma through the crust, and indeed forms much of the framework for
our understanding of volcanism generally (e.g., Canon-Tapia and Walker [2004]). Likewise,
interactions between magma chambers, dikes and multiphase fluid processes are ultimately
responsible for surface volcanism, and a better characterization of topological evolution of
the system will further our ability to link the rock record and other time-integrated evidence
to magma transport physics.

3.7 Appendix

Viscoelastic chamber stresses

We solve the equilibrium equations of Linear Elasticity (e.g., Fung [1965]),

∇2u +
1

1− 2ν1,2

∇(∇ · u) = 0 (3.11)

where u are the vector elastic displacements, and ν1,2 is Poisson’s ratio for the shell (ν1 = 0.4,
to account for the presence of partial melt) and the country rocks ( ν2 = 0.25). We assume
that the Young’s moduli inside and outside the shell are equal, E = 70 GPa. Subject to
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Figure 3.1: The model problem, with a radial coordinate system centered on the cylindrical
chamber. The magma chamber consists of a high melt fraction interior (r ≤ R1), and a
viscoelastic shell (R1 ≤ r ≤ R2) that is overpressured and buoyant with respect to the
surrounding elastic country rock. Dikes, modeled as uniformly pressurized ellipses with
aspect ratio h/l = 10−3, are focused toward the chamber from a region defined by the
deviatoric stresses exerted by the chamber. This “capture radius” defines the magmatic
lensing mechanism (Karlstrom et al. [2009]).
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Figure 3.2: Possible interactions in the coupled thermal and mechanical model. Feedbacks
between melt influx, pressurization and phase change are responsible for the end member
dynamical regimes: freezing and erupting chambers. Balance of these competing effects
results in stable chambers.

boundary conditions in equations (3.1) - (3.4), we use the method of stress functions for
which a general solution to the equilibrium equations in polar coordinates (r, φ) exists (Fung
[1965]). Taking care to avoid multiple-valued displacements, stresses inside the viscoelastic
shell are

σrr,in(r, φ) = Ā1 −
B̄1

r2
+

(
C̄1(2ν1 − 3)

r
− D̄1

r3
+ 8Ē1r

)
cos (φ) (3.12)

σφφ,in(r, φ) = Ā1 +
B̄1

r2
+

(
C̄1(1− 2ν1)

r
+
D̄1

r3
+ 24E1r

)
cos (φ) (3.13)

σrφ,in(r, φ) =

(
C̄1(1− 2ν1)

r
− D̄1

r3
+ 8Ē1r

)
sin (φ) (3.14)
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Figure 3.3: (a) Time evolution of the infinite space radial normal stress σrr (Appendix
A) outside the magma chamber. The viscoelastic shell acts to propagate inner boundary
conditions toward the edge of the shell in time. Curves are multiples of the maxwell time of
a chamber with shell viscosity of 1019 Pas. (b) Time evolution of greatest principle deviatoric
stress outside the magma chamber. Deviatoric stresses inside the viscoelastic shell relax in
time (but see Appendix A for differences between overpressure, buoyancy, and half-space
solutions in this regard), while deviatoric stresses in the surrounding elastic medium increase.
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Figure 3.7: Stability field representation of the parameter space, in terms of dimensionless
physical timescales. The system’s thermal stability (total run time) is plotted against a ratio
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of the different nonlinear melt fraction curves (Appendix B). (a) Hydrous “arc” setting runs
(64 total). (b) Anhydrous “continental” setting runs (32 total).



CHAPTER 3. MAGMA CHAMBER STABILITY IN ARC AND CONTINENTAL
CRUST 66

103 104 105 10610
-4

10
-3

10
-2

10
-1

100

Time (years)

Fr
ac

tio
n 

of
 C

ou
nt

ry
 R

oc
k 

M
el

t 1 km 20 km 
0.5

0.5
2.5

20 
40 
40

Radius Depth

€ 

m3 /m2

yr

€ 

10−5

10 -3

10 -3

10 0

Melt Flux

Erupt

Runaway

Freeze

Stable

Runaway

Transiently stable

Time (years)

A. “Wet” Setting

3 4 5
-3

-2

-1

0

Freeze 

Erupt

B. “Dry” Setting
10

10

10

10
10 10 10

Fr
ac

tio
n 

of
 C

ou
nt

ry
 R

oc
k 

M
el

t

1 km 20 km 
0.5

0.5
2.5

20 
40 
40

Radius Depth
m3 /m2

yr

€ 

10−5

10 -3

10 -3

10 0

Melt Flux
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Figure 3.11: (a) Time evolution of greatest principle deviatoric stresses around a circular
overpressured chamber in an infinite space (equations 3.12-3.17). Colored curves indicate
time in increments of one half the Maxwell time (τve/2, Table 3.1), for a shell viscosity of
1019 Pas. (b) Time evolution of deviatoric stresses around a buoyant circular chamber. In
this case, asymmetry in the boundary conditions induces incomplete relaxation of deviatoric
stresses in the shell. Colored curves are time in increments of τve/4. Stresses in this case
are evaluated at the top of the chamber φ = 0 (the angle of maximum stress maximum
for infinite space solutions of positive buoyancy). Normal stress boundary conditions are
normalized to one in both panels.
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Free Surface
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α=α1

α=α2

Figure 3.12: Time evolution of greatest principle deviatoric stress field in the half-space
solutions (equations 3.41-3.46). Chamber depth is 5 km, R1 = 2 km, R2 = 3 km (equation
3.38), panel sizes are 12 km wide and 11 km high, with the stress free surface at the top.
The up-down asymmetry in shell thickness is a feature of the bipolar coordinate system used
to obtain the analytic solution, plotted here in cartesian coordinates. Overpressure is set
to 10 MPa, and stress contours are 2 MPa apart. Time between panels is multiples of the
“Maxwell Time” ηwr/E, where ηwr is the shell viscosity, and E is Young’s Modulus. Note
the topological change from one minima to two in the shell as deviatoric stresses are relaxed.
This is a result of shear stresses induced on the chamber by the free surface.
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Figure 3.13: Meltfraction vs. temperature curves used in this study. We use a piecewise
continuous curve for tonalite that better represents melting of biotite at low melt fractions.
Higher melt fractions are less well constrained experimentally, and hence do not warrant a
more detailed fit. Note that these curves are paramaterizations of melting experiments on
“generic” but independent samples.
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and outside the shell, in the assumed elastic medium

σrr,out(r, φ) =
B̄2

r2
+
C̄2(2ν2 − 3) cos (φ)

r
(3.15)

σφφ,out(r, φ) = −B̄2

r2
+
C̄2(1− 2ν2) cos (φ)

r
(3.16)

σrφ,out(r, φ) = −C̄2(1− 2ν2) sin (φ)

r
. (3.17)

Here Ā1, B̄1, C̄1, D̄1, Ē1, B̄2, C̄2 are constants evaluated to satisfy the boundary conditions,
equations 3.1-3.4, and are found to be

Ā1 =
(
∆P (ν2 − ν1)R2

1

)
/D (3.18)

B̄1 =
(
∆PR2

1R
2
2(−2 + ν1 + 2ν2

2 − ν2)
)
/D (3.19)

C̄1 = (R2
1∆ρg(2ν1 − 3)((R4

1 +R4
2(1− 4ν1))(1 + ν1)(3 + 4ν1(ν2 − 1)

−4ν2) + 2(R4
1 −R4

2)(4ν1 − 3)(2ν2
2 + ν2 − 1) log(R2)))/G (3.20)

D̄1 = −(R4
1R

2
2∆ρg(R2

2(1 + ν1(−5 + 2ν1 + 8ν2
1))(3 + 4ν1(ν2 − 1)− 4ν2)+

2(4ν1 − 3)(−R2
1(1 + 4ν1(ν2 − 1)− 6ν2)(ν − ν2) +R2

2(2ν1 − 1)
(−1 + ν2 + 2ν2

2)) log(R2)))/G
(3.21)

Ē1 = −(R2
1∆ρg(R2

1(1− 2ν1)(1 + ν1)(3 + 4ν1(ν2 − 1)− 4ν2)− 2(4ν1 − 3)
(−R2

2(1 + 4ν1(ν2 − 1)− 6ν2)(ν1 − ν2) +R2
1(2ν1 − 1)(−1 + ν2 + 2ν2

2))
log(R2))/G

(3.22)

B̄2 =
(
2∆PR2

1R
2
2(ν2

1 − 1)
)
/D (3.23)

D̄2 = −(R2
1∆ρg(1 + ν1)(3 + 4ν1(ν2 − 1)− 4ν2)(2R2

1R
2
2(1− 2ν1)2+

R4
1(3− 2ν1) +R4

2(3 + 2ν1(−7 + 4ν1))− 2(R4
1 −R4

2)
(−3 + 4ν1) log(R2))G

(3.24)

where

D = R2
2(2ν2

1 − ν2 − ν1 − 2) +R2
1(ν2 − ν1) (3.25)

G = 4(ν1 − 1)((R4
1 +R4

2(1− 4ν1))(1 + ν)(3 + 4ν(ν2 − 1)− 4ν2)+
2(R4

1 −R4
2)(4ν1 − 3)(2ν2

2 + ν2 − 1) log(R2)).
(3.26)

These stresses are the two dimensional equivalent of the spherically symmetric viscoelastic
solutions of Dragoni and Magnanensi [1989], but include buoyancy effects. Given these purely
elastic solutions, it is possible to find viscoelastic solutions via the correspondence principle
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(Fung [1965]), in which we assume that the material in the region R1 < r < R2 behaves as a
maxwell solid only with respect to deviatoric stresses (e.g. Dragoni and Magnanensi [1989]):

1

ηwr
σdev +

1

E

dσdev

dt
=
dεdev

dt
(3.27)

trσ = 3K trε (3.28)

where K is the bulk modulus, ε is the strain tensor, and ηwr is the shell viscosity. The
correspondence principle then entails making the substitution

µ1 =
E

2(1 + ν1)
= µ1(s) =

µ1ηwrs

µ1 + ηwrs
(3.29)

where s is the Laplace domain variable, and where use of the rigidity µ1 as the sole time-
varying material property indicates that only deviatoric components of the stress are subject
to creep (Dragoni and Magnanensi [1989]).

Viscoelastic solutions are then found by taking the inverse Laplace transform of the stress
components found by making the substitutions (3.29):

σij,V E = L−1[σij,E(s)]. (3.30)

Here σij,V E are viscoelastic stresses, σij,E(s) are the Laplace-domain transformed elastic
stresses, and L is the Laplace tranform operator

L [f(t)] =
∫ ∞

0
e−stf(t)ds. (3.31)

The expressions obtained by performing the Laplace transforms are unwieldy and are not
presented here. Cumbersome algebraic manipulations and inverse Laplace Transforms are
performed with the symbolic mathematics software package Mathematica (Wolfram 2008).

Principle deviatoric viscoelastic stresses used in the model are then found by solving for
the eigenvalues of the matrix defined by

σdev,VE = σVE − trσVE (3.32)

and are even more complicated expressions.
Of the two boundary conditions considered in this study, overpressure ∆P and magma

buoyancy ∆ρg, overpressure is the most important, generating stresses that are 3-5 orders
of magnitude greater than buoyancy effects. However, magma buoyancy is a first-order
mechanism for magma transport in many situations. It is therefore of note that viscoelastic
solutions for a uniformly pressurized circular cavity differ in important respects from corre-
sponding buoyant solutions. The viscous response to an overpressured inclusion is isotropic,
and a constant overpressure boundary condition in a viscous medium requires a constant
divergence of mass from the center of the inclusion. Buoyancy effects are, however, not
isotropic and generate flow around the inclusion.
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Our model considers a circular chamber with a viscoelastic shell in an elastic medium,
which acts as a rigid container on the maxwell timescale of the shell. Deviatoric stresses due
to chamber overpressure relax in time because of the isotropic nature of the viscous response
- in fact, this property defines pressure. However, deviatoric stresses due to buoyancy do not.
This is illustrated in Figure 3.10, where the time-dependent deviatoric radial stress at the top
of the chamber (φ = 0) is plotted for the overpressure and buoyancy boundary conditions.
While stresses due to overpressure decay to zero in time within the shell, buoyancy stresses
approach the stresses expected for Stokes flow around a buoyant inclusion rising toward a
rigid boundary: stresses change sign toward the rigid boundary. Exactly opposite stresses
occur at the bottom of the inclusion (φ = π).

To test the effects of a free surface on viscoelastic stress relaxation, we solve a half-space
viscoelastic chamber problem using stress functions Fung [1965], subject to overpressure
boundary conditions. We use the bipolar coordinate system defined in terms of Cartesian
coordinates by the complex mapping

x+ iy =
k(sinh(α) + i sin(β))

cosh(α)− cos(β)
(3.33)

where α and β are spatial coordinates, i =
√
−1, and k is a dimensional scaling factor

that relates curves of constant α. For more details about this coordinate system and the
method of stress functions, see e.g., Jeffery [1921], Karlstrom et al. [2009]. We merely state
the main results here. For this problem, boundary conditions are

σinαα|α=α1 = ∆P (3.34)

σinαα|α=α2 = σoutαα |α=α2 (3.35)

uinα |α=α2 = uoutα |α=α2 (3.36)

σαβ|α=α0 = σαα|α=0 = σαβ|α=0 = 0, (3.37)

where α1 and α2 are related to R1 and R2 in the polar coordinate system through

Ri = k csch(αi) (3.38)

for i = 1, 2.
Stress functions that satisfy the appropriate equilibrium equations and these boundary

conditions take the form

χin(α, β) = k
cosh(α)−cos(β)

(A1 cosh(α) +B1 sinh(α) + C1α(cosh(α)− cos(β))+

(D1 cosh(2α) + E1 sinh(2α)) cos(β)),
(3.39)

χout(α, β) = k
cosh(α)−cos(β)

(A2 cosh(α) +B2α(cosh(α)− cos(β))+

(C2 cosh(2α) +D2 sinh(2α)) cos(β)).
(3.40)
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Stresses that correspond to these functions are

σαα,in(α, β) = 1
k
(A1 + C1(cos(β)− cosh(α)) sinh(α)+

cosh(2α)(D1 − 2E1 cos(β) sinh(α))+
(E1 − 2D1 cos(β) sinh(α)) sinh(2α)),

(3.41)

σββ,in(α, β) = 1
k
(A1 + 4D1 cos(β) cosh3(α)−D1 cosh(2α)+

(C1 − 2E1) cosh(α) sinh(α) + cos(β)(−C1 + 4E1 + 2E1 cosh(2α))
sinh(α))2 cos(2β)(D1 cosh(2α) + E1 sinh(2α))),

(3.42)

σαβ,in(α, β) =
1

k
(cos(β)− cosh(α)) sin(β)(C1 − 2E1 cosh(2α)− 2D1 sinh(2α))) , (3.43)

σαα,out(α, β) = 1
k
(A2 +B2(cos(β)− cosh(α)) sinh(α)+

cosh(2α)(C2 − 2D2 cos(β) sinh(α))+
(D2 − 2C2 cos(β) sinh(α)) sinh(2α))),

(3.44)

σββ,out(α, β) = 1
k
(A2 + 4C2 cos(β) cosh3(α)− C2 cosh(2α)+

(B2 − 2D2) cosh(α) sinh(α) + cos(β)(−B2 + 4D2 + 2D2 cosh(2α))
sinh(α)− 2 cos(2β)(C2 cosh(2α) +D2 sinh(2α))),

(3.45)

σαβ,out(α, β) =
1

k
((cos(β)− cosh(α)) sin(β)(B2 − 2D2 cosh(2α)− C2 sinh(2α))) , (3.46)

and displacements outside the shell are

Uα,out(α, β) = (cos(β)((D2(λ2 − µ2)− 4B2(λ2 + µ2)) cosh(α)D2(λ2 + µ2)
cosh(3α) + 2(C2λ2 + A2µ2 + C2(λ2 + µ2) cosh(2α)) sinh(α) + (λ2 + µ2)
(2B2 + (−2D2 +B2) cosh(2α)− 2C2 sinh(2α)) + cos(2β)
(B2(λ2 + µ2) + 2D2µ2 cosh(2α) + 2C2µ2 sinh(2α)))/
(4µ2(λ2 + µ2)(cos(β)− cosh(α)))

(3.47)

Uβ,out(α, β) = (sin(β)((λ2 + 2µ2)(cosh(2α)(2C2 cos(β) +D2 sinh(α))+
(2D2 cos(β) + C2 sinh(α)) sinh(2α)) + cosh(α)(A2µ2 − (2λ2 + 3µ2)
(C2 cosh(2α) +D2 sinh(2α)))))/(2µ2(λ2 + µ2)(cos(β)− cosh(α))).

(3.48)
The constants A1, B1, C1, D1, E1, A2, B2, C2, D2 are evaluated to satisfy boundary condi-

tions 3.34-3.37, and are
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A1 = −(2k∆P (−csch(α1 − α2)(λ1 + 2µ1)µ2(λ2 + µ2) sinh2(α2)
+ cosh(α1) cosh(2α2)(λ1 + µ1)(cosh(2α2)(µ1 − µ2)(λ2 + µ2)+
µ2(λ2 + µ1 + µ2)) sinh(α2)− cosh(α2)(cosh(2α2)− 2) sinh(α1)
(λ1 + µ1)(cosh(2α2)(µ1 − µ2)(λ2 + µ2) + µ2(λ2 + µ1 + µ2))))/
(µ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1 cosh2(α2)+
4 cosh2(α1 − α2) sinh2(α2) sinh(α1 + α2)µ2) + λ2(8 cosh2(α1 − α2)
sinh(α1 + α2)µ2 sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)
−4 sinh(α1 − α2) + sinh(3α1 − α2))µ1)) + λ1(2µ2((sinh(α1 − 3α2)−
4 sinh(α1 − α2) + sinh(3α1 − α2))µ1 cosh2(α2) + sinh2(α2)(− sinh(α1 − 3α2)+
2 sinh(α1 − α2) + sinh(α1 + α2))µ2) + λ2(2(− sinh(α1 − 3α2) + 2 sinh(α1 − α2)+
sinh(α1 + α2))µ2 sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)−
4 sinh(α1 − α2) + sinh(3α1 − α2))µ1)))

(3.49)

B1 = (k∆P cosh(α1 − α2)(λ1 + µ1)(4λ1(sinh2(α2)λ2(µ1 − µ2)−
µ2(µ2 sinh2(α2) + µ1)) + µ1(4(cosh(2α2) + 3)(µ1 − µ2)µ2 sinh2(α2)+
λ2((6 cosh(2α2) + cosh(4α2)− 3)µ1 − 4(cosh(2α2) + 3) sinh2(α2)µ2))))/
(µ1(µ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1 cosh2(α2)+
4 cosh2(α1 − α2) sinh2(α2) sinh(α1 + α2)µ2) + λ2(8 cosh2(α1 − α2)
sinh(α1 + α2)µ2 sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2)+
sinh(3α1 − α2))µ1)) + λ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2)+
sinh(3α1 − α2))µ1 cosh2(α2) + sinh2(α2)(− sinh(α1 − 3α2) + 2 sinh(α1 − α2)+
sinh(α1 + α2))µ2) + λ2(2(− sinh(α1 − 3α2) + 2 sinh(α1 − α2) + sinh(α1 + α2))
µ2 sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1))))

(3.50)

C1 = (−4k∆P cosh(α1 − α2)µ1((λ1 − λ2 + µ1 − µ2)µ2+
cosh(2α2)(λ2 + µ2)(λ1 + µ1 + µ2)))/
(µ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1 cosh2(α2)+
4 cosh2(α1 − α2) sinh2(α2) sinh(α1 + α2)µ2) + λ2(8 cosh2(α1 − α2)
sinh(α1 + α2)µ2 sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2)+
sinh(3α1 − α2))µ1)) + λ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2)+
sinh(3α1 − α2))µ1 cosh2(α2) + sinh2(α2)(− sinh(α1 − 3α2) + 2 sinh(α1 − α2)+
sinh(α1 + α2))µ2) + λ2(2(− sinh(α1 − 3α2) + 2 sinh(α1 − α2) + sinh(α1 + α2))
µ2 sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1)))

(3.51)
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D1 = (−k∆P csch(α1 − α2)(cosh(2α2)µ1((λ1 − λ2 + µ1 − µ2)µ2 + cosh(2α2)
(λ2 + µ2)(λ1 + µ1 + µ2)) + cosh(2α1)(−λ1 − µ1)(cosh(2α2)(µ1 − µ2)(λ2 + µ2)+
µ2(λ2 + µ1 + µ2))))/(µ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2)+
sinh(3α1 − α2))µ1 cosh2(α2) + 4 cosh2(α1 − α2) sinh2(α2) sinh(α1 + α2)µ2)+
λ2(8 cosh2(α1 − α2) sinh(α1 + α2)µ2 sinh2(α2)+
cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1))+
λ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1 cosh2(α2)+
sinh2(α2)(− sinh(α1 − 3α2) + 2 sinh(α1 − α2)+
sinh(α1 + α2))µ2) + λ2(2(− sinh(α1 − 3α2) + 2 sinh(α1 − α2)+
sinh(α1 + α2))µ2 sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2)+
sinh(3α1 − α2))µ1)))

(3.52)

E1 = (k∆P csch(α1 − α2)(2 sinh(2α2)µ1(λ1 − λ2 + µ1 − µ2)µ2−
2 sinh(2α1)(λ1 + µ1)(λ2 + µ1 + µ2)µ2 − 2 cosh(2α2) sinh(2α1)
(λ1 + µ1)(µ1 − µ2)(λ2 + µ2) + sinh(4α2)µ1(λ2 + µ2)(λ1 + µ1 + µ2)))/
(2(µ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1 cosh2(α2)+
4 cosh2(α1 − α2) sinh2(α2) sinh(α1 + α2)µ2) + λ2(8 cosh2(α1 − α2) sinh(α1 + α2)
µ2 sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1))+
λ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1 cosh2(α2) + sinh2(α2)
(− sinh(α1 − 3α2) + 2 sinh(α1 − α2) + sinh(α1 + α2))µ2) + λ2(2(− sinh(α1 − 3α2)+
2 sinh(α1 − α2) + sinh(α1 + α2))µ2 sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)−
4 sinh(α1 − α2) + sinh(3α1 − α2))µ1))))

(3.53)

A2 = −C2 (3.54)

B2 = 2D2 (3.55)

C2 = (2k∆P cosh(α1 − α2) sinh(2α2)(λ1 + 2µ1)µ2(λ2 + µ2))
(µ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1 cosh2(α2)+
4 cosh2(α1 − α2) sinh2(α2) sinh(α1 + α2)µ2) + λ2(8 cosh2(α1 − α2) sinh(α1 + α2)
µ2 sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2)+
sinh(3α1 − α2))µ1)) + λ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2)+
sinh(3α1 − α2))µ1 cosh2(α2) + sinh2(α2)(− sinh(α1 − 3α2) + 2 sinh(α1 − α2)+
sinh(α1 + α2))µ2) + λ2(2(− sinh(α1 − 3α2) + 2 sinh(α1 − α2) + sinh(α1 + α2))µ2

sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1)))
(3.56)
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D2 = (−2k∆P cosh(α1 − α2) cosh(2α2)(λ1 + 2µ1)µ2(λ2 + µ2))/
(µ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1 cosh2(α2)+
4 cosh2(α1 − α2) sinh2(α2) sinh(α1 + α2)µ2) + λ2(8 cosh2(α1 − α2) sinh(α1 + α2)µ2

sinh2(α2) + cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1))+
λ1(2µ2((sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1 cosh2(α2)+
sinh2(α2)(− sinh(α1 − 3α2) + 2 sinh(α1 − α2) + sinh(α1 + α2))µ2)+
λ2(2(− sinh(α1 − 3α2) + 2 sinh(α1 − α2) + sinh(α1 + α2))µ2 sinh2(α2)+
cosh(2α2)(sinh(α1 − 3α2)− 4 sinh(α1 − α2) + sinh(3α1 − α2))µ1)))

(3.57)
The above expressions are then Laplace Transformed using equations 3.29 - 3.31, to

obtain viscoelastic stresses and displacements.
The elastic stresses in this case differ significantly from the infinite space solutions in

general, although they are asymptotically similar in the appropriate limiting conditions
(Figure 3.9). Deviatoric stresses around chambers at shallow depths are affected strongly by
the free surface, and shell stresses exhibit an interesting change in topology as time progresses
(Figure 3.12). This change reflects the shear stresses induced on the chamber by the free
surface, which gradually becomes dominant as isotropic deviatoric stresses relax away.

Thermal Model

The melt fraction of a magma determines its rheological properties, and mixtures of magmas
with different compositions are expected in chambers that grow through the discrete injection
of basaltic dike melt. We use one-parameter functions to relate melt fraction to temperature
in our model. For amphibolite, we use the parameterization of Dufek and Bergantz [2005]:

f(x, t) = −2.0968e−12T 5 + 1.09308e−8T 4 − 2.26718e−5T 3

+2.33912e−2T 2 − 12.0048T + 2451.69,
(3.58)

where
T = T (x, t) + 12(15 kbar − P ) (3.59)

and we pick a pressure of P = 10 kbar to evaluate T . For tonalite, we use a parameterization
drawn from Petcovic and Dufek [2005]:

f(x, t) = 1.9852e−7T 3(x, t)− 4.8481e−4T 2(x, t) + 0.39547T (x, t)
−107.54

(3.60)

This parameterization fits the data of Piwinskii and Wyllie [1968] well below melt fractions
f(x, t) ∼ 0.8. Higher melt fractions, which are more more poorly constrained by experiment,
are parameterized by a linear segment with slope 0.18.

Basaltic melt fraction curves follow from the parameterizations in Dufek and Bergantz
[2005], Petcovic and Dufek [2005] and the references therein. Anhydrous basalt follows the
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relation

f(x, t) = 2.79672e−11T 4(x, t)− 8.79939e−8T 3(x, t) + 1.01622e−4T 2(x, t)
−5.02861e−2T (x, t) + 8.6693,

(3.61)

whereas basalt with 2 wt % H2O has a melt fraction curve that accounts for the lower the
solidus

f(x, t) = 2.039e−9T 3(x, t)− 3.07e−6T 2(x, t) + 1.63e−3T (x, t)− 0.307. (3.62)

Figure 3.13 plots the four melt fraction curves used in this study, and the “critical melt
fraction” of 0.6. As discussed in the Results section, it is the different forms of these curves
(determined by the melting temperatures of modal mineral components) that account for
the degree of crustal anatexis in our model runs.

The viscoelastic shell is defined on the basis of equations (3.58) - (3.62), and the critical
melt fraction of 0.6 that defines the transition from liquid-like to solid-like behavior. In
calculating viscoelastic stresses, we use a constant viscosity throughout the shell, determined
by the highest temperature material in the shell and an Arhennius Law

ηwr = A exp(Q/nRT ) (3.63)

where A = exp(15.4) MPa, Q = 515 kJ/mol, n = 3.5, and R is the molar gas constant. This
viscosity law overpredicts shell viscosities, and it contains no model for crystal connectivity
(e.g., Scaillet et al. [1998]), but is nevertheless a commonly used formulation. The highest
temperature in the shell results in a lower bound on shell viscosity in our model. Other
choices (for example using the average temperature in shell) do affect details of the regime
diagrams (Figures 3.6 - 3.7), but the four dynamic regimes themselves are a robust result.

Inside the ‘liquid’ region of the magma chamber, we use a linear mixing law to determine
bulk material properties of the magma. Following Dufek and Bergantz [2005], we define a
parameter γ ∈ [0, 1] that defines the local volume fraction of intruded basalt or crustal melt.
The mixture density is then defined by

ρmix = γfcρ
l
c + γ(1− fc)ρsc + (1− γ)fbρ

l
b + (1− γ)(1− fb)ρsb, (3.64)

mixture heat capacity by

cmix = γfcc
l
c + γ(1− fc)csc + (1− γ)fbc

l
b + (1− γ)(1− fb)csb, (3.65)

and mixture conductivity by

kmix = γfck
l
c + γ(1− fc)ksc + (1− γ)fbk

l
b + (1− γ)(1− fb)ksb . (3.66)

Here superscripts l and s refer to solid and liquid, while subscripts c and s stand for
basalt and crust.

A number of factors in our model make keeping track of numerical errors important. The
local nature of melting and solidification, along with the multiphase nature of the domain,
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create a spatially discontinuous and nonlinear heat conduction problem. We have performed
tests to ensure that the predictor-corrector method used in our thermal calculation (Voller
and Swaminathan [1991]) does in fact converge to the correct solution at each time step.
Additional errors might occur during the discretization of melt into rings. Finite numerical
resolution means that it is possible for small incoming melt flux to fall within grid resolution,
so that the chamber does not conserve mass. This problem is overcome with sufficient spatial
resolution.
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Chapter 4

On the Evolution of Large Ultramafic
Magma Chambers and Timescales for
Flood Basalt Eruptions

4.1 Introduction

The emplacement of large igneous provinces (LIPs) is a poorly understood process. Endoge-
nous hypotheses for the large eruptive volumes associated with LIPs include mantle plume
heads, or starting plumes, impinging upon the lithosphere [e.g., Morgan, 1971, Richards
et al., 1989, Campbell and Griffiths, 1990], asthenospheric convection [e.g., King and Ander-
son, 1995] and lithospheric delamination [e.g., Tanton and Hager, 2000, Hales et al., 2005],
suggesting source regions for these events at a range of depths. Exogenic origins for LIPs
have also been proposed [e.g., Jones et al., 2002]. Most existing endogenous models for the
genesis of flood basalt provinces do not explain the geologically short durations (1 Ma or less)
of the “main-stage” eruptions that usually account for most of the erupted basalt volumes
for LIPs [Courtillot and Renne, 2003].

Other important aspects of LIPs awaiting satisfactory explanation, include the magnitude
of coevolving dynamic topography, the common (although not exclusive) association of LIPs
with continental rifting events, and the remarkably uniform compositions of the main–stage
basalts. There seems to be little consensus regarding the nature of magma chambers that
appear necessary to fractionate and homogenize the large quantities of basaltic melt before
eruption, despite the existence of extensive seismic evidence for large volumes of deep ul-
tramafic intrusive/cumulate bodies underlying LIPs [Cox, 1980, Ridley and Richards, 2010],
and extensive sills at more shallow depths [Elliot and Fleming, 2008]. These problems may
be largely attributed to our lack of understanding of what happens to the primary melts
produced in the mantle as they rise and interact with the overlying lithosphere and crust.

In our view there are a number of important questions related to the plumbing of LIP
magmatism. What are the melt production rates predicted by the various LIP generation
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hypotheses, and how might this melt accumulate in chambers? At what depths would these
magma bodies form, and what factors govern their emplacement? Are there multiple stages
or depths of fractionation and melt storage in the crust?

Other open questions are more directly linked to the geologic record: Why are the main–
stage eruptions so brief and so uniform in individual flow characteristics (erupted volumes,
major- and trace-element compositions)? How do inflation and deflation of intrusions affect
uplift and subsidence at the surface? To what extent can exposed large intra–crustal mafic
intrusions, and continental diking events be related to the eruption of flood basalts?

Of these questions, we are particularly drawn to that of the remarkably short duration
of the main-stage eruptions of flood basalts. The largest volumes of basalts are erupted
within ∼ 0.5 − 1.0 Ma, but primary mantle melting events during LIPs are expected to be
of duration > 10 Ma [e.g., Farnetani and Richards, 1994, Leitch and Davies, 2001]. Could
primary melt be ponded in deep sills or magma chambers for an extended period before
eruptions occur? This seems highly unlikely as such long–term storage is known not to
occur in the oceanic lithosphere and crust beneath modern hotspots [Hauri et al., 1996].
A more attractive hypothesis is that large scale eruptions are controlled by the ability of
the overlying crust to propagate fractures (dikes) to feed eruptions, limited by the onset
of viscous flow as the crust surrounding the magma body heats up in time [Jellinek and
DePaolo, 2003, de Silva and Gosnold, 2007].

We explore the latter hypothesis first by summarizing several independent lines of ev-
idence that connect deep magmatic processes with eruptive processes in LIPs. We then
formulate a model for the evolution of melt within and elastic deviatoric stresses surround-
ing a deep magma chamber. Finally, we apply these ideas to certain observational aspects
of LIPs, thereby beginning to address the processes that occur between primary melting in
the mantle and the eruption of flood basalts in both continental and oceanic settings.

4.2 The observed time progression of LIP magmatism

From radiometric and magnetostratigraphic dating it appears that many flood basalt provinces
have a similar time progression of eruptive style and cumulative output. Across the spectrum
of Phanerozoic LIPs recognized so far, in nearly every case there is a punctuated early phase
of flood basalt volcanism in which ∼ 80−95% of the total volume of lavas are extruded [e.g.,
Courtillot and Renne, 2003], often an order of magnitude shorter than the total duration of
the event, during which the style and composition of erupted lavas can vary greatly [Jerram
and Widdowson, 2005]. This trend has been shown for, among others, the Columbia River
Basalts [Barry et al., 2010], the Parana-Etendeka province [Melluso et al., 1999], the North
Atlantic province [Storey et al., 2007], and the Deccan traps [Allegre et al., 1999].

Most LIPs are underlain by large mafic–ultramafic intrusive bodies, widely observed in
the seismic record [Ridley and Richards, 2010]. This observation is not unexpected, in fact
the existence of cumulate bodies may be predicted from the fact that sublithospheric melting
of mantle plumes results in primary magmas of ultramafic, not basaltic, composition that
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are too dense to rise above the Moho or erupt [Farnetani et al., 1996]. Magma derived
from 20% partial melting of a model pyrolite at 2 GPa results in a melt composition that
includes 18% MgO and a corresponding melt density of about 2.9 kg/m3 at Moho depths,
more dense than the lowermost (gabbroic) oceanic crust. Thus we envision a 3-stage process
of (1) magma genesis in the mantle, (2) crystal fractionation (mainly olivine and pyroxene)
at near-Moho depths in large sill complexes, and (3) eruption (or higher level intrusion) of
basaltic magmas, as summarized in Figure 4.1. In fact, Cox [1980] inferred essentially the
same sequence of events from largely petrological considerations.

Explicit petrogenic models for the thickened crust of the Ontong–Java plateau, the largest
LIP known [Coffin and Eldholm, 1994], show that the seismic velocity structure underlying
the plateau can be explained in terms of sublithospheric mantle melting, deep fractionation,
and ultimately eruption of residual basaltic magma [Farnetani et al., 1996]. These petro-
logical models suggest that of order 2/3 the total melt volume is intruded material, with
maximum crustal thicknesses reaching up to 40 km, and representing more than 30 km of
crustal thickening relative to normal oceanic crust. Where high–quality seismic data are
available beneath continental flood basalt provinces (Emeishan, Columbia River, Deccan,
Siberia), high–velocity structures (Vp ∼ 6.9–7.5 km/sec) are typically found immediately
overlying the Moho in layers 5–15 km thick [Ridley and Richards, 2010]. Oceanic plateau
LIPs exhibit similar high velocity layers. These structures are similar to inferred ultra-
mafic underplating structures seen beneath active hotspots such as Hawaii, the Marquesas
and others [e.g., Watts and Brink, 1989, McNutt and Bonneville, 2000, Kopp et al., 2003,
Contreras-Reyes et al., 2010], suggesting that lower crustal ultramafic intrusive bodies are a
common feature of hotspot magmatism. Radiometric dating of uplift markers also provides
some evidence that intrusions may be, at least in part, responsible for the broad bathymetric
swells around hotspot islands [Ramalho et al., 2010].

Petrogenetic models for flood basalt volcanism based on hot plume material melting
beneath mature lithosphere suggest that these deep seismic structures consist in large part
of olivine and clinopyroxene cumulates [Cox, 1980, Furlong and Fountain, 1986, Farnetani
et al., 1996]. Such fractionation is necessary to produce basalts with typical MgO contents
of ∼ 3− 6%, as in the vast bulk of observed flood basalts, from primary melts with MgO of
∼ 20% such as result from hot, deep melting beneath the lithosphere.

4.3 Post–eruption Uplift and Doming

The overall question of uplift and subsidence associated with LIPs is controversial, compli-
cated by the non–unique transfer function linking mantle dynamics and surface topography.
Traditional mantle plume head models predict up to several kilometers of precursory up-
lift, and similar post–emplacement subsidence for LIPs [e.g., Campbell and Griffiths, 1990,
Farnetani and Richards, 1994, Saunders et al., 2007]. Evidence for general large–amplitude
uplift is present in some cases and lacking in others, however, and thermochemical plume
models [Farnetani and Samuel, 2005, Burov et al., 2007] suggest that uplift associated with
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plume impingement on the lithosphere may be much more complex.
Regardless of the melt generation mechanism, if the 10 Ma timescale for post main–

stage eruptions is accompanied by intrusion rather than eruptions, we would expect dynamic
topography of similar duration. And there is geologic evidence for continued uplift long after
the main–stage flood basalt eruptions occur. Ito and Clift [1998] studied Deep Sea Drilling
Project and Ocean Drilling Program data to constrain the uplift and subsidence histories
of the three largest Pacific plateaus, Ontong-Java, Manihiki, and Shatsky Rise. In all three
cases, subsidence post–dating the onset of eruptions is recorded by marine sedimentary
sequences overlying the basaltic basement rocks. Similar histories are confirmed for the
Ontong–Java plateau [Roberge et al., 2005] and the Kerguelen plateau [Coffin and Eldholm,
1994]. Notably, in all three cases studied by Ito and Clift [1998] there is a subsidence
deficit: purely thermal models for plume generated magmatism predict post–emplacement
subsidence at least ∼ 1 km more than observed. This deficit has been attributed to large
volume intrusions that continue for 10–30 Ma following the initial short lived outburst of
basaltic eruptions [Ito and Clift, 1998, Coffin and Eldholm, 1994].

LIP–related doming is also reported along the coast of southeastern Greenland in the
Kangerdlugssuaq area [Brooks, 1973, Nielsen and Brooks, 1981, Brooks, 1982]. This region
along the Denmark Strait was covered with up to 9 km of basalt at the onset of the North
Atlantic Tertiary flood basalt event, with flows apparently accommodated by simultaneous
subsidence as they were emplaced. Following these eruptions, and accompanying the opening
of the North Atlantic basin, an area of horizontal dimension ∼300 km along the Kangerd-
lugssuaq coastline experienced a broad domal uplift of amplitude at least 4 km, estimated to
have occurred within 10 Ma of the flood basalt eruptions. Continued intrusion of ultramafic
magmas into the deep crust [e.g., White et al., 2008] provides a plausible explanation for this
doming. Indeed, abundant shallow–crustal intrusive activity followed the basalt eruptions in
this area, including the Skaergaard and other gabbroic intrusions shortly following the main
extrusive episode, with more evolved syenitic intrusions 5 Myrs later [Tegner et al., 2008].

Finally, we note an additional observation from the Galapagos Archipelago that appears
relevant to the question of deep intrusion. The Galapagos Islands are formed upon a broad
platform of anomalously thick oceanic crust bounded on its SSW side by a steep escarpment
of unknown origin. The SSW escarpment of the Galapagos Platform is now understood to be
composed of many small topographic shelves that must predate the subsequent formation of
the multiple shield complexes that have formed the islands and seamounts of the Galapagos
Archipelago [Geist et al., 2005]. The crustal thickness of the platform approaches 14–15 km
[Feighner and Richards, 1994], and modeling suggests that about one third of this material
must be mafic–ultramafic bodies intruded as the oceanic lithosphere passed over the Gala-
pagos mantle plume. We believe the Galapagos Platform and similar oceanic islands may
also represent a case of massive igneous intrusion in the wake of initial basaltic eruption and
shield formation.
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4.4 Evolving Density of Primary Melt

We are interested in what factors other than the timescale for mantle melting may control the
timescale for flood basalt eruptions. Our modeling thus considers the end member scenario in
which extraction of partial melt from a plume head impinging upon the lithosphere occurs
rapidly, generating a supply of magma that rises towards the base of the crust for the
lifetime of decompression melting. This is assumed to be longer than the duration of main
phase eruptions [e.g., Farnetani and Richards, 1994]. Assuming that individual main stage
eruptions are controlled by rupture of a single magma reservoir, there are two possibilities to
consider. Failure may initiate internally from the chamber, as stresses accumulate through
recharge and buoyancy evolution driving dikes to the surface. Alternatively, there may be
some external trigger that destabilizes the chamber and drives dike propagation.

Initial melting of a pyroxenite upper mantle will generate ultramafic magma that is
more dense than the overlying crust, so that the density and rigidity contrast at the Moho
will trap melt until it evolves sufficient buoyancy to erupt. This buoyancy is generated
by a combination of fractional crystallization and progressive concentration of incompatible
volatile species such as H2O and CO2 in the liquid. Depending on the depth and volatile
concentration, and neglecting phase separation between bubbles and melt, exsolution of CO2

may occur at Moho depths causing dramatically decreasing magma density and increasing
compressibility. We explore these effects in numerical experiments combining the petrological
modeling program pMELTS [Ghiorso and Sack, 1995, Asimow and Ghiorso, 1998, Ghiorso
et al., 2002] with a joint H2O and CO2 solubility model calibrated for ultramafic magmas
[Papale, 1999a]. We assume a mantle pyrolite at 2 GPa (∼60 km depth), and raise the
temperature about 200 ◦C above the normal mantle adiabat, sufficient to cause 10% partial
melting. Primary volatile contents are estimated based on solubility experiments at mantle
temperatures and pressures, which suggest upper mantle water contents of ∼ 0.1 wt % up
to nearly 1 wt% and CO2 contents of ∼ 0.01 to ∼ 0.1 wt% [Dasgupta and Hirschmann,
2006, Smith et al., 2006]. We do not attempt to explore this parameter range here, instead
choosing a mantle concentration of 0.1 wt% H2O and 0.05 wt% CO2 to illustrate the effect
of volatiles on melt evolution.

The extraction and fractionation simulation then progresses as follows. Melt rises adia-
batically to a pressure of either 300 MPa (∼ 10 km depth) or 8 MPa (∼ 30 km depth) to
approximate a typical Moho depth in oceanic or continental settings. The melt at this stage
is ultramafic, with 20% MgO, a density of 2.75–2.85 kg/m3 (depending on depth and volatile
content), and volatile contents of 0.5 wt % CO2 and 1 wt % H2O. These volatile contents are
similar to Hawaiian lavas [Gerlach et al., 2002], but might be underestimates for LIP events
[Lange, 2002].

We then simulate the storage and crystallization of this melt in a magma chamber.
Cooling simulations are performed isochorically and isobarically, as end member fractiona-
tion scenarios [Fowler and Spera, 2008]. Isochoric crystallization assumes a rigid container,
letting pressure adjust to the volume changes induced by phase change. Isobaric crystal-
lization instead fixes pressure, leaving the container volume to adjust freely. Either case is



CHAPTER 4. ON THE EVOLUTION OF LARGE ULTRAMAFIC MAGMA
CHAMBERS AND TIMESCALES FOR FLOOD BASALT ERUPTIONS 86

an idealization of crystallization dynamics, as pMELTS calculations are all done at thermo-
dynamic equilibrium (no time), and we do not model the separation of crystals and melt
that becomes increasingly difficult at high crystal fraction [e.g., Dufek and Bachmann, 2010].
Pressure and volume changes implied by pure isobaric and isochoric crystallization are also
often large enough to induce wall rock failure [e.g., Fowler and Spera, 2008], implying that
other dynamics are also important. However this procedure does provide bounds for the
expected chemical evolution of LIP magma. Keeping track of the progressive concentration
of volatiles in the melt phase, we test the solubility of volatiles at each temperature step (2
degrees). If saturation is reached, we calculate a mixture density of the melt phase via

ρmix =

(
n

ρm
+

1− n
ρf

)−1

, (4.1)

where n is the mass fraction of volatiles in the melt phase, ρm is the density of the melt
calculated from pMELTS, and ρf is the density of the exsolved volatile phase (CO2) as a
supercritical fluid calculated via the MRK equation of state [Kerrick and Jacobs, 1981]. We
vary the temperature and pressure (isochoric cases) according to the output of pMELTS to
calculate H2O+CO2 solubility throughout the simulations, but use the initial melt composi-
tion throughout. This introduces errors in the solubility of order ∼ 1%, negligible compared
to other model approximations. Solid phases crystallizing from the melt are initially olivines
and feldspars, with increasing amounts of plagioclase and pyroxene as crystallization pro-
gresses. We do not fractionate exsolved volatile phases, but note that the observation of
diffuse CO2 flux at ocean islands such as Hawaii [Gerlach et al., 2002] implies that some
phase separation does occur naturally.

It is evident that significant melt buoyancy, calculated with respect to a fixed refer-
ence density of 2700 kg/m3, is generated as fractionation proceeds (Figure 4.2.a). At 800
MPa exsolution of CO2 may not become a dominant control on density until roughly 35%
crystallinity (isobaric upper bound), but the shallower 300 MPa experiment results in CO2

exsolution even for zero crystallinity as the exsolution surface is at greater depth. This im-
plies that magma reaching the Moho at shallow depths will be buoyant, with destabilization
and eruption possible on a timescale proportional to the influx of primary melt. At greater
depths the concentration of volatiles in the melt phase due to progressive fractionation will
dictate the critical crystal fraction necessary to transition from ponding of magma to erup-
tion. Isobaric experiments performed for volatile–free primitive magmas (blue and orange
curves in Figure 4.2.a) do not exhibit the same buoyancy production during crystallization
and may stably pond even at shallow depths.

LIP lava major element chemistry is another constraint on melt evolution, requiring some
melt differentiation before eruption to generate basalt. We therefore use the liquid compo-
sition calculated from pMELTS to identify an additional possible threshold crystallinity for
eruption. As Figure 4.2.b illustrates, sufficiently evolved melts with basaltic MgO contents
< 10% [e.g., Cox, 1980, Lange, 2002] does not occur until ∼ 25% crystallinity for both 300
MPa and 800 MPa.
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Given these bounds on the thermodynamic evolution of ponded primitive melts, we take
30% crystallinity to represent the transition from ponded to eruptible magmas based on
buoyancy considerations, but experiment with a range of critical crystal fractions up to 80%
to match the range of MgO contents observed in LIPs. We will show that the choice of
critical crystal fraction is not a major control on the eruptibility of LIP magmas. However,
lower choices of critical crystal fraction do imply additional fractionation during ascent or
assimilation of surrounding crust to produce basalts. Sufficiently large influx of magma
will cause net melting and assimilation to occur even at Moho depths. This latter effect
may control the transition from dynamically stable to eruptible magma chambers at mid
to upper crustal levels [Karlstrom et al., 2010a], facilitating intrusion of mafic melt into the
lower crust. If assimilation does not contribute much to the buoyancy of these primitive
melts, mantle melt influx will simply expand the chamber. When heat loss outpaces heat
input to the chamber, fractional crystallization towards basaltic composition can occur.

In summary, if the Moho acts as a mechanical trap for rising melts, primary magma
reaching Moho depths is less dense than primary pyrolite but requires additional buoyancy
production to continue rising through the lower crust. The timescale for this to occur
depends on an interplay between crystal fractionation and volatile exsolution. At depths
greater than the CO2 saturation depth, the rate limiting process is volatile concentration
through fractional crystallization of magma. At more shallow depths the rate limiting step
is the accumulation of bubbly melt.

Buoyancy production due to recharge of bubbly magma occurs on the filling timescale
of the magma chamber, Vch/Q, where Vch is the chamber volume and Q is the melt influx.
Chamber volumes are likely on the order of single eruptive volumes (103 − 104 km3) [Barry
et al., 2010]. Melt flux (assuming rapid extraction of 10% partial melt from a plume head)
scales with the ascent velocity Vplume of plume material across the rheological boundary layer
of thickness Z at the base of the lithosphere as [e.g., Sleep, 2007] Q ≈ 0.1VplumeAplume ≈
0.1ρgα∆TZ2πR2

plume/µ. Influx ranges from 101 − 10−3 km3/yr for ∆T = 100 K, ρ = 3000
kg/m3, g = 10 m/s2, α = 10−5 K−1, Z = 10 km, µ = 1017 − 1019 Pas and Rplume = 100 km
(plume cross sectional area is Aplume = πR2

plume), thus the filling timescale is ∼ 102− 106 yr.
We assume that filling times on the lower end of this range are reasonable for the present
model.

The timescale for fractional crystallization may also be simply estimated, by constructing
the energy balance at the chamber walls that dictates the crystallization rate Qxtal,

Qxtal =
q(∆T )Sch
ρmixL

− Qcp∆T

L
. (4.2)

Here q(∆T ) is the heat flux at the walls, written explicitly as a function of temperature
difference between chamber and country rocks, Q is the influx rate of magma into the
chamber, and Qxtal = Vxtal/txtal is the rate of solidification in the chamber. Sch the surface
area of the chamber, taken to resemble an oblate spheroid, cp = 1.5 KJ/kg K the specific
heat capacity, ∆T a drop in temperature below the magma liquidus, and L = 400 KJ/kg
the latent heat of fusion. Because the crystallized volume is a fraction of the total chamber
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volume (Vxtal = ΦVch), we can rearrange equation 4.2 to find the time required to crystallize
a fraction of the chamber volume at a given magma influx rate, plotted in Figure 4.3

txtal = ΦVch

(
q(∆T )Sch
ρmixL

− Qcp∆T

L

)−1

. (4.3)

In equation 4.3 we experiment with Φ = 0.3− 0.8, the critical crystal fraction for eruptible
magma as derived from our melt evolution calculations. This crystal fraction sets the melt
mixture density ρmix and temperature drop ∆T between melt and country rocks. Larger ∆T
corresponds to lower densities and shallower depths, while large mixture densities correspond
to volatile poor, primitive melts at greater depth with smaller ∆T . The crystallization time
txtal becomes large as input of enthalpy through magma influx approaches the dissipation
of heat to the surroundings, which scales with the surface area of the chamber Sch (Figure
4.3) . This can be seen in equation 4.3, where the crystallization time becomes singular as
q(∆T )Sch/ρmixL ∼ Qcp∆T/L.

We estimate heat flux at the chamber walls using a steady state solution for a constant
temperature oblate spheroid. Assuming large melt influx, this will underestimate heat trans-
fer as it neglects the transient heating of an initially cool lower crust by the intrusion. It is
an upper bound to the buoyancy evolution timescale. Steady state temperature around the
chamber follows a simple expression in the oblate spheroidal coordinate system [Moon and
Spencer, 1988]

T (x) = T (ξ) = T0 + ∆T
cot−1(ξ)

cot−1(ξ0)
, (4.4)

where ξ ∈ [ξ0,∞) is a nondimensional distance from the chamber wall, and ξ0 =
√
e2 − 1

defines the boundary of an oblate spheroid with semimajor axis a, semiminor axis c and
eccentricity e = 1/a

√
a2 − c2 . T0 is the background temperature, and ∆T is the temperature

difference between the magma and country rocks. Heat flux is then, with k = 3 − 4 W/m2

the thermal conductivity [Whittington et al., 2009],

q(ξ) = k∇T (ξ) =
k∆T

cot−1(ξ0)(1 + ξ2)

[
1 + ξ2

(a2 − c2)(ξ2 + η2)

]1/2

, (4.5)

where η ∈ [−1, 1) is the polar angle in the oblate spheroidal coordinate system. This heat flux
closely approximates a heated sphere at large distances, but reflects geometrical differences
in the near field and is larger at the poles than at the equator (Figure 4.4.a). Using surface
area

Sch = 2πa2 + π
c2

e
ln
(

1 + e

1− e

)
(4.6)

and volume Vch = 4/3πa2c we can then use equation 4.3 to estimate the time required to
obtain an eruptible, basaltic composition magma. After this time, magma can rise through
the lower crust, driven by a combination of buoyancy and overpressure. However, as Figure
4.3 illustrates, the ultimate choice of critical crystal fraction for which buoyant melts is fairly



CHAPTER 4. ON THE EVOLUTION OF LARGE ULTRAMAFIC MAGMA
CHAMBERS AND TIMESCALES FOR FLOOD BASALT ERUPTIONS 89

unimportant. Comparing calculations for Φ = 0.3, ρmix = 2700 kg/m3 (solid curves) with
those for Φ = 0.8, ρmix = 1500 kg/m3 (dotted curves), we find that the predicted timescales
are roughly linear in Φ. The timescale for buoyancy evolution will be less than 1 Ma for all
reasonable parameter choices.

4.5 Magma chamber dynamics

We now consider the eruptive evolution of an LIP magma chamber. Assuming that isotropic
overpressure is the dominant stress boundary condition, we follow the conceptual magma
chamber model of [Jellinek and DePaolo, 2003], who proposed that prolonged heating of
country rocks produces a shell of viscoelastic material that may undergo viscous creep on the
timescale of chamber pressurization, relaxing away deviatoric stresses in the country rocks.
These stresses are responsible for fracture and dike generation, so viscoelastic relaxation is
a mechanism by which chambers may grow and remain stable at temperatures above the
solidus without eruption for extended timescales [Jellinek and DePaolo, 2003, Karlstrom
et al., 2010a].

We assume a threshold propagation criterion for dike propagation in which dikes may
form if deviatoric stresses in the country rocks exceed a critical value of 1 MPa [Rubin, 1995b].
This is a crude approximation to dike propagation mechanics, but it does allow us to explore
the relevant timescales for stress relaxation and dike shut-off implicit in our hypothesis.
Initial deviatoric stresses in the country rocks larger than 1 MPa are spatially concentrated
around the chamber in a rupture envelope (Figure 4.5), bounded by the geometric falloff
and relaxation of deviatoric stresses. The region of viscous creep expands in time as heat
diffuses from the chamber, so effective viscoelastic relaxation is time–dependent and the
rupture envelope progressively shrinks. The time at which deviatoric stresses everywhere
relax below 1 MPa is taken to be the maximum timescale over which dike propagation can
occur.

Magma chambers are often idealized as pressurized cavities in elastic or viscoelastic media
[Gudmundsson, 2006]. Stresses generated by a pressurized oblate spheroidal magma chamber
are modeled with the equations of linear elasticity with no body force [e.g., Fung, 1965],
subject to the normal stress boundary conditions at the boundary of the chamber R. We
use a numerical implementation of the exact solution to this problem [Eshelby, 1957, Healy,
2009], illustrated in Figure 4.4.b.

Stresses are then related to the thermal evolution of rocks around the magma chamber,
through a Maxwell viscoelastic constitutive equation for the country rocks. Maxwell vis-
coelastic stress solutions are available for pressurized chambers with simple geometry [e.g.,
Dragoni and Magnanensi, 1989, Karlstrom et al., 2010a], and exhibit exponential relaxation
of deviatoric stresses on a characteristic (Maxwell) timescale τ = Cµ/Y , where µ is the
viscosity of the wall rocks, Y is the Young’s Modulus, and C is a geometrical factor (of order
unity) related to the size and shape of the viscoelastic shell. We assume that time dependent
deviatoric stresses σdev(x, t) for our problem take the form
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σdev(x, t) ≈ σdev(x) exp
(
− t
τ

)
. (4.7)

and that we can use the static Eshelby solution to calculate σdev(x).
Viscosity follows an Arrhenius Law

µ = A−1/n exp

(
E

nRT (x, t)

)
, (4.8)

in which A depends on the particular stress-strain relation used, R is the ideal gas constant,
E is an activation energy, and n is the power law exponent. E and n depend upon confining
pressure and rock type, while A in our parameterization depends on grain size (taken to be
constant at 100 µm). We refer to several sets of laboratory dislocation creep measurements
on mantle lithosphere and lower crustal rocks to bracket the rheological behavior at Moho
depths (Table 4.7), including data on pyroxenite, olivine and anorthite. Rheology is of
critical importance to our results, although there is significant uncertainty in the appropriate
Arrhenius parameters n, E, and A for the lower crust [Bürgmann and Dresen, 2008].

We cannot assume steady state heat transfer, as we did to estimate a crystallization time
of the magma chamber. However, the available asymptotic analytic solutions [Norminton
and Blackwell, 1964, Blackwell, 1972] are not sufficient. We assume an idealized temperature
evolution, the sudden heating of a sphere with radius equal to the semi–major axis of our
ellipse:

T (x, t) = T (r, t) = T0 + ∆T
Rc

r
erfc

(
r −Rc

2
√
κt

)
, (4.9)

where T0 is the initial temperature of the wall rocks, ∆T is the temperature change im-
posed by the magma chamber, Rc is the radius and r is distance from the of the sphere ,
κ = 0.5x10−6m2/s [Whittington et al., 2009] is the thermal diffusivity and t is time. This
solution overestimates thermal diffusion near the midplane of a spheroidal magma chamber
(see the steady state temperatures in Figure 4.4.a). Given our neglect of other important
transient heat transfer processes such as crystallization and convection within the chamber
[e.g., Marsh, 1989], however, this model is sufficient.

We combine equations 4.7-4.9 to estimate the temporal evolution of the temperature and
stresses surrounding the magma chamber. Effective deviatoric stresses are doubly exponen-
tial functions of temperature

σdev(x, t) ≈ σdev(x) exp

[
−t Y A1/n exp

(
−E

nRT (x, t)

)]
. (4.10)

In general viscosity depends on stress as well as temperature [e.g., Jull and Kelemen,
2001], but the doubly exponential temperature dependence should dominate the relaxation
behavior, and this fact leads to rather robust limits on the timescale over which deviatoric
stresses around a heated and pressurized magma body are effectively dissipated.
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External triggers

Finally, we consider the possibility that Large Igneous Province magma chambers might be
destabilized by stresses imposed externally. There are two sources for these stresses. First,
background tectonics or flexure of the lithosphere due to plume emplacement may generate
stress concentration around a magma chamber, and may facilitate transport of magma to
higher crustal levels or the surface. We neglect tectonic forcing here, but note that plume-
related flexural stresses should induce sill emplacement and horizontal transport of magma
rather than surface eruption, due to the sub-horizontal orientations of principle stresses in
the bottom half of the plate [Galgana et al., 2011]. This could be a source of large scale sill
emplacement if dynamic topography increases throughout the eruptive process.

An additional source of external stresses is the Earth’s free surface: as is well known,
a pressurized cavity beneath a free surface incurs shear stresses that concentrate along the
margins of the chamber. This effect is often invoked as the source of ring fractures during
caldera collapse [Gudmundsson, 1998], and becomes pronounced when the ratio of chamber
size to chamber depth approaches unity [Grosfils, 2007]. Free surface stresses may also be
important for the dynamic organization of deeper crustal melt transport [e.g., Karlstrom
et al., 2009].

It is possible that LIP magma reservoirs, despite their depth, may grow laterally large
enough for free surface stresses to become important. In this case, free surface stresses place
a fundamental limit on the size (and eruptible volume) of these chambers. We assume here
for simplicity that dike formation occurs when the lateral chamber dimension is equal to the
depth. These shear stresses will not be relaxed away through viscous creep unless the entire
crust behaves as a Newtonian fluid on the timescale of magma transport, hence there is a
basic mechanistic limit on the size of a continuous overpressured body at depth.

4.6 Results

Shutoff timescales implied by equation 4.10 are evaluated for a range of magma chamber
sizes and rheological parameters using Newton–Raphson iteration. The maximum stress
occurs at the midplane of the oblate spheroid, where curvature is highest. We calculate
the maximum deviatoric stress as a function of distance from the chamber, and evolve time
forward to find the longest time for which stresses around the chamber exceed 1 MPa (Figure
4.5). Magma chamber overpressure may be estimated in a variety of ways, but is in general
a major uncertainty in the modeling of magma dynamics. We choose an overpressure of 100
MPa in all models. Although transient stresses larger than this value might be possible, 100
MPa exceeds most estimates of maximum magma chamber failure strength [e.g., Jellinek and
DePaolo, 2003, Traversa et al., 2010] and will result in the redistribution of melt through
diking rather than prolonged storage in a central reservoir. The influx rates implied by this
overpressure are a function of chamber volume, but generally fall in the range of 100 − 10−3

km3/yr.
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To close the thermal part of the model, we have assumed a Moho–level emplacement in
continental and oceanic crust. These endmember scenarios provide a guide for the expected
background temperatures, pressures, and country rock rheologies. Although there is consid-
erable controversy over the dominant structure and deformation mechanisms of the lower
(particularly continental) crust [e.g., Bürgmann and Dresen, 2008], different hypotheses may
be simplified into two scenarios: hot and dry or cool and wet lower crustal rheologies. We
perform calculations for both cases, assuming experimentally determined power law param-
eters for anorthite, clinopyroxene and olivine to explore the likely parameter space (Table
4.7).

The maximum time over which stresses anywhere outside the chamber exceed 1 MPa is
found by testing a range of Moho temperatures and chamber sizes (fixing chamber aspect
ratio = 0.1 ). As a consequence of the doubly exponential dependence of deviatoric stresses
on temperature, initial Moho temperature exerts the strongest control on this timescale.
Continental crust is represented by an initial temperature difference of 600–800 ◦C between
Moho and intruding magma depending on choices of intrusion depth and surface heat flow
in the conductive geothermal gradient (Figure 4.6.a). Using a typical conductive geothermal
gradient, these temperatures map onto crustal thicknesses of 30–50 km. High velocity layers
commonly exist at ∼ 40 km depths beneath continental provinces (Moho temperatures of ∼
530◦C) [Ridley and Richards, 2010]. Oceanic crust is thinner (average thickness 7 km), with
higher heat flow and an error function geothermal gradient, resulting in larger temperature
differences of 700-900 ◦C between melt and country rocks (Figure 4.6.b) corresponding to
Moho depths of 10–30 km. High velocity layers are commonly observed at ∼ 20 km depths
under oceanic LIPs [Ridley and Richards, 2010].

As Figure 4.6 emphasizes, country rock rheology (as expressed through the Arhennius
parameters n,E, and A in Table 4.7) has first order effects on relaxation times. While the
list of plausible crustal rheological parameters in either case is long [Bürgmann and Dresen,
2008], the range of relaxation times for single mineralogies provide a rough guide to effects
of composition. We also model the effect of water in both cases (dotted curves in Figure
4.6), illustrating that hydrated mineral assemblages will relax away deviatoric stresses with
greater ease than their dry counterparts. Overall, we find that hotter emplacement tem-
peratures and hydrated mineralogies are most consistent with relaxation times of order 106

years for both continental (some combination of anorthite and anorthite and clinopyroxene)
and oceanic (clinopyroxene and olivine) settings. Chamber size exerts some control on the
relaxation timescale, with smaller chambers representing smaller stress perturbations than
larger chambers, but overall this is a secondary effect compared to environmental conditions.

Controls on critical chamber size

We now assess which of the three mechanisms for chamber destabilization presented here
(elastic pressurization, buoyancy evolution, free surface effects) may be important for LIPs.
Chemical evolution must occur before main–stage eruptions can begin, as LIPs are often
predominately basalt. By comparing Figures 4.3 and 4.6, it is evident that under many cir-
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cumstances chemical evolution occurs rapidly, followed by chamber failure that is eventually
shut off due to relaxation of deviatoric stresses on a timescale similar to the main stage of
many LIPs. Crustal relaxation times vary considerably depending on lower crustal rheology
(Figure 4.6), however assuming hot, dry continental lower crust and cool, wet oceanic crust,
it is quite reasonable to infer a relaxation (or equivalently an eruptive) timescale of ∼ 106

years in both cases.
Nonetheless, there are also clearly cases for which isotropic stresses may be relaxed much

more quickly. It is possible in some circumstances that buoyancy evolution is outpaced by
viscous relaxation of stresses, and other mechanisms for destabilizing LIP magma chambers
must operate. In a viscous regime in which continued influx does not induce eruptions
through diking, LIP chambers will spread out along the Moho as gravity currents. Recharge
related deviatoric stresses decay quickly in this regime, and the chamber will continue to
stably expand until free surface shear stresses begin to accumulate around the chamber.
For an axisymmetric viscous gravity current, the semi major axis a will scale with time as
a ≈ Ktn, with K,n positive constants that depend on the boundary conditions, material
properties and input flux [Lister and Kerr, 1989]. n = 1/2 for steady axisymmetric flow along
a rigid boundary fed by constant flux Q, while K = (g′Q3/µ)1/8 with µ the viscosity of the
surrounding liquid (the warmed wall rocks), and g′ gravity scaled by the density difference
between the fluid and the surroundings.

Assuming a density difference of 300 kg/m3, ambient viscosities of µ = 1016 − 1020

Pas, and a range of melt influx Q = 100 − 10−3 km3/yr, this scaling suggests that in a
viscous regime, magma spreading at the Moho will attain a lengthscale comparable to its
depth in ∼ 0.1 − 1 million years. At this point we assume that elastic stresses due to
free surface effects accumulate, initiating melt redistribution and eruptions. Progressive
warming will lead to increased viscous response of the country rock, thus this mechanism
provides a limit to the stable size of magma chambers, redistributing stored melt through
diking or surface eruptions. However, there is no simple way to shut off eruptions via
this mechanism, so surface eruptions would continue unimpeded for the duration of mantle
melting. Based on the evidence for crustal modulation of mantle melting represented by
distinct main phase eruptions, we rule out a purely viscous response to lower crustal melt
flux. But such considerations do suggest the possibility of entirely intrusive LIPs that never
erupt large volumes of lava.

4.7 Discussion

Provided melt extraction from the mantle is rapid, our analysis suggests that modulation of
magma transport by the crust controls the progression of Large Igneous Province eruptions.
The other end–member hypothesis, that surface emplacement of lavas tracks decompression
melting evolution, is hard to reconcile with the observed timing and volume of main phase
eruptions [e.g., Hooper et al., 2007] and the presence of cumulate layers at Moho depths
beneath most flood basalt provinces [Ridley and Richards, 2010]. However we recognize
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that the dynamics of plume/lithosphere interaction are significantly more complex than we
assume here. Possible multiple maxima in plume head melting due to thermochemical ef-
fects [Leitch and Davies, 2001, Lin and van Keken, 2005], and deflection of plume material
by Moho–level topography due to cratonic keels [Sleep et al., 2002] or passive continental
margins [Sleep, 2007] may modulate the evolution of pressure–release melting during plume
emplacement. Low matrix permeabilities will slow melt extraction and induce buoyant con-
vective instabilities in the melting region [Hernlund et al., 2008] providing a possible melting
feedback in the dynamics of plume–lithosphere interactions and well as possible episodic
supply [Schmeling, 2006].

These processes are beyond the scope of this work, but may be important in a more
complete integration of LIP phenomenology. We assume that decompression melting follows
a simple single maximum trend, and that the scaling of section 4.4 for supply of ultramafic
melt from the plume source to the lower crust holds over the timescale of many eruptions.
This then provides the background supply for cyclic magma chamber filling and draining
and controls the episodicity of surface eruptions.

Our analysis suggests two fundamental destabilization mechanisms for LIP magma reser-
voirs, given sufficient buoyancy to make the magmas eruptible. After the emplacement of
magma at the Moho, the elastic response of country rocks initially allows fracture and dike
propagation that accommodates the overpressure of rising melts. The length of this period
of elastic behavior depends on country rock rheology, background stresses and the initial
geothermal gradient, which varies between continental and oceanic settings. We propose
that the main phase of LIP emplacement occurs during this time window, constraining the
rheology of the lower crust to mineral assemblages that, upon heating, may relax away devi-
atoric stresses in ∼ 1 Ma. For continental crust we find that either cool and wet or hot and
dry combinations of anorthite and clinopyroxene will satisfy this constraint (Figure 4.6.a -
b). For thinner oceanic crust hydrated mafic mineralogy is more suitable (Figure 4.6.b - c).
The record of large–scale igneous events may in this way reflect the rheological structure and
evolution of the crust.

After prolonged warming has occurred viscous relaxation of stresses dominates and
magma chambers will grow stably without erupting. Limits to this growth may come from
more rapid differentiation of magma in time, or from external sources of stress such as those
exerted on the chamber by the free surface. This latter mechanism places a constraint on
the size of a magma reservoir set by the lengthscale over which stable growth can occur
(section 4.5): lateral size will scale with the depth of the reservoir, and implies that magma
chambers residing below crust of different thickness, such as oceanic versus continental set-
tings, have different maximum sizes. If individual LIP eruption volumes scale with magma
chamber size, this predicts larger flows in continental provinces. Large background stresses
may also be important for LIPs: preserved surface feeder dikes are largely linear in nature
perhaps implying local extension in some provinces [Ray et al., 2007], while deep radial dike
swarms perhaps associated with plume head emplacement can be thousands of kilometers
long [Ernst and Buchan, 1997] and might broadly distribute primary melt.
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Model for LIP crustal magma transport

In our model the progression of LIP emplacement begins with intrusive early magmatism,
transitioning to a short largely extrusive main stage, then back to an intrusion–dominated
regime that lasts for the duration of melt supply. Figure 4.7 illustrates this model quali-
tatively, through comparison of simulated plume head melting rates (modified from Leitch
and Davies [2001]) and the inferred extrusion rate from the Columbia River Flood Basalt
Province [Hooper et al., 2007]. These curves are qualitative, meant to illustrate the tran-
sitions in style of magmatism during LIPs in the framework of starting plume–lithosphere
interactions.

Upon emplacement, chemical evolution from ultramafic to basaltic melt occurs. Mantle
plume melts formed at sublithospheric depths will be more dense than typical mafic lower
crustal rocks, and should therefore pond at the Moho or within the lower crust, undergo-
ing extensive fractionation of mainly olivine and pyroxene before evolving large volumes of
basaltic liquids able to rise to the surface. The duration of this fractionation phase de-
pends on the melt flux and heat transfer out of the lower crust. There may be a period
of melting and assimilation during high flux phases of melt emplacement before fractional
crystallization can occur to further evolve the bulk of the melt (upper left of figure 4.7).

Next, brittle fracture of the lower crust due to stresses generated by the lower crustal
basaltic magma reservoir induces dike emplacement and the main phase of LIP surface erup-
tions. This elastic phase depends strongly on the rheology of the lower crust; for sufficiently
warm and/or weak country rocks it may be absent (top of Figure 4.7), suggesting the pos-
sibility of non–eruptive LIPs. This phase is relatively insensitive to the flux of magma,
however, assuming that large reservoirs of basaltic melt exist.

Finally, viscous response of the lower crust stabilizes magma chambers, and they spread
gravitationally until buoyancy or external triggers cause local disruption and elastic fail-
ure. We hypothesize that the accumulation of free surface stresses for laterally extensive
LIP chambers limits their size. The viscous regime lasts the lifetime of melt supply, likely
accompanied by dynamic surface topography as intrusions accumulate in the lower crust.

Throughout the lifetime of continued primitive melt flux, progressively more buoyant
melt will move upward from the Moho, directed by the continued background stresses of
plume impingement on the lithosphere. Emplaced through elastic failure of country rocks on
short timescales, they will form a dense network of intrusions that, once frozen, put the lower
crust into compression that is only relaxed through plate–scale spreading or viscous creep.
This induces horizontal magma transport and sill emplacement that likely moves upward
through time [Parsons et al., 1992] (Figure 4.1). Examples of such intrusion networks are
observed, e.g., in the Ferrar LIP dolerite sills of Antarctica [Elliot and Fleming, 2008].

Individual LIP eruptions (which may reach volumes of ≤ 104 km3) are discrete in space
and time, although the total erupted volumes are not well constrained in many cases [e.g.,
Mangan et al., 1986, Bryan et al., 2010]. The model here is consistent with a scenario in
which individual eruptions tap individual magma chambers during the main phase. The
timescale between eruptions would reflect the timescale for build-up of significant deviatoric
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Mineralogy log A G n m
(MPa−nµmm s−1) (kJ/mol)

Dry Anorthitea 1012.1 467 1 3
Wet Anorthitea 101.7 170 1 3

Dry Clinopyroxeneb 1015.1 560 1 3
Wet Clinopyroxenec 106.1 340 1 3

Dry Olivined 106.1 510 3 0
Wet Olivined 102.9 470 3 0

Table 4.1: Rheological parameters, taken from the experiments of a. Rybacki and Dresen
[2000], b. Bystricky and Mackwell [2001], c. Hier-Majumder et al. [2005], d. Karato and
Jung [2003]. For those cases where m> 0, we take a nominal grainsize of 100 µm.

stress in the lower crust, set by the recharge timescale and the production of buoyancy due to
volatile exsolution. Deep exsolution of CO2 can destabilize chambers at relatively low crystal
fractions (< 35%) even at 30–40 km depths as magma differentiation proceeds (Figure 4.2).

Massive ultramafic intrusive complexes at Moho depths suggest that the largest fraction
of magmas from the mantle may never rise above the lower most crust. Models for LIPs
must directly address the processes associated with these deep magma bodies, especially the
possible modes by which more evolved magmas may escape to generate surface eruptions
and, perhaps, shallower magma bodies. We have shown that simple scaling considerations for
viscoelastic deviatoric stress relaxation around a sill–like magma chamber due to progressive
heating can explain a main stage eruptive timescale of ∼ 1 Ma, with continued magma
emplacement over the ∼ 10 Ma mantle melting timescale.

Because the rheology of lower crustal rocks plays a fundamental role in setting the vis-
coelastic relaxation timescale (Figure 4.6), reconstructions of surface lava output through
the cessation of main-phase eruptions [e.g., Barry et al., 2010] might provide a means of con-
straining lower crustal rheology. It is possible even that the spatial heterogeneity in lower
crustal rocks may account for much of the variability observed among flood basalt provinces,
between oceanic and continental settings and between continental LIPs emplaced through
accreted terrains or stable cratonic settings [Wolff et al., 2008].

Our model offers three distinct hypotheses for the evolution and distribution of LIP mag-
mas: (1) Main phase eruptions are shut off when viscous creep overwhelms elastic failure as
the primary mechanism of relieving stresses in the lower crust (2) The lateral extent of indi-
vidual high melt fraction, mafic magma chambers is limited by their depth of emplacement
(3) The magmatic plumbing of LIPs moves upward in time, forming a network of individual
sills that populate the lower crust. This causes continued dynamic topography over the life-
time of melt supply, as the rheology of the lower crust responds to magmatic input of heat
and stress.
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Moho

Basaltic lava

Ultrama�c magma chamber

Late stage gabbro intrusions

Channelized melt from plume head

Surface

Figure 4.1: Conceptual model for LIP plumbing. Channelized melt from the upper mantle
ponds at the base of the crust, forming large continuous magma reservoirs that differentiate
to make basalts. These chambers inflate until destabilization occurs, erupting flood basalts
on the surface and intruding gabbroic sills into higher crustal levels.
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Figure 4.2: (a) Evolution of melt buoyancy during crystallization, with progressive volatile
concentration and exsolution, at 300 MPa (blue curves, color in online version) and 800 MPa
(red curves). Dashed lines are for isochoric crystallization, while solid lines are for isobaric
crystallization. Buoyancy is calculated relative to 2700 kg/m3, with exsolution of CO2 at
800 MPa indicated by arrows. 300 MPa melts have exsolved CO2 even at zero crystallinity.
Mantle volatile contents of 0.1 wt% H2O, 0.05 wt% CO2 and ascent path described in the
text are assumed. (b) Evolution of concentration for MgO in melt phase as a proxy for the
chemical evolution of primitive magma. Concentration of CO2 (green curve) and H2O (blue
curve) in the melt is similar at 3 and 800 MPa, but does vary slightly if crystallization is
isochoric or isobaric.
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Figure 4.3: Buoyancy evolution timescale, taken to be the time until a critical fraction of the
chamber has crystallized. Curves derive from equation 4.3 in the text, varying temperature
difference between chamber and country rock. Magma influx is set to 10−2 km3/yr. Larger
magma influx values increase the incoming heat flux and thus increase the minimum chamber
size required for crystallization. As discussed in the text, bounds for the critical crystal
fraction are Φ = 0.8 (dashed curves) in which fluid density ρmix = 1500 kg/m3, and Φ = 0.3
(solid curves) where ρmix = 2700 kg/m3.
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Figure 4.4: Comparison between a sphere and oblate spheroid with aspect ratio = 0.1 (a)
Steady state temperatures in an infinite medium. For the spheroid polar heat transfer is
enhanced relative to a sphere, while equatorial heat transfer is diminished. (b) Steady state
greatest principle deviatoric stress in an infinite medium. Overpressure is set to P0 at the
chamber wall.
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Figure 4.5: Thermomechanical model for time dependent stresses around a hot, pressurized
magma chamber, defined by the curve ξ0 = R. Initial deviatoric stresses from overpressured
magma create a rupture envelope that surrounds the chamber, in which the critical stress
required for dike formation is exceeded. Viscous creep induced by gradual heating of country
rocks relaxes away deviatoric stresses and eventually inhibits dike formation.
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Figure 4.6: Time until deviatoric stresses relax below 1 MPa everywhere around the chamber,
as evaluated from Equation 4.10. Curves are for different temperature contrast between in-
truded magma and crust (as proxy for varying Moho temperatures in continental and oceanic
settings), calculated for power law rheological parameters of (a) anorthite, (b) clinopyroxene,
and (c) olivine. Dashed curves correspond to equivalent but hydrated mineralology (Table
4.7).
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Chapter 5

Magma chamber growth during
caldera–forming volcanic eruptions

5.1 Introduction

Magma chambers function both as repositories for melt rising through the crust and as
reservoirs that feed individual volcanic eruptions. During the large volume silicic caldera–
forming eruptions common in the geologic record, these functions occur on vastly different
timescales as many hundred cubic kilometers of magma assembled and distilled in the crust
over 104− 106 years are likely erupted in hours to days Self [2006], Turner and Costa [2007],
Bryan et al. [2010]. Such eruptions perturb global climate, disperse ash over thousands of
kilometers, and leave behind 10–100 km diameter calderas as evidence of contiguous magma
chambers at shallow depths Lipman [2007]. Despite their considerable geologic importance,
constraints on the mechanics of caldera forming eruptions are scarce. Here we propose
that high crystal volume fractions of 30–60% in many erupted lavas Lindsay et al. [2001],
Bachmann et al. [2002] impart stored magma with a yield stress that may modulate the
progression of eruption and ultimately affect caldera size, the most characteristic feature of
these events. We present a coupled conduit flow and magma chamber drainage model in
which yield strength magma results in a multimodal distribution of erupted volumes, as is
observed in the geologic record. After surface eruption initiates, magma near the conduit
is mobilized and behaves as a fluid. However magma further away can remain locked and
support elastic stresses while maintaining high fluid pore pressures. Eruption causes the yield
surface separating mobile and locked magma to expand through the chamber. A rheological
transition then defines the effective magma chamber boundary. Mobilization buffers chamber
pressure, so progressive concentration of stresses during chamber growth may cause caldera
collapse prior to the complete mobilization of stored magma. Our model implies that caldera
size may not always reflect the spatial extent of magma storage, and provides constraints on
the conditions necessary for and dynamics of extreme explosive eruptions.

The largest silicic volcanic eruptions in the geologic record have no historical analog.
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They are known only through their eruptive products, leaving behind calderas that form as
the surface collapses when erupting magma evacuates chambers at 5–15 km depths Lipman
[2007]. It is generally assumed that calderas reflect the spatial dimensions of underlying
magma storage. Petrologic evidence from “super–eruptions” (> 500 km3 erupted Self [2006]
) as well as smaller recent eruptions such as Pinatubo suggest that these magma reservoirs
are incrementally assembled over 104 − 106 years Halliday et al. [1989], Turner and Costa
[2007]. Models indicate that mobilization of this reservoir and eruption triggering may be
caused by injection of hot, volatile rich, mafic magma to the base of the locked crystal mush
Pallister et al. [1992], Bachmann et al. [2002], Burgisser and Bergantz [2011]. However the
relationship between geologic observables and the pre–eruptive development of these systems
remains unconstrained.

Our study is motivated by the observation that many magmas from caldera forming
eruptions, such as the Fish Canyon Tuff Bachmann et al. [2002] and Atana Ignimbrite Lindsay
et al. [2001] are crystal rich. Crystal fractions in these ignimbrites approach the maximum
packing limit Stickel and Powell [2005] where a rheological phase transition from liquid to
solid–like behavior occurs. Many other smaller deposits have crystal fractions in the 10–30%
range, in which connected networks of crystals may impart the suspension with an effective
yield strength Philpotts et al. [1998], Saar et al. [2001]. We focus on caldera–forming silicic
eruptions because these events have significant impact on other Earth systems Rampino and
Self [1992], and because large erupted volumes minimize the nonlinear feedbacks between
chamber and conduit processes exhibited by smaller silicic eruptions Jaupart and Allègre
[1991] (Supplementary Methods).

The yielding behavior of highly viscous and crystal rich fluid has two important con-
sequences for erupting stored magma. Foremost, it creates an evolving partition between
mobile and locked portions of the magma chamber set by the position of the yield surface.
Second, the yield surface maintains a pore pressure difference between the rheologically
locked and mobilized portions of the magma chamber. Thus the differential stress state on
eruptive timescales (set by magma over–pressure relative to lithostatic pressure) in country
rocks may differ from that of locked magma, which may itself differ from mobilized magma
(Figure 5.1).

It is unlikely that complete mobilization always occurs prior to eruption for mechanical
reasons. Elastic deviatoric stresses induced by the free surface become significant when the
lateral extent of a pressurized magma chamber approaches its depth Gudmundsson [1998],
providing the pathways and impetus for caldera collapse. Calderas with lateral dimensions
that exceed their depth by up to an order of magnitude (such as La Garita caldera of the Fish
Canyon Tuff Lipman [2007]) are proxies for magma chambers that, fully mobile, would be
extremely mechanically unstable. Mobilization as a result of mafic intrusion proceeds much
more slowly than eruption and is prone to buoyancy instabilities Burgisser and Bergantz
[2011], implying that free surface stresses will facilitate eruption before chamber–wide mixing
is complete. This is corroborated by evidence that many silicic eruptions were sourced
through central vents prior to caldera collapse Self et al. [1986], Geyer and Marti [2008].
Finally, available historical analogs indicate that a significant fraction of the total eruptive
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output (> 50% for Pinatubo and Katmai Stix and Kobayashi [2008]) may be emplaced prior
to caldera formation. The syn–eruptive progression of caldera formation into a fully mobile
chamber is important after fractures decouple the caldera roof from country rocks Kennedy
et al. [2008]. However it does not necessarilly represent the majority of erupted magma or
the primary vehicle of mass transfer during many large caldera–forming eruptions.

Yielding represents an alternative way to understand progression towards caldera forma-
tion in these systems. Eruption begins with evacuation of initially mobilized magma from a
shallow, low aspect ratio chamber. Pressure gradients are homogenized across mobile magma
by viscous flow, but low suspension permeability and high melt viscosity Bachmann [2004]
maintain high pressures in locked magma. As the yield surface expands (Figure 5.3a), mo-
bilization of material buffers pressure in the fluid chamber towards its initial value (Figure
5.3b). If crustal strength is similar to the initial over–pressure triggering eruption, caldera
collapse may occur during growth of the mobilized chamber as aspect ratio and hence stress
concentration increases. However if the crust can sustain this stress accumulation around
the growing chamber, all available magma will be mobilized and decompression continues
until mechanical failure of roof rocks occurs.

To gain insight into the consequences of yielding rheology on eruption dynamics, we
developed a numerical model that couples flow in a conduit with evacuation of a laterally
extensive magma chamber located beneath a free surface. We model time–dependent magma
chamber evacuation and steady, isothermal flow through a cylindrical conduit (Figure 5.1).
Chamber deformation is calculated with an equation of state that relates mass removal by
eruption to deformation of the (assumed elastic) surroundings, while yielding and chamber
growth proceed according to the von Mises criterion. Processes that occur on magma mixing
rather than much shorter eruptive timescales, such as magma recharge, are neglected. We
assume that over–pressure gradually develops during magma chamber construction, produc-
ing elastic stresses smaller than the crust failure strength but larger than lithostatic stress.
Surface eruption is then triggered by some combination of rapid recharge, crystallization,
and volatile exsolution Tait et al. [1989] that mobilize a subset of the reservoir and pressurize
it past a crust failure threshold (Figure 5.1).

5.2 Model derivation

We model an (assumed isothermal) magma chamber whose pressure PC evolves in time due
to material transfer (Figure 5.1) as

η
dPC
dt

=
1

ρmix
(QI −QO) (5.1)

where QI and QO are the mass fluxes of magma into and out of the chamber, ρmix is a mixture
magma density and η an effective chamber volume divided by a bulk modulusHuppert and
Woods [2002] that accounts for deformation of the host rock as well as the three–phase
mixture of bubbles, crystals and melt in the chamber. During explosive eruptions QO >> QI ,
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so we consider only extraction from a fixed reservoir. Similar simplifications may be made
by comparing the timescale for chamber pressure change

τchamber ∼
∆PCVCρmix
KmixQO

, (5.2)

with the timescale for magma ascent

τascent ∼
H

ū
, (5.3)

where ∆PC = PC − ρsgH is the chamber over–pressure with g = 9.8 m/s2, ρs the density
of crustal rocks, H the conduit length, VC the chamber volume and Kmix the effective bulk
modulus.

For large eruptions we take representative values of VC ∼ 1012 m3, ∆Pch = 107 Pa,
r = 10− 100 m, QO = πr2ūρmix, Kmix = 107− 109 Pa to account for the important effect of
bubbles on magma compressibility Huppert and Woods [2002], H = 7500 m, and representa-
tive velocity ū = 1− 10 m/s (below fragmentation). τchamber >> τascent for these parameter
choices, so we assume steady conduit flow and time–dependent chamber evacuation.

Our model considers chamber evolution of the form

ρ0V0,C +
∫ t

0
Ṁ(τ)dτ = VC(PC)/vS(PC), (5.4)

∇ · σ = 0, (5.5)

σij = λεkkδij + 2µεij, (5.6)

where λ and µ are the Lamé constants, subject to boundary conditions on the chamber
boundary ∂S

σn|∂S = ∆PC , (5.7)

the free surface
σn|z=H = σt|z=H = 0, (5.8)

and an initial condition on the contact between locked magma and country rocks ∂R

σn|∂R = ∆P0. (5.9)

This reference state accounts for the development of over–pressure ∆P0 = P0 − ρsgH in the
locked magma prior to the onset of eruption. The condition that 0 ≤ ∆P0 ≤ ∆PC holds
initially, but in the case of large magma yield stress ∆PC ≤ 0 ≤ ∆P0 may occur during
chamber growth.

Equation 5.4 is an equation of state for mobile fluid in the magma chamber, relating a
reference (initial) undeformed chamber volume V0,C , initial bulk density ρ0, the deformed
volume of the cavity VC , the specific volume vS (volume per unit mass) of the 3-phase fluid
inside the chamber, the time derivative of chamber mass Ṁ and the chamber pressure PC .
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Deformed chamber volumes are calculated assuming that the chamber surroundings are a
linear elastic solid (Equation 5.5), with possibly differing elastic moduli in the immobile por-
tions of the chamber (Figure 1) and the country rocks. σn and σt are normal and tangential
stresses.

We model steady one–dimensional isothermal conduit flow of magma, solid particles and
gas, in which conservation of mass and momentum can be expressed as Mastin [2002]

∂P

∂z
=
− (ρmixg + f)

1− u2

c2s

, (5.10)

ρmix =

 n

ρg
+

1− n(
χ
ρs

+ 1−χ
ρl

)−1


−1

(5.11)

where u is the cross–section averaged mixture velocity at height z above the magma chamber
and P is pressure. Equation 5.11 is the density of a mixture of solid, liquid and gas with
densities ρs, ρl, ρg, with n the mass fraction of gas (water and CO2) calculated as a func-
tion of pressure from Papale (1999)Papale [1999b] assuming Fish Canyon Tuff compositions
Bachmann et al. [2002]. χ = 0.4 is the mass fraction of solids, taken to be constant. Al-
though χ may vary as magma yield stress in the chamber varies (a parameter in our model)
varies, we hold it constant for simplicity. We will show that the presence of choked flow
at the vent prevents variation in all conduit flow parameters from affecting the end result
of chamber evacuation, although they will affect eruptive timescales. The assumption of
yielding (Bingham) rheology in the magma chamber does not conflict with equation 5.10,
as choked–flow induced strain rates ensure mobilization (at least in near wall regions of the
conduit) throughout eruption. Fragmentation occurs at a critical strain rate Papale [1999a]
, at which point the friction factor f and mixture sound speed cs are calculated from tur-
bulent approximations Mastin [2002]. Below the fragmentation depth c2

s = (∂P/∂ρmix) is
calculated numerically to conserve mass, while the friction factor due to laminar flow through
a cylindrical pipe is

f = 8Λ
µm(n, χ)u

r2
(5.12)

with µm(n, χ) the apparent viscosity. We note that f may be simply represented for other
conduit geometries. Non-circular or fissure-like conduits require corrections only to this
friction term.

Λ =
1

1 + a
(

Na√
Gz

)1.5 (5.13)

is an empirical correction to the friction factor due to viscous heating Costa et al. [2007] with
a = 0.3. Na = bµrū

2/k is the Nahme–Griffith number measuring the relative importance
of viscous heating and conduction with dimensionless b = 0.05; Gz = ρmixcpūr

2/kH is the
Graetz number measuring vertical advective heat transport versus lateral conduction. For
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representative values as before and µr = µm(n = 0, χ = 0) ∼ 107 Pas (Fish Canyon Tuff melt
composition viscosity at 750◦ C Bachmann et al. [2002]), Na = 106−108 and Gz = 107−109.
Here cp is specific heat capacity, and k is thermal conductivity. While likely important for
silicic eruptions, the viscous heating parameterized by Λ does not significantly affect our
results, which are dictated by the conduit boundary conditions (in particular choked flow).

Viscosity in our model thus depends on magma composition, water content and tem-
perature Hui and Zhang [2007], bubble Pal [2003] as well as crystal Caricchi et al. [2007]
volume fraction, strain rate Caricchi et al. [2007], and viscous heating Costa et al. [2007],
Hess et al. [2008]. We neglect wall–localized heating and radial viscosity variation due to
lateral variations in strain rate (although these are parameterized through Λ, which de-
creases the reference apparent viscosity by up to 3 orders of magnitude for the conditions
of interest). We similarly neglect explicit treatment of temperature variations with height
Mastin and Ghiorso [2001], but note that non–adiabatic temperatures and radial variation
in heat transfer in the conduit during silicic super-eruptions may be reflected in textural
features of erupted lavas Blundy et al. [2006] and could account for heating comparable to
that attributed to magma chamber rejuvenation Bachmann et al. [2002].

Equations 5.10-5.11 are subject to boundary conditions that couple time evolving cham-
ber pressure to the conduit:

P |z=0 = ∆PC (5.14)

and choked flow u = cs at the surface, a condition that is likely realized during most explosive
eruptions Dufek and Bergantz [2005]

u|z=H = cs. (5.15)

We adopt a von Mises criterion for mobilizing locked magma during eruption, calculated
as

σv =
√

3J2 (5.16)

where J2 is the second deviatoric stress invariant. If decompression induces elastic stresses
in rheologically locked magma σv such that the von Mises yield stress σmagma is exceeded,
this locked magma mobilizes. The result is a larger chamber radius and increased chamber
pressure. Pressure increase (buffering) occurs as incorporated material has the initial locked
magma pressure P0. The small difference in specific volume between locked magma at the
initial over–pressure and that of mobilized magma is also accounted for in this step. It is
assumed that within the locked, unmobilized magma there is no deviatoric stress at onset of
eruption.

We solve for the expanding chamber radius iteratively, beginning with a spherical chamber
of radius 2 km, such that von Mises stresses outside the new chamber radius are everywhere
lower than σmagma. Our chamber is confined to a layer of half–thickness 2 km, so that
there is one degree of freedom for chamber expansion. While this geometrical constraint is
imposed for simplicity, we expect it to be approximately realized in nature, as large aspect
ratio chambers and stress concentration in regions of high boundary curvature will promote
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lateral rather than vertical expansion. The position of the yield surface in unsteady flow
of yielding fluids is a free–boundary problem with generally more structure and subtlety
than our treatment. By analogy to Bingham channel flows Taylor and Wilson [1997] and
Saffman-Taylor problems Alexandrou and Entov [1997], we expect that boundary layers of
unyielded fluid may develop during syn–eruptive mobilization of locked magma. Preferential
yielding in a stratified chamber is a natural extension of this model, although it is beyond
the scope of our efforts here. Magma yield stress functions only to modulate eruption time
(similar to conduit flow processes) in cases where complete chamber mobilization occurs.

At each time step we evaluate maximum von Mises stress between the chamber (defined
by the yield surface) and the surface, using a critical crustal yield strength σcr as a crustal
failure metric. Deviatoric stresses are calculated as a departure from the reference stress
distribution set by specifying the size of the locked magma reservoir and its over–pressure
∆P0 (equation 5.9). Locked zone over–pressures approaching the initial mobilized chamber
over–pressure represent a reference von Mises stress state that is not perturbed significantly
until large under–pressures are reached. This situation progresses to caldera failure only
after complete mobilization of the reservoir and chamber underpressuring. Conversely, small
locked zone over–pressures allow significant von Mises stresses to accumulate during chamber
growth and hence caldera formation before complete mobilization is possible.

Elastic stresses and strains (equations 5.5–5.8) are calculated numerically using the ax-
isymmetric program mode in FEAP, version 8.3 Taylor [2008]. The two–point conduit bound-
ary value problem of equation 5.11 is solved with a bisection and shooting method and 4th
order Runge Kutta integration with adaptive step size control. Newton–Raphson iteration
is performed at each timestep to ensure the chamber pressure remains consistent both with
the elastic deformation of the chamber and the withdrawal of material through the conduit.

5.3 Yielding rheology of magma

The existence and magnitude of a yield stress for crystal rich silicate melts is controversial.
Although a number of experiments Ryerson et al. [1988], Lejeune and Richet [1995], Caricchi
et al. [2007], Champallier et al. [2008aa] and theoretical studies Kerr and Lister [1991], Saar
et al. [2001], Walsh and Saar [2008] concern magmatic yield strength, it has been difficult to
determine experimentally for the high crystal fractions and apparent viscosities of interest
Champallier et al. [2008aa]. It is complicated by the likelihood that yield stress may vary as
a function of crystal fraction and shear rate Heymann et al. [2002]. The withdrawal of crystal
rich magma at eruptive rates may also push the suspension through a jamming transition
Cates et al. [1998], Liu and Nagel [1998], in which an effective yield stress exist at crystal
volume fractions that are much lower than the maximum packing fraction. For example,
flattened prismatic crystals form a percolating network at volume fractions in the range of
0.08 – 0.29 Saar et al. [2001], that may sustain elastic stresses over eruptive timescales.

In the absence of predictions for yield stress that are directly applicable to silicic crystal
rich magmas, we use the model of Gay et al. (1969) Gay et al. [1969] to estimate a range of
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yield stresses that may be reasonable for crystal rich silicic magmas. This model is empirical,
but allows us to explore yield strength as a function of parameters that can be estimated from
field deposits, experiments or predicted theoretically. It also provides a comparison with the
work of Burgisser and Bergantz (2011) Burgisser and Bergantz [2011], whose mechanism for
chamber–wide mobilization before eruption relies on low suspension yield stress as calculated
from the Gay et al. (1969) model.

Yield stress in the Gay et al. (1969) model requires estimates of the mean crystal size
Dp, crystal volume fraction Φ, maximum packing fraction Φm, shape factor ξ and geometric
standard deviation Σ. Crystal sizes in large ash–flow tuffs range considerably, from 0.1
mm – 10 mm. Mean crystal sizes are in general correlated with the crystallinity of the
magmas Bindeman [2003], and are > 1 mm for many large eruptions. We take Dp = 10
mm as an upper bound from published crystal size distributions Bindeman [2003], Mock
and Jerram [2005], although we experiment with sizes down to Dp = 0.1 mm for comparison
with Burgisser and Bergantz (2011). We expect that crystal sizes as measured from erupted
lavas under–represent the mean crystal size in the magma chamber as many crystals exhibit
evidence of melting, fracture or breaking during eruption Hess et al. [2008], and numerous
small microlite crystals may form upon ascent Hammer et al. [1999].

Figure 5.2 shows yield stresses σmagma as a function of crystal volume fraction Φ predicted
by this model, using shape factor ξ = 0.5, along with curves that represent bounds defined
by Dp = 0.1 − 10 mm, Σ = 1.25 (a low proportion of small crystals), and Φm = 0.6 − 0.84
Pinkerton and Stevenson [1992], Burgisser and Bergantz [2011]. Grey boxes represent the
range of Φ estimated for magma with 30 − 60% crystals and Dp = 0.5 − 10 mm in the
two cases where Φm = 0.6 (light) and Φm = 0.84 (dark), although we recognize that the
Gay et al. model may not be valid as Φ approaches Φm [Pinkerton and Stevenson, 1992].
Φm = 0.6 is the classical maximum packing for geological fluids Marsh [1981], while 0.84
exceeds the hexagonal close packing of mono–dispersed spheres (0.74) but is used to compare
with Burgisser and Bergantz [2011]. Predicted yield stress for this range of crystallinity lies
in the range of σmagma = 101−107 Pa. We use these values in our model, with the recognition
that better characterization of yield stress is required to constrain this aspect of our model.
We also note that yield stress is a quantity defined before flow occurs, i.e., the stress required
to initiate motion. Once yielding occurs, magma deforms viscously. Small yield strengths
measured in lavas after mobilization (e.g., Pinkerton and Stevenson, 1992[Pinkerton and
Stevenson, 1992]) thus do not characterize the quantity of interest in our model and are
lower bounds to magma yield stress.

5.4 Results

The eruptive dynamics predicted by this model are straightforward. Rather than exponen-
tially decreasing discharge during decompression–controlled eruptions Huppert and Woods
[2002], buffering of the chamber pressure and thus discharge occurs throughout the mobi-
lization period (Figure 5.3b). Decompression and vesiculation of ascending magma induces
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acceleration to choked flow near the surface, so poorly known parameters of conduit flow
(magma volatile content, conduit geometry, mixture viscosity) play no role in average erup-
tion dynamics and do not affect total volume erupted. If chamber mobilization is complete
or magma yield stress is large enough to allow chamber underpressure during yielding, the
eruption is a siphon–like flow driven primarily by gas exsolution with a lower limit to basal
pressure given by the potential energy of dissolved gas in the chamber rather than litho-
static pressure Druitt and Sparks [1984]. After caldera collapse begins, eruption dynamics
are driven by interaction with the subsiding caldera roof Kennedy et al. [2008] and are not
modeled here.

Important but unknown parameters in our model include the depth and lateral extent of
the locked magma reservoir, over–pressure in locked magma as well as the initial eruption
triggering pressure, yield strength of immobile magma and that of the overlying roof rocks.
Although unknown in general, constraints on these parameters come from field, laboratory
and petrologic work Lipman [2007], Geyer and Marti [2008], Caricchi et al. [2007]. We
vary magma volatile content, chamber crystallinity (yield stress), magma viscosity, chamber
depth, the caldera scale strength of roof rocks (the critical von Mises stress σcr), conduit
radius, and difference in elastic moduli (Young’s Modulus Ecr−Emagma and Poisson’s Ratio
νcr−νmagma) between locked magma and country rocks, lateral extent (aspect ratio) of locked
magma reservoir. Geometrical parameters are better constrained than evolving intensive
variables such as pressure or the rheology of crystal rich, bubbly magma. To deal with such
uncertainty we assume a uniform distribution of all parameters, and perform a suite of Monte
Carlo eruption simulations.

We fix the volume of the crystal rich reservoir to be a disk with rounded edges of half–
thickness 2 km, situated at 7.5 km depth (Figure 5.1). This depth is similar to estimates for
magma emplacement pressures (2–3 kbar Lipman [2007]). We vary the lateral radius of stored
magma between 5 and 30 km, which corresponds to roof aspect ratios (depth/diameter) of
0.75–0.125. Aspect ratio may exert primary control on the final geometry of collapse calderas
Acocella [2007], Marti et al. [2008], however studies to date do not consider the mechanical
consequences of only partially fluid reservoirs during collapse. We assume a fixed CO2 mass
fraction of nCO2 = 0.1, but a uniform prior distribution of all other parameters (Table 5.1).

Despite this uniform prior we find a bimodal distribution of eruption volumes, reflecting
caldera failure before and after complete mobilization of locked magma (green and blue
symbols in Figure 5.3c). A small subset of eruptions (red symbols in Figure 5.3c) end without
caldera formation, as country rocks strong enough to sustain under–pressure that exceeds
the potential energy available for conduit flow. Eruptions in which the magma yield stress
is > 1% of crust yield stress and is similar to the initial pressure difference between mobile
and locked magmas exhibit caldera failure before complete mobilization (Figure 5.3b–c).

Figure 5.4a–f shows that caldera forming eruptive volumes are strongly bimodal, with
different parameter dependence for the case of complete mobilization (blue symbols) ver-
sus partial mobilization (red symbols) at caldera collapse. Volumes comparable to super–
eruptions (> 500 km3) require full mobilization and depend in a meaningful way only on
the strength of country rocks – the critical roof rock von Mises stress σcr – and locked zone
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radius (roof aspect ratio). The yield strength of magma is constrained from below by the
pressure difference between locked magma and initial mobile chamber, and the combination
of these three parameters determine whether complete mobilization can occur (see also main
text Figure 2c). Contrast in elastic parameters between locked magma and country rocks
does not appear to affect erupted volumes, although we note that different choices of country
rock Young’s modulus affects the magnitude of strain in crustal rocks in response to cham-
ber pressure changes and hence the likelihood of caldera failure. For our chosen Ecrust = 10
GPa, we find a small subset of results (∼ 1%) in which strains become large and unphysical
displacements occur in finite element simulations. As the assumption of small strain linear
elasticity breaks down as strains approach order unity, we discard simulations in which this
occurs. Figure 5.4f shows that conduit radius does not affect the results, given choked flow
at the surface. Variation in magma volatile content and Poisson’s ratio contrast between
crustal rocks and locked magma (not plotted) similarly do not affect the results.

5.5 Discussion

Long term reservoir assembly in the shallow crust likely buffers magma crystallinity near
the maximum packing fraction Dufek and Bachmann [2010] while the reservoir grows and
pressurizes, although magnitudes of magma over–pressure and yield stress are uncertain.
Effective yield stresses similar to stresses that trigger the eruption thus seem reasonable,
augmented on eruption timescales by a jamming phase transition which endows the sus-
pension with additional elastic strength Liu and Nagel [1998]. This would imply that many
caldera forming systems fail before complete mobilization. However volumes typical of super–
eruptions generally cannot be attained in this regime. The largest eruptions require strong
country rocks (a critical von Mises stress of > O(108) Pa) and large magma storage zones
(radii of > 20 km) irrespective of other parameters (Figures 5.3, 5.4 and 5.5), ending always
in an under–pressured state.

Our simulations generate a size distribution of caldera–forming eruptions that may be
compared to the geologic record (Figure 5.6). Data come from two sources. For Holocene
eruptions, we use the Smithsonian Institution Global Volcanism Program database. This
database has been demonstrated to be complete through eruption of magnitude 4 and larger
Coles and Sparks [2006]. Eruption magnitude is defined generally as a combination of data
from plume height and volume erupted Newhall and Self [1982], Mason et al. [2004]. We use
a formula based solely on erupted volume

M = log10(DRE)− 7 (5.17)

where DRE is the Dense Rock Equivalent magma mass in kilograms to calculate eruption
magnitude for all our data.

For caldera forming eruptions, we use the worldwide Collapse Caldera Database Geyer
and Marti [2008] to estimate magnitude and frequency of volcanic eruptions that are most
similar to those we model. This database includes calderas that vary in age from historical
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eruptions up to 500 Ma, although the age distribution peaks around 30 Ma Geyer and Marti
[2008]. We expect that there are systematic preservation biases reflected in this wide age
distribution. Therefore we used the upper limits reported for eruption volume to make the
curves in Figure 3 of the main text.

Despite model assumptions and the incomplete nature of available data, the predicted
magnitude–frequency distribution is statistically similar to that derived from available data
on worldwide collapse calderas. The distribution of large eruptions aligns best with that
of completely mobilized model runs (blue bars in Figure 5.6a, Supplementary Methods).
However the data exhibit a more complex and multimodal distribution as erupted volume
decreases. In our model, premature caldera failure leads to an increase in small eruptions as
is observed in the data. Quantitative comparison is carried out using a Kolmogorov–Smirnov
(KS) test with a significance level of 5%. Based on this test, both simulated and database
derived caldera forming eruptions arise from a different underlying distribution than the
complete Holocene eruption catalog at 95% confidence. The complete distribution of caldera
forming eruptions and model results also fail this similarity test, however if we exclude
caldera forming eruptions smaller than 3 km3 from both datasets the two distributions pass
the KS test indicating that the model results best align with data from larger eruptions.

We do not strive for quantitative agreement between modeled eruptions and data, as the
true distribution of governing parameters is unknown. We expect that refining the prior
distribution of input parameters would permit a better match to observational data, as
would including smaller locked magma zones (the lower size limit considered here is 5 km
radius). Nevertheless, similarity between modeled erupted volumes and the observational
record is robust. Both modeled and real caldera distributions are distinct from that of
recorded Holocene eruptions (Figure 5.6b). The conditions leading to and dynamics of
caldera–forming eruptions are thus not common to all volcanic eruptions.

We suggest that basic observables of caldera forming eruptions such as erupted volume
and caldera size reflect the natural variability of crustal strength and magma rheology. Yield-
ing during eruption may generate calderas that do not reflect the lateral dimension of the
underlying magma reservoir, leaving a significant fraction of magma locked as roof failure
occurs. For caldera radii much less than that of the reservoir (Figure 5.5) residual magma
may not be mobilized syn–collapse, providing a seed for future eruption and development
of caldera complexes Lipman [2007]. Heterogeneity of phenocryst populations and inferred
differentiation times within single eruptive units observed in multi–cycle caldera systems
Cathey and Nash [2004] may be a consequence of similar episodic magmatic processes. Our
work challenges models for silicic eruptions that require complete mobilization and chamber–
wide convection prior to eruption triggering Burgisser and Bergantz [2011], however it does
not preclude bulk chemical homogenization through recharge–driven stirring of silicic magma
reservoirs Bachmann [2004]. Finally, recent eruptions may offer direct tests of this model,
as yielding should be reflected in the eruptive stratigraphy of isotopic proxies for subsurface
magma movement prior to and during eruption Kayzar et al. [2009].

The timescale–dependence of magma rheology plays a fundamental role in magma trans-
port through the crust, as it does for controlling the style and magnitude of volcanic erup-
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Yield surface

Locked Magma/Country Rock
      interface

Fluid MagmaLocked Magma

ΔPC

Von Mises Stress

ΔP0

Figure 5.1: Schematic of the coupled conduit flow and chamber deformation model. Removal
of magma through the conduit mobilizes locked magma in a reservoir at depth. The inner
boundary of this magma chamber (the yield surface) grows in time as magma erupts, and is
represented by an expanding pressurized cavity in an elastic half–space. The outer interface
between locked magma and country rock remains fixed with initial over–pressure ∆P0. This
pre–stressed condition generates two zones of stress concentration around the reservoir during
mobilization (shaded, warm colors indicate larger stress). In this case the locked magma
overpressure is 10 times smaller than that of the mobile magma.

tions. This study views magma chambers dynamically, defined by a rheological transition
that occurs on the timescale of eruptions. It is therefore separate from the dynamics of
magma chamber convection and from the petrologic role of these structures in facilitating
magma differentiation and ascent through the crust. Such a distinction is similar in spirit to
the geodynamic and geochemical definitions of the lithosphere Anderson [1995], and high-
lights the general problem in Earth Science of relating static measurements and dynamics
on human timescales to inaccessible domains of time and space.
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Figure 5.2: Yield stress as a function of crystallinity (normalized by the maximum packing
fraction) predicted by the semi–empirical model of Gay et al. (1969) Gay et al. [1969].
Parameters used are described in the text. Boxes represent a range of crystal rich magmas
(30− 60%) with light grey assuming maximum packing Φm = 0.6 and dark grey Φm = 0.84.

Monte Carlo parameters
Parameter Name Symbol Range
Locked zone radius R 5− 30 km
Initial mobile magma over–pressure ∆PC 5− 50 MPa
Locked zone over–pressure ∆P0 0−∆PC
Magma yield stress σmagma (PC − P0)/4− 4(PC − P0)
Country rock yield stress σcr σmagma − 108.5 Pa
Conduit radius r 50− 300 m
Country rock Young’s modulus Ecr 1010 Pa
Magma Young’s modulus Emagma 108 − 1010 Pa
Country rock Poisson ratio νcr 0.25
Magma Poisson ratio νmagma 0.25− 0.4
Magma water content n− nCO2 3− 7 weight percent

Table 5.1: Range of model parameters in Monte Carlo simulations. Uniform distributions
are assumed.
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Figure 5.3: (a) Sample evolution of chamber growth during an eruption. Locked magma zone
is a disk of thickness 4 km and radius of 25 km, conduit radius is 200 m, magma yield stress
is 1 MPa, crust yield stress is 500 MPa, magma water content is 5 wt. pct., PC − P0 = 0.1
MPa, difference in Young’s modulus between locked magma and crust is 10 fold. Initial mass
flux is 13.6 Tg/s. (b) Evolution of chamber pressure, demonstrating the buffering effect of
progressive magma mobilization. (c) Monte Carlo results (n=3000) illustrating dependences
of simulation end condition (caldera collapse after full mobilization versus partial mobiliza-
tion versus no caldera formation). Axes are dimensionless ratios of input yield stress and
erupted fraction of total available magma. (d) The effect of overpressure (difference between
locked magma overpressure and triggering overpressure (PC − P0)) normalized by magma
yield stress versus fraction of magma erupted for Monte Carlo results. Coloring is log10 total
erupted volume in km3.
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Figure 5.4: Monte Carlo results, plotting final discharge in km3 as a function of (a)
Locked zone radius (initial reservoir dimension) (b) Difference between initial triggering
over–pressure in mobile magma and initial locked magma pressure. (c) Magma yield stress
(d) Crust yield stress (e) Young’s modulus difference between country rocks and locked
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Figure 5.5: Fraction of locked zone erupted as a function of fractional radius mobilized at
onset of caldera collapse. A significant fraction of calderas form with radius less than 50% the
locked zone radius. For these there is a straightforward correlation with fraction of reservoir
erupted. Only for completely mobilized chambers does the fraction erupted exceed 10% of
the reservoir.
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Figure 5.6: Comparison of modeled eruption magnitude and frequency with available data,
bottom scale is log10 total erupted volume in km3, while top scale is the eruption magnitude
M. (a) Distribution of erupted volumes from Monte Carlo simulations. The bimodal distri-
bution of volumes reflects whether the magma reservoir completely mobilizes before caldera
formation. (b) Distribution of erupted volume estimates from worldwide collapse calderas-
Geyer and Marti [2008] and all Holocene eruptions. The model distribution is similar to
that observed for collapse calderas as eruption size increases. The magnitude and frequency
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two cases indicated).
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Chapter 6

Meander formation in supraglacial
streams

6.1 Introduction

Supraglacial streams are melt channels that form in the ablation zone of glaciers and icesheets
during the summer season when surface melt water (sometimes augmented by rain water)
thermally erodes channels into the glacial surface. These streams form networks that drain off
the glacier or more often into moulins and supraglacial lakes, forming a primary link between
surface, englacial, and subglacial hydrologic systems [Fountain and Walder, 1998]. Although
there is likely some inheritance of channels from year to year, supraglacial hydrology re–
evolves from initial channelization to large scale organization each year as surface melting
waxes and wanes.

Supraglacial streams are mechanistically distinct from alluvial or bedrock rivers, in which
sediment transport forms the principle mode of incision and channel slope regularization over
much longer timescales [see for example Sklar and Dietrich, 2004]. Yet despite differences in
substrate strength and lack of significant suspended sediment, supraglacial streams exhibit
similar morphologic features such as meandering (including cutoff loops), multi–threaded
channels, and propagating knickpoints [Knighton, 1981, Marston, 1983]. As is also the case
for alluvial rivers [Leopold and Maddock, 1953], planform morphology and channel geometry
of supraglacial streams provide a rough estimate for time–averaged discharge, and over the
glacier as a whole albedo changes caused by such melt water channelization help set the fine
structure of glacial surface ablation. In a broader sense, the morphology of these streams
is a potential analog to fluvial systems observed on other terrestrial planets, where sinuous
channels are observed but both the substrate characteristics and the melt composition are
often poorly constrained.

This study focuses on meanders because of their ubiquity in supraglacial channels (figure
6.1), and because of the interesting analog to meandering in more well–understood alluvial
settings [Seminara, 2006]. We develop a model for meander formation based on linear sta-
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bility analysis of depth–integrated mass, momentum and energy conservation equations for
a supraglacial stream. This work generalizes previous modeling of Parker [1975], and follows
the more general approach taken in recent meandering models of alluvial rivers [Camporeale
et al., 2007]. We end by comparing our model predictions to a compilation of supraglacial
stream field data from the literature and our own field work.

6.2 Meander formation

In alluvial settings, variations in boundary shear stresses that exceed the threshold for sedi-
ment motion drive bank erosion and deposition. In supraglacial streams there is no similar
mechanism for deposition of bank material, and generally little sediment (ice or rock) with
which to mechanically erode the bed. Meandering supraglacial streams thus exemplify a
problem long recognized in bedrock channels [Leopold and Wolman, 1960]: how does chan-
nel sinuosity evolve in the absence of bank deposition? In particular, how does a channel
migrate with nearly constant width as is observed in most meandering systems?

We believe that supraglacial streams migrate through the interaction of two erosional
processes: thermal erosion occuring over the entire glacial surface forced by solar radiation,
and thermal erosion within the channel. Channelized melt water will attain a higher mean
temperature than the surrounding ice due to its lower albedo and the heat dissipated by
flow, providing a mechanism to establish long–lived channels that may last the duration of
the melt season and possibly beyond. A balance between stream incision and large scale
surface lowering will determine the channel morphology, such that the record of meander
migration is erased to some degree as the melt season progresses.

Melting in supraglacial channels is analogous to sediment transport and mechanical ero-
sion in alluvial settings as it provides the mechanism by which the channel incises and
achieves an equilibrium shape. Melting is, in general, a better understood process than sedi-
ment transport, and the stability of melting/solidification fronts is well known [see for exam-
ple Mullins and Sekerka, 1963]. Channel sinuosity provides a natural vehicle for streamwise
variations in heat transfer, as bends in the channel centerline locally decrease the thickness
of the boundary layer between melt water and glacial ice, increasing lateral temperature
and velocity gradients. This mechanism increases heat transfer in regions of high channel
curvature, enhancing initially small channel instabilities. Other sources of spatial varia-
tions in heat transfer are possible: for example, anisotropic shielding from solar radiation,
nonuniform surface slope, small scale variations in glacial ice structure and composition, or
input/subtraction of water from the system. However, given the ubiquity of meanders in
supraglacial streams, we favor formative mechanisms that do not depend on the particulars
of external forcing.
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6.3 Model Formulation

Our modeling solves two problems, the flow field within a supraglacial stream and the mi-
gration due to melting of channel banks. Because the timescale for water advection is quite
small compared to the timescale for melting, flow is effectively steady on bank migration
timescales and these problems are to large extent decoupled. Spatially variable heat transfer
must content with channel boundaries buffered at the ice melting temperature and hence
isothermal, providing some coupling between streamflow and the thermal balance. The
resulting flow field then provides thermal forcing for unsteady bank migration.

Parker [1975] developed a model for supraglacial stream meanders based on a linear sta-
bility analysis of a vertically integrated heat balance, assuming potential flow in an initially
straight stream channel. Harmonic perturbations to the bed of the stream were found unsta-
ble, with a finite range of unstable wavenumbers. In particular, Parker [1975] predicts that
supercritical flow (Froude number Fr > 1) is a necessary condition for meander formation.

This approach is conceptually similar to “bar” models of alluvial meandering [Callan-
der, 1969]: the modeled channel axis remains fixed, but it is assumed that small amplitude
perturbations of the bed force eventual lateral channel migration. It has since been shown
for alluvial rivers, however, that flow perturbations due to curvature in the channel axis
are largely responsible for the primary lateral instability, which is re–enforced by bed per-
turbations in the form of point bars and overdeepenings [Ikeda, Parker, and Sawai, 1981,
Blondeaux and Seminara, 1985, Johannesson and Parker, 1989]. We are interested in apply-
ing this more general treatment of meandering to the linear stability of supraglacial streams.

Coordinate system

We use “meandering coordinates” to express the appropriate conservation equations in a
translating coordinate system that tracks the channel centerline described by coordinates
(X∗0 (s∗), Y ∗0 (s∗), Z∗0) (figure 6.2). This coordinate system, in which s∗ and n∗ represent
downstream and cross-stream positions (stars indicate dimensional variables), is mapped to
a fixed cartesian basis (X∗, Y ∗, Z∗) via

(X∗, Y ∗, Z∗) = (X∗0 − n∗ sinφ, Y ∗0 + n∗ cosφ, Z∗), (6.1)

from which we obtain the metric coefficients

(h∗s, h
∗
n, h

∗
z) = (1 + n∗κ∗(s∗), 1, 1), (6.2)

where κ∗(s∗) = dφ/ds∗ is the curvature of the channel centerline, φ is the angle of the
centerline from the X∗ axis, and the slope of the channel axis is assumed to be small. More
details about the derivation of this coordinate system and the resulting curvilinear differential
operators may be found in, for example, Seminara and Turbino [1992]. The channel half–
width B∗0 is assumed to be fixed, implicitly requiring a lowering of the glacial surface to
enable lateral channel migration. This assumption is grounded observationally, as meanders
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of nearly constant width are often observed with steep banks on the outside of bends and
low angle banks on the inside (figure 6.1(b)). The radius of curvature scales with its typical
lengthscale R∗0 as 1/κ∗ = R∗0/κ.

Governing Equations

In the meandering coordinate system we employ the non–dimensionalization

(s, n) =
(s∗, n∗)

B∗0
, (u, v, w) =

(u∗, v∗, w∗)

U∗0
, (h,D, z) =

(h∗, D∗, z∗)

D∗0
, (6.3)

where (u, v, w) are velocity components taking characteristic value U∗0 and (h,D, z) are the
water surface height, the water depth, and the height above a datum respectively (figure
6.2) that scale with the characteristic depth D∗0. The Reynolds equations for mass and
momentum are

N
∂

∂s

(
u2
)

+
∂

∂n
(uv) + β

∂

∂z
(uw) + 2ν0Nκuv = − N

Fr2

∂h

∂s
+ β

∂

∂z

(
νT
∂u

∂z

)
(6.4)

N
∂

∂s
(uv) +

∂

∂n

(
v2
)

+ β
∂

∂z
(vw) + ν0Nκ

(
v2 − u2

)
= − 1

Fr2

∂h

∂n
+ β

∂

∂z

(
νT
∂v

∂z

)
(6.5)

N
∂u

∂s
+

(
∂

∂n
+ ν0Nκ

)
v + β

∂w

∂z
= 0, (6.6)

where N = [1 + ν0nκ]−1 is the longitudinal metric coefficient of the co–ordinate system with
ν0 = B∗0/R

∗
0, β = B∗0/D

∗
0 is the half–width to depth ratio, Fr = U∗0/

√
gD∗0, is the Froude

number, while νT = ν∗T/(U
∗
0D
∗
0) is a dimensionless eddy viscosity. Hydrostatic pressure is

incorporated into (6.4–6.6), while the normal Reynolds stresses and lateral bed stress have
been neglected.

After applying the depth averaging operation 〈·〉 = 1/D
∫ h
h−D (·) dz, the above equations

become

NU
∂U

∂s
+ V

∂U

∂n
+ ν0Nκ UV +N

∂H

∂s
+
βτs
D

= 0 (6.7)

NU
∂V

∂s
+ V

∂V

∂n
− ν0NκU

2 +
∂H

∂n
+
βτn
D

= 0 (6.8)

N
∂

∂s
(DU) +

∂

∂n
(DV ) + ν0NκDV = 0. (6.9)

Here U = 〈u〉, V = 〈v〉 and H = h/Fr2, while τs, τn are the downstream and cross-stream
shear stresses. Equations (6.7–6.9) are identical to those of Blondeaux and Seminara [1985],
who similarly neglect the vertical structure of the flow.
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Equations (6.7)-(6.9) are coupled to the Reynolds–averaged heat equation, for which we
scale the dimensional viscous dissipation a∗, turbulent diffusivity Γ∗T , water temperature T ∗,
and boundary heat flux q∗ as

a =
D∗0
ρU∗30

a∗, ΓT =
Γ∗T
U∗0D

∗
0

, T =
T ∗

∆T ∗G
, q =

1

ρcpU∗∆T ∗G
q. (6.10)

∆T ∗G = T ∗w − T ∗g is the mean temperature difference between stream water and bulk glacier
ice.

The dimensionless heat equation in meandering coordinates is

N ∂
∂s

(uT ) + ν0Nκ(vT ) + ∂
∂n

(vT ) + β ∂
∂z

(wT )

− 1
β

[
N ∂

∂s

(
ΓT

∂T
∂n

)
+ ∂

∂n

(
ΓT

∂T
∂n

)
+Nν0κΓT

∂T
∂n

]
− β ∂

∂z

(
ΓT

∂T
∂n

)
= Ecβa, (6.11)

where Ec = U∗20 /cp∆T
∗
G is the Eckert number measuring the relative importance of kinetic

energy and enthalpy.
Equation (6.11) describes the temperature structure and full coupling between heat trans-

fer and flow within supraglacial streams. Equation (6.11) could be analyzed by employing
a temperature decomposition similar to the velocity decomposition of higher order alluvial
models (Zolezzi and Seminara [2001], Gajjar [2010]). However, we take a simpler approach
here and parameterize temperature fluctuations in terms of depth–averaged flow variables.

For straight channels we assume that the water temperature is well mixed by turbulence,
buffered near 0 ◦C by the ice boundaries but nonzero in the bulk flow due to warming
by solar radiation, downslope transport and frictional dissipation. Wall curvature and bed
topography introduce cross–stream gradients in the mean temperature field as well as spatial
variability in the frictional generation of heat (figure 6.3). We utilize a mixing length model
for turbulent heat transport, so the Reynolds decomposition in equation 6.11 describes the
interaction of fluctuating temperature T ′ and fluctuating velocity u′ in the stream by u′T ′ ≈
−ΓT∂T/∂n (overbar donates time–average). Thus spatial gradients in stream temperature
are driven solely by lateral gradients in velocity, and we assume that turbulent heat flux is
isotropic. This assumption may be relaxed in future work.

The resulting depth average of equation (6.11) is

NUD
∂DT

∂s
+ ν0Nκ

(
V DT − ΓTD

dT

dn

)
+ V D

∂T

∂n

− 1

β

[
N
∂

∂s

(
ΓT
∂DT

∂n

)
+

∂

∂n

(
ΓT
∂DT

∂n

)]
= β(q|z=h−D − q|z=h + Ec〈a〉D), (6.12)

where q|z=h−D is the vertical heat transport in the water at the water–ice interface, and
q|z=h is the vertical heat transport in the water at the water–air interface. Boundary terms
associated with turbulent advection of heat are neglected. Equation (6.12) expresses that
the rate of heat generation by viscous dissipation at the smallest lengthscales in the stream
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is balanced by heat transport at the top and bottom boundaries, as well as advection by the
mean flow and turbulent eddies.

At the air–water interface, heat transport occurs by a combination of radiation (solar
forcing) and advection by wind. This aspect of heat transfer is of great importance for
large scale glacial mass balance as well as being a zeroth order requirement for supraglacial
channel formation [Parker, 1975]. It implies that lowering of the channel through melting
by the stream is in an approximate steady state with lowering of the entire glacier surface.
This is in accord with our observation of supraglacial streams that persist throughout the
melt season [as well as Knighton, 1981].We make the assumption that (using dimensional
variables)

q∗|z=h = γ∗∆T ∗A (6.13)

with ∆T ∗A = T ∗a −T ∗w the temperature difference between water and air and γ∗a a coefficient of
heat transfer at the water–air interface that may be determined through field measurements,
although we set it equal to unity here. A kinematic (Stefan) condition governs the position
of the water–ice interface

|nz|
∂(h∗ −D∗)

∂t∗
= q∗|z=h−D − q∗I , (6.14)

where ρ is the density of ice (assumed equal to the density of water), and |nz| is a unit vector
perpendicular to the interface and heat fluxes q∗|z=h−D and q∗I are scaled as in Equation 6.10.
The basal melting time is scaled as t∗ = LD∗0/U

∗3
0 t with L the latent heat of fusion. This

timescale is large compared to the other obvious timescale of flow B∗0/U
∗
0 (hence there is no

time derivative in our continuity equation 6.9). We assume that the base level of our stream
is in approximate steady state (i.e., melting of the walls occurs more slowly than melting of
the base due to shallow flows) therefore set ∂(h −D)/∂t to zero while calculating the flow
field.

q∗I = −κI∆T
∗
G

W ∗
b

(6.15)

is the rate of vertical heat conduction through the ice at the ice–water boundary, with κI the
thermal conductivity of ice. q∗I occurs over a thermal boundary layer of constant thickness
W ∗
b that scales with D∗0. Because supraglacial stream water is strongly buffered towards 0 ◦C

[Isenko, Narus, and Mavlyudov, 2005], the water temperature is a good approximation to the
ice melting temperature in equation 6.15. We thus neglect diurnal temperature fluctuation
in stream water. ∆T ∗G in supraglacial streams will be a function of latitude, less than one
degree in temperate glaciers but possibly larger in polar settings as the bulk temperature of
glacier ice decreases.

Dissipation 〈a〉 in the stream is modeled following Parker [1975],

〈a〉 =
τsU + τnV

D
, (6.16)

with near–bed shear stress terms (τs, τn) represented as

(τs, τn) =
(τ ∗s , τ

∗
n)

ρ U∗20

= Cf U(U, V ), (6.17)
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using U = U∗/U∗0 =
√
U2 + V 2 as the flow speed.

Additional contributions to shear stresses arise from secondary flow [Camporeale et al.,
2007], and can be explicitly calculated in models that include depth–dependent velocity. We
do not explicitly include vertical flow structure as most of these effects represent higher order
corrections to our model [Johannesson and Parker, 1988], although Zolezzi and Seminara
[2001] show that vertically variable momentum transfer in the secondary flow may induce
a non–negligible enhancement of the cross–stream shear stress τn. We have found that
imposition of such an enhancement does not change the qualitative behavior of our model,
and hence neglect it.

The friction factor Cf is given by an empirical approximation for rough–walled pipe flow
[ColeBrook, 1939, Parker, 1975]

(Cf )
−1/2 = −2 log(

ζ∗

3.7D∗
+

2.5

Re
√
Cf

). (6.18)

Re = ρ U∗D∗/µ is the Reynolds number of the flow with µ the water viscosity, and ζ∗ is a
characteristic roughness height of the channel walls.

The advective terms on the lefthand side of equation (6.12) are responsible for transport-
ing the bulk temperature of the stream towards the outside wall around bends as the high
velocity core of the stream approaches the wall [Whiting and Dietrich, 1993] (figure 6.3). We
model the cross stream turbulent heat flux in terms of flow variables as

∂

∂n

(
ΓT
∂T

∂n

)
=

∂

∂n

(
UD∂U

∂n

)
=

βB∗0
U∗20 J ∗∆T ∗G

∂

∂n∗

(
U∗D∗∂U

∗

∂n∗

)
. (6.19)

This relation assumes strong coupling between heat and momentum transfer. J ∗ is an
empirical and dimensional constant that measures the strength of coupling between velocity
and temperature gradients in the Reynolds analogy T ∗ = J ∗∆T ∗GU∗. For flow past a flat
plate with Prandtl number Pr equal to unity J ∗ = 1/U∗0 [Schlichting, 1960], but we leave it
as an adjustable parameter here.

Finally, we use the Reynolds analogy between temperature and velocity gradients to
eliminate temperature in equation (6.12), giving

βΠ1

(
NUD ∂U

∂s
+ V D ∂U

∂n

)
− Π1

[
N ∂

∂s

(
UD2 ∂DU

∂n

)
+ ∂

∂n

(
UD2 ∂DU

∂n

)
+ β ν0NκUD ∂DU

∂n

]
= ∂(Fr2H−D)

∂t
+ Π2 − Π3

Wb
+ CfU3 (6.20)

as the depth–averaged energy balance, where

Π1 =
J ∗U∗0
β2Ec

,

Π2 =
γ∗a∆T ∗A
ρU∗30

,

Π3 =
κI∆T ∗G
ρU∗30 D∗

0
.

(6.21)

The dimensionless groups that appear in equation (6.20) are variants on a turbulent Eckert
number (Π1), and turbulent Brinkman numbers (Π2 and Π3) that measure the relative
importance of viscous heating and conductive heat transfer.
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Boundary Conditions

Equations (6.7–6.9) and (6.20) form the basis of our model for flow in supraglacial streams.
These equations, despite assuming no lateral wall effects, represent a finite channels with
Dirichlet boundary conditions stating that the channel boundaries are impermeable to flow,

V = 0 at n = ±1 (6.22)

and that the temperature at the channel walls is equal to the ice melting temperature (0◦C)

T = U = 0 at n = ±1. (6.23)

We again have assumed that

T =
T ∗

∆T ∗GJ ∗U∗0
= U , (6.24)

meaning that the (small) near–wall temperature variations are coupled directly to the flow
field. Condition 6.23 is thus an additional constraint on the depth–averaged velocity struc-
ture.

Lateral channel migration

We close our mathematical formulation by modeling the thermal erosion and lateral migra-
tion of the channel walls. Boundary melting and bank migration require consideration of
the unsteady terms in equation (6.20), where vertical downcutting of the channel occurs
according to equation 6.14. A similar Stefan condition governs the lateral migration of the
channel bank y∗b

βρU∗30 |ny|
∂yb
∂t

= ql∗w − ql∗I at n∗ = B∗0 , (6.25)

where the unit vector |ny| ensures that melting occurs perpendicular to the bank and ql∗w , q
l∗
I

are the lateral heat fluxes at the ice–water interface through water and ice.
We focus here on lateral bank migration. Channel downcutting must outpace large–scale

lowering of the glacier surface to maintain channelized flow of melt water [Parker, 1975].
These melting velocities will vary diurnally and throughout the melt season as the ablation
rate of the glacier responds to the surface energy balance, resulting in unsteady vertical
incision. However, the persistence of channels throughout the melt season is evidence that,
on average, these two rates are balanced. Because we do not treat the details of unsteady
solar forcing, we assume here a constant background vertical incision and model lateral
migration of the channel only. In equation 6.25 our assumption of constant channel width
is implicit in the statement that only one side of the channel melts and requires ablation of
the glacier surface.
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ql∗w at lateral boundaries is spatially variable due to the generation of temperature fluctua-
tions from frictional dissipation and advection of heat by the flow (equation 6.12). Boundary
layer heat transfer at the water–ice interface is modeled as [Schlichting, 1960]

qlw =
B∗0PrT

ρcp∆T ∗Gν
′∗
T J ∗U∗0

ql∗w = −∂U
∂n

, (6.26)

where PrT ≥ 1 is a turbulent Prandtl number, ν ′∗T is a near–wall eddy viscosity, and we have
used the Reynold’s analogy to relate temperature gradients to velocity gradients scaled by
J ∗. We scale eddy viscosity with the lengthscale `∗ near the wall ν ′∗T = U∗0 `

∗ that scales with
depth.

Heat transfer through the ice scales with the thermal boundary layer in the ice as in
equation 6.15. The Stefan number S = L/cp∆T

∗
G for supraglacial streams is large, so this

thermal boundary layer adjusts rapidly to perturbations in the channel centerline. It will
maintain a constant thickness, assumed (as with the boundary layer at the bottom of the
channel) to scale with the water depth D∗0. Combining terms we thus have

∂yb
∂t

=
Π3

β

1

Wb

− Π1`
∗β

B∗0PrT

∂U
∂n

. (6.27)

6.4 Linear Stability Analysis

We now perform a linear stability analysis on equations (6.7–6.9) and (6.20), following Blon-
deaux and Seminara [1985]. We examine a channel whose centreline exhibits small–amplitude
perturbations with respect to the straight configuration and investigate the conditions for
these perturbations to grow in time. In this light we make the harmonic perturbation (using
c.c. for complex conjugate)

κ(s) =
1

R0

[
ei(λms−ωt) + c.c.

]
, (6.28)

where λm is a non–dimensional meander wavenumber scaled by the half–width B∗0 , and
ω is a frequency that may be directly related to the propagation speed of the harmonic
disturbances.

We perturb the channel centerline as

yc = ε(t)
[
ei(kx−ωt) + c.c.

]
, (6.29)

where yc, ε, k and x are quantities normalized by the half width B∗0 , and ε � 1. This
approximation implies that

ν0 = k2ε (6.30)

λm = k +O(ε2k2) (6.31)

s = x+O(ε2k2). (6.32)
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Hence the channel slope, the average depth D∗0, the average speed U∗0 and thus the average
Froude number all undergo variations due to the bend growth which are O(ε2k2) and so are
negligible. Moreover the relationship (6.30) implies that in order for the amplitude ε to be
small, ν0 and k should satisfy the inequality

λm ∼ k � ν
1
2
0 . (6.33)

We assume the flow is fully developed in the s–direction, with no secondary flow at zeroth
order. Perturbation of flow variables (U, V,H,D) is then performed as an expansion

(U, V,H,D) = (1, 0, h0, 1) + ε(t)(A1,B1,H1,D1)
[
ei(kx−ωt) + c.c.

]
+O(ε2k2), (6.34)

where A1, B1, H1, D1 are all functions of n alone and h0 is the nondimensional unperturbed
depth.

Expanding Cf as a function of U and D, in powers of ε, we have

Cf = C0|ε=0 + ε
∂Cf
∂U

∂U
∂ε
|ε=0 + ε

∂Cf
∂D

∂D

∂ε
|ε=0 +O(ε2). (6.35)

This gives

τs = C0(1 + εs1A1

[
(ei(λms−ωt) + c.c.

]
+ εs2D1

[
ei(λms−ωt) + c.c.

]
+O(ε2))

τn = εB1C0

[
ei(λms−ωt) + c.c.

]
+O(ε2)

(6.36)

where

s1 = 2 + 1
C0

∂Cf

∂U , s2 = 1
C0

∂Cf

∂D
. (6.37)

C0 as well as the derivatives ∂Cf/∂U and ∂Cf/∂D may be evaluated in closed form using
the principle solution for w in z = wew.

The bottom thermal boundary layer W ∗
b in ice around the stream will be perturbed by

depth variations in the channel, but remains of constant thickness due to the large Stefan
number. We assume that this boundary layer tracks the bottom interface W ∗

b ≈ D∗ ≈
D∗0

(
1 + ε D1

[
ei(kx−ωt) + c.c.

])
.

Finally, we need to ensure that perturbations to the flow variables do not greatly affect
externally controlled aspects of this problem that are built into the governing equations. We
require that the average discharge and surface slope are unaffected by theO(ε1) perturbations
through two integral conditions: ∫ 1

−1
(A1 +D1)dn = 0 (6.38)

and ∫ 1

−1
(H1 −D1)dn = 0. (6.39)
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Solution of the linearized problem

Substituting all the expansions into the governing differential system (6.7–6.9) and (6.20),
at O(ε0) we find the uniform flow solution and energy balance within the stream,

dh0

ds
= −βC0 (6.40)

d(Fr2h0)

dt
= −Π2 + Π3 − C0. (6.41)

In equation (7.31), a nonzero RHS sets the time–averaged lowering rate of the stream.
Comparison with the glacier surface lowering [Parker, 1975] yields vertical stream incision,
but we note again that this rate is much larger than the rate of flow adjustment.

At O(ε1) we have

L


A1

B1

H1

D1

 =


iλmA1 + dB1

dn
+ iλmD1

(iλm + χ0s1)A1 + iλmH1 + χ0(s2 − 1)D1

(iλm + χ0)B1 + dH1

dn(
C0(s1 + 1) + Π1

(
−βiλm + iλm

d
dn

+ d2

dn2

))
A1 + (Π3 + C0s2)D1



=


0
−nλ2

mχ0

λ2
m

0

 . (6.42)

The homogeneous ordinary differential operator L may be written in the form

L =


a1

d
dn

0 a1

a2 0 a3 a4

0 a5 a6
d
dn

0

a6 + a8
d
dn

+ Π1
d2

dn2 0 0 a7

 , (6.43)

with χ0 = βC0, and the coefficients ai(i = 1, 2, . . . , 8) defined by

a1 = iλm, a2 = iλm + χ0s1

a3 = iλm, a4 = χ0(s2 − 1)
a5 = iλm + χ0, a6 = C0(s2 + 1)− iβλmΠ1,

a7 = Π3 + C0s2, a8 = iλmΠ1.

 (6.44)

By manipulating this system we can obtain a simpler 4th order equation

Σ0A1 + Σ1
dA1

dn
+ Σ2

d2A1

dn2
+ Σ3

d3A1

dn3
+ Σ4

d4A1

dn4
= 0 (6.45)

where

Σ0 = (1− a6

a7

) (6.46)
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Σ1 = −a8

a7

(6.47)

Σ2 =
a2a6

a1a3a5

− a4a6a6

a1a3a5a7

− Π1

a7

(6.48)

Σ3 = − a4a6a8

a1a3a5a7

(6.49)

Σ4 = − a4a6Π1

a1a3a5a7

, (6.50)

along with coupled equations in the other variables. Equation (6.45) has the form of a forced
linear oscillator, also characteristic of alluvial meander models.

The boundary conditions, equations (6.22) and (6.23), at O(ε1) become

B1 = A1 = 0 at n = ±1. (6.51)

The general solution to (6.45) is

A1(n) = C1e
r1n + C2e

r2n + C3e
r3n + C4e

r4n (6.52)

where (r1, r2, r3, r4) are roots of the characteristic equation

0 = Σ0 + Σ1r + Σ2r
2 + Σ3r

3 + Σ4r
4. (6.53)

The constants (C1, C2, C3, C4) are unwieldy analytic expressions not presented here (avail-
able upon request to the authors), evaluated by substituting equation (6.52) into (6.42), from
which B1, D1 and H1 follow.

Lateral channel instabilities

Perturbations to the flow field will lead to harmonic meandering instabilities on the timescale
of melting, following equation (6.27). The linear contribution to this balance governs the
amplification of perturbations to the channel centerline, and we note that because of the
assumed fixed channel width

yb = 1 + yc +O(ε2k2). (6.54)

The O(ε1) contribution reads

∂yc
∂t

= −
(

Π3

β
D1 + Π1

`

D∗0

∂A1

∂n

)
, (6.55)

where we have expressed the RHS in terms of thermal dimensionless parameters and assumed
PrT=1, to illustrate that bank migration results from a competition between perturbations
to water depth D1 and cross stream gradients in downstream velocity ∂A1

∂n
. We vary the

lengthscale `∗ associated with boundary layer heat transport to explore sensitivity of results
these competing terms.
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6.5 Results

We have mapped parameter space of our linear model in the range of values consistent with
available field data on supraglacial streams, based on our own work on the Juneau Icefield,
Alaska, in 2009–2010 and published studies (table 1). We expect that characteristics of
meandering instabilities will be sensitive to both geometric and hydraulic parameters readily
measured, as well as thermal parameters that are less well known and harder to quantify. In
evaluating the model we assume fixed heat transfer coefficients and thermal conductivities,
exploring the sensitivity of meandering to mean temperature differences between bulk glacier
ice and water ∆T ∗G, bed roughness height ζ∗ and to the empirical constant J ∗ which relates
cross–stream gradients in velocity to heat transfer.

Example evaluation of (6.55) is shown in figure 6.4(a). For reasonable parameter choices,
the solution exhibits a well defined peak and positive celerity, indicating that meanders travel
downstream. We also find a parameter regime in which all wavenumbers are unstable and
meanders propagate upstream figure 6.4(b). We expect that the most unstable wavelength
in our linear model approximates the meander wavelength chosen in nature, although there
may be quantitative corrections due to processes that our model does not capture, such as
the vertical structure within the flow [Camporeale et al., 2007] and finite amplitude effects.

Figure 6.5(a) illustrates the most unstable wavelength for a range of hydraulic param-
eters. We find that, contrary to the results of Parker [1975], meandering may occur for
subcritical flows (Fr < 1). We thus do not find a stable regime. Meander wavelength be-
comes largely insensitive to Froude number as Fr increases, but is a strong function of channel
aspect ratio. The regime of no selected wavenumber and upstream meander propagation oc-
curs when the contribution of ∂A1/∂n is insignificant, and only at low Froude numbers. By
varying `∗ as in figure 6.5.b, we see that D1 is dominant at low Fr when `∗ approaches D∗0,
creating distinct regimes of influence for these two variables. For values of `∗ ∼ D∗0 (figure
6.5.a), finite wavenumber selection and downstream propagation at all values of Fr. For
all choices of `∗ the U∗−3

0 dependence of Π3 ensures that D1 rapidly becomes unimportant
as water speed U∗0 increases. Figure 6.5 demonstrates that the contribution to meandering
instabilities by spatial variability in conduction through the walls (first term on the RHS of
equation 6.55) is insignificant except at very low water velocity.

There is a discontinuous transition in the solution for ∂A1

∂n
that accounts for the shift in

behavior at low Fr (figure 6.4 and figure 6.5(b), dashed curve). This is a result of a sign
change in the characteristic equation (6.53), and illustrates parameter dependencies of the
solution. Although algebraically complex, for the parameters in Table 1 only two terms in
equation (6.53) change sign, a6 = (∂Cf/∂D + C0) − iβλmΠ1 and a7 = Π3 + ∂Cf/∂D. The
derivative ∂Cf/∂D is uniformly negative, thus the relative magnitudes of C0, U0, D0 and
∆TG determine the sign of a6 and a7. For the parameter range in figure 6.5, sign change in
the characteristic equation occurs precisely at the transition in ∂A1

∂n
from a finite maxima to

no selected wavenumber, and from downstream to upstream propagation.
Figure 6.6(a) illustrates the effect of varying the coupling parameter J ∗. Varying J ∗

affects the wavenumber selection and also shifts the balance between ∂A1/∂n and D1 in
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equation (6.55). As J ∗ increases we find that the Froude number dependence of most un-
stable wavelength decreases. Our simple model for J ∗ thus suggests that increased coupling
between flow and temperature stabilizes the selected wavelength of meandering.

As illustrated in figure 6.6(b) there is a width–dependence of selected wavelength that
effectively does the opposite, increasing the Froude number dependence of selected wave-
length. It is possible [Marston, 1983] but not well established whether supraglacial streams
attain a hydraulic geometry similar to alluvial rivers that empirically relates water veloc-
ity, channel width and depth to discharge [Leopold and Maddock, 1953]. Available data
suggest that β ∼ 3 − 5 for many supraglacial streams (Isenko et al. [2005], present study).
However, hydraulic geometry in this setting should reflect covariance of width not only with
mean discharge (as is the case for alluvial rivers) but also the amplitude of diurnal discharge
variations.

It is important to note differences in the assumptions between our study and that of
Parker [1975]. Parker [1975] takes straight banks and potential flow, neglecting boundary
effects and the coupling between channel curvature, streamflow and heat transfer. Time
evolution of the bed is completely decoupled from the flow field as stream velocity is pre-
scribed. Our study decouples flow and boundary melting, but treats the flow constraints
imposed by isothermal channel walls and the cross stream advection of heat that is a result
of thalweg perturbations due to channel curvature. We neglect spatial gradients in basal
melting, as our focus is lateral channel instabilities. However it is possible that variability
in basal melting may create ice bedforms, as we have observed in some supraglacial streams
(presented elsewhere).

Cross–stream gradients in flow velocity produce spatial gradients in dissipation, which
are largely responsible for deviations from the generally low water temperatures (generally
0.5◦C or less [Isenko et al., 2005]) and therefore spatial variability in heat transfer to the
boundaries. This can be demonstrated by estimating the heat transfer increase that occurs
during thinning of the turbulent boundary layer an amount ∆n∗. There are two contri-
butions, an increase in dissipation Q∗dis and increased heat transport across the turbulent
boundary layer Q∗bdy per unit wall area. For flat wall geometry these scale as [Schlichting,
1960]

Q∗dis ∼ ρνTD
∗
0

(
∂v∗

∂n∗

)2
,

Q∗bdy ∼
ρcpνT ∆T ∗G

PrTU
∗
0

∂v∗

∂n∗
.

(6.56)

We approximate the velocity gradient as ∂v∗/∂n∗ ∼ U∗0/∆n
∗, and can arrange (6.56) to find

that
Q∗bdy
Q∗dis

∼ cp∆`
∗∆T ∗G

PrTU∗20 D∗0
. (6.57)

For supraglacial streams PrT ≥ 1,∆n∗ < 0.01 m, and ∆T ∗G, and U∗0 are listed in table 1.
We see that an increase in dissipation rather than enhanced transport of heat from the bulk
flow generally dominates the heat flux increase incurred by thinning the turbulent boundary
layer by ∆n∗ around a bend. This does not continue to hold for small discharge streams or
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high melt water temperature, but dissipation dominates as the mean velocity increases and
is thus likely to control the spatial variability in heat flux to the channel walls in supraglacial
streams.

Mean temperature differences affect the lengthscales of instability through Π3, and are
explored in figure 6.7 (a). Increasing water temperature tends to increase meander wave-
length at low temperatures, with a maximum that depends on velocity scale U∗0 . Low U∗0
results are sensitive to the lengthscale `∗, with large `∗ resulting in a shutoff of single wave-
length selection as water temperature increases (figure 6.7 (a) dashed curves). Increased
magnitude of the friction coefficient Cf as expressed by the wall roughness height ζ∗ shifts
the wavelength of meandering to smaller values (figure 6.7 (b)), consistent with enhanced
dissipation governing instability. There is a similar dependence on `∗ for low water velocities.

We solve for the migration direction of meanders (figure 6.4 dotted curves), and it appears
that in regimes with a finite maximum in unstable wavenumber meanders always migrate
downstream. Although previous modeling [Parker, 1975] predicts no migration of meanders,
our field work on the Juneau Icefield (documented in more detail elsewhere) suggests down-
stream migration in at least some streams, as do the observations of Marston [1983]. This
result also appears the most physically consistent with the channel migration mechanisms
we propose.

6.6 Discussion

In our model, the origin of meandering in supraglacial channels is an instability driven
by channel curvature enhancing heat transfer and hence melting along the outside of bends.
Finite amplitude meanders are not a feature of our model, but we expect that this is attained
in nature if the increase in surface area available to conductively transport heat due to
enhanced curvature balances the excess. We expect that maximum meander amplitude is
modulated by the glacial surface slope, which sets the total potential energy available for
flow, a result suggested by some field studies [Ferguson, 1973]. A more complete treatment
of this process could provide bounds for the fully three dimensional finite amplitude of ice
channel sinuosity, as in the rich nonlinear theory for alluvial meanders.

Available data show a power–law relationship between channel width and meander wave-
length for supraglacial streams over three orders of magnitude in channel width (figure 6.8).
This is consistent with the power–law channel width versus meander wavelength relationship
also found for alluvial and bedrock meanders, although the coefficients of these empirical
relations appear to differ by up to an order of magnitude as the composition of the erodable
substrate varies [Leopold et al., 1964]. The paucity of available data on supraglacial streams
makes it premature to evaluate the significance of the data in figure 6.8 in the context of
other fluvial systems. A direct comparison between our model and the observed channel
widths and wavelengths seen in the field is also not attempted here, as the covariance of flow
parameters (the hydraulic geometry) for supraglacial streams are not yet well constrained.
However in the context of our linear model we can find a range of realistic parameters (figure
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(6.5) for 1 m width channels) that reproduce the empirical scaling between channel width
and meander wavelength in figure (6.8), making this comparison a promising direction of
future work. Despite the number of model parameters that result in factors of 2–3 change in
most unstable wavelength, it is quite likely that most parameters (e.g., water temperature,
wall roughness, coupling between heat transfer and flow) are strongly buffered. Hence fu-
ture field measurements may prove useful for constraining site–specific controls on meander
wavelength, and deciphering the scatter in figure (6.8).

Supraglacial streams are distinct from other meandering fluvial channels in several im-
portant ways. First, the instability driving lateral channel migration is thermal rather than
mechanical, such that hydrodynamics in the stream are coupled to bank erosion through
forced spatial variations in heat flux at the channel wall. This is fundamentally different
than the coupling of hydrodynamics to erosion through sediment transport that occurs in
alluvial settings, although it may be more similar to dissolution meanders in Karst settings
[Ford and Williams, 2007].

A second distinguishing feature of supraglacial streams is that the discharge is strongly
diurnal, especially for streams in which rain or other stored meltwater does not constitute
a large fraction of the total water mass. A supraglacial stream will experience a smoothly
varying hydrograph each day, with the same period but slightly out of phase with solar
forcing [Marston, 1983]. To attain a regular sinusoidal meandering planform, then, would
imply that this pattern is either set early on or is set by the average daily maximum discharge.
We believe that the latter case is more likely, because the timescale over which meanders
adjust their planform geometry is extremely rapid [Marston, 1983]. It may also be the case
that regular, single wavelength meander formation is the exception rather than the rule for
this reason (for example, figure 6.1(a)).

The rate for meander development may be estimated from our model through the growth
rate of linear perturbations (for example, the ordinate in figure 6.4). For the range of pa-
rameters listed in table 1, we can find maximum growth rates in range of 0.001-0.1 cm/hr.
Despite the implicit neglect of time-dependent forcing in this estimate, this is roughly con-
sistent with measured maximum supraglacial stream incision rates of several centimeters per
day [Marston, 1983]. Such rapid incision raises the possibility that the drainage network
as well as the planform geometry of supraglacial streams may evolve significantly over the
course of one melt season. While there is limited data suggesting that this does occur on
multi–year timescales [Leopold, Wolman, and Miller, 1964], intra–season reorganization of
the supraglacial network may also occur. In the context of high volume systems such as on
the Greenland Icesheet, this dynamic reorganization interacts with englacial and subglacial
melt water routing through the drainage of supraglacial lakes [Box and Ski, 2007], which
may affect the large-scale dynamics of icesheet movement [der Wal et al., 2008].

We conclude by emphasizing that supraglacial channels represent a mechanistic endmem-
ber in the spectrum of natural channelization features that exhibit meandering (only thermal
erosion), which also includes lava tubes and flows, alluvial rivers, and dissolution channels.
A metric relating supraglacial channel morphology to the rates and mechanisms of incision
would be a useful remote means of monitoring seasonal melt water routing on icesheets,
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Parameter Range
B∗0 0.1− 4 m a,b,c,d

D∗0 .01− 1 m a,b,c

U∗0 0.25− 3 m/s a,b,c,d

T ∗g 0− (−5) ◦C a,b

T ∗w 0− 1 ◦C a,b,e

T ∗a (−10)− 10 ◦C a,b,c

ζ∗ 0.0001− 0.01 m a

γ∗a 1 W/m2K
γw 1 W/m2K
κI 2 W/m K
L 334 kJ/kg
ρ 1000 kg/m3

cp 4 kJ/kg K

Table 6.1: Estimates for model parameters, taken from field studies of supraglacial streams.
a. Present study, b. Parker [1975], c. Marston [1983], d. Knighton [1981], e. Isenko et al. [2005]

but may be applicable in a much broader planetary context as well. On Earth it has been
suggested that sinuosity of bedrock channels varies as a function of underlying geology, and
may contain a climate signature [Stark et al., 2010]. Some sinuous channels on Mars record
meandering lava flows, as they do on the Moon [Hauber et al., 2009], but others may record
fluvial activity from a wetter period of Martian history [Malin and Edgett, 2003]. On Titan,
present day cycling of liquid methane is likely responsible for meandering channels on the
icy surface [Lunine and Atreya, 2008], but the rates and mechanisms of incision are currently
unknown. If it is possible to clearly separate thermally eroded channels from those formed
through mechanical erosion, this can be used to better understand landscape evolution on
terrestrial planets and moons in our solar system that exhibit sinuous channels.
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Figure 6.1: (a) Supraglacial stream network on the West Greenland Icesheet, from the near–
infrared band of the IKONOS satellite. Image courtesy of Jason Box, Ohio State University,
donated by Geoeye to Impossible Pictures UK. (b) Single wavelength meander sequence on
the Mendenhall Glacier, Alaska, August 2010, person for scale. (c) Small well–developed
meander bend on the Mendenhall Glacier, Alaska, August 2009.
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Figure 6.2: Model geometry and coordinate system definition.
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Figure 6.3: Model temperature profile in and around a supraglacial stream. Heating results
in nonzero but uniform stream water temperature T ∗ in straight channels (solid curve),
which drops to 0◦C at the channel walls, while channel curvature results in a perturbed
temperatures that are higher near the outer bank. Temperature in the ice falls to the bulk
glacier temperature in the thermal boundary layer surrounding the channel (dotted curves).
Solid and dotted curves are assumed, while dashed curve is the predicted temperature profile
at the apex of a meander bend from our linear model.
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Figure 6.4: Evaluation of the linear model for lateral channel perturbations (equation 6.55),
illustrating the two primary regimes. (a) The single maximum regime with downstream
meander propagation. Heat transfer parameter J ∗ = 10−4 s/m, bulk temperature difference
∆T ∗G = 0.1◦C, channel width 2B∗0 = 1 m, channel depth D∗0 = 0.25 m, velocity scale
U∗0 = 1 m/s, roughness height ζ∗ = 10−3 m and boundary scale `∗ = D∗0. (b) The regime
of all unstable wavenumbers and downstream propagation. J ∗ = 10−4 s/m, ∆T ∗G = 0.1◦C,
2B∗0 = 1 m, D∗0 = 0.25 m, U∗0 = 0.1 m/s, ζ∗ = 10−3 m and `∗ = 0.1D∗0. Solid curves are
dimensionless growth rate of perturbations (real part of equation 6.55) while dashed lines
are wave celerity (imaginary part of equation 6.55).
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Figure 6.5: (a) Stability field for parameters in table 1, illustrating the range of (dimensional)
selected unstable wavelengths in the linear model 2π/λ∗m (contoured) as a function of channel
aspect ratio and Froude number for fixed heat transfer parameter J ∗ = 10−4 s/m, bulk
temperature difference ∆T ∗G = 0.1◦C, `∗ = D∗0, channel width 2B∗0 = 1 m and roughness
height ζ∗ = 10−3 m. Regimes of influence for D1 and ∂A1/∂n are indicated by arrows.
(b) Effect of varying scaling constant `∗ which determines the relative influence of depth
perturbation D1 on selected wavenumber in equation (6.55). As `∗ increases, the contribution
of D1 decreases until at `∗ = 100D∗0 it has disappeared altogether and there is an abrupt
transition to a completely unstable regime at low Fr (dashed line and figure 6.4.b).
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Chapter 7

Meandering lava channels and tubes

7.1 Introduction

Lava channels and tubes are common features of basaltic lava flows on Earth [e.g,. Swanson,
1973, Hulme, 1974] and other terrestrial planets [e.g., Schubert et al., 1970, Schenk and
Williams, 2004, Williams et al., 2005]. Channelization is a natural consequence of rapid
(largely radiative) cooling and strongly temperature dependent viscosity [Morris, 1996, Wylie
and Lister, 1995]: hotter lava has a lower viscosity, flows faster, and can cause thermal
erosion, thus there is a feedback between cooling and channel formation. On steep slopes
near the vent, where solidification of the lava surface is insufficient to produce a stable crust,
these are open channel flows. However many exhibit an along–stream transition to tube flow
[e.g., Macdonald, 1953] in which solidification of the surface decouples the bulk flow from
the atmosphere through a channel–covering roof. Lava tubes are very thermally efficient
because radiative heat loss is suppressed [Keszthelyi, 1995], and are sometimes travel 10s of
kilometers from the vent [Swanson, 1973, Self, 1998]. In contrast, un–insulated open channel
flows cool 2–4 times more quickly [Cashman et al., 1999] than their closed counterparts but
also can travel long distances from the vent if discharge rates are sufficiently high [Riker
et al., 2009].

While deposition through cooling and solidification is an inevitable consequence of lava
emplacement in the surface environment, lava flows also have significant erosive potential
[Carr, 1974]. Thermal erosion of the substrate, although inefficient, has been inferred from
field observations and analog experiments [Huppert and Sparks, 1985, Kerr, 2001, 2009].
Mechanical erosion may also occur, as substrate material is either entrained into the flow
[Siewert and Ferlito, 2008] or plastically indented by the surface load [Gioia et al., 2006].
Mechanical erosion is in general more efficient than thermal erosion, varying linearly with
flow rate Q as opposed to a Q1/3 dependence for thermal erosion [Siewert and Ferlito, 2008].
A combination of thermal and mechanical effects may also be important, as contraction and
fracture of a freezing substrate create detachable blocks that are amenable to plucking. It
is unknown in general the extent to which thermal or mechanical erosion dominates in lava
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channels.
Regardless of erosion process, lava channels exhibit similarities to bedrock rivers and

supraglacial streams where fluid instabilities coupled with bank erosion are reflected in chan-
nel morphology. As in other fluvial systems, lava channels exhibit standing waves (a feature
of supercritical flow) [Geist et al., 2008], lava cascades [Peterson et al., 1994], and large
amplitude along–stream channel sinuousity [Schubert et al., 1970]. In most other aspects
they are unique: lava channels exhibit strongly temperature dependent viscosity that is large
compared with water, high fluid temperature, and an inherently transient spatiotemporal
nature set by rapid cooling and short eruption duration.

We focus here on the sinuosity of lava channels, applying theoretical tools developed
for alluvial meanders [Blondeaux and Seminara, 1985, Camporeale et al., 2007] to study
the possible meandering instabilities of lava channels. Meandering is a defining and robust
feature in many fluvial settings, spanning systems in which the mechanisms of incision are
fundamentally different. Supraglacial streams (thermal erosion), karst channels (chemical
erosion), bedrock rivers (mechanical erosion of strong substrate), and alluvial rivers (mechan-
ical erosion of granular substrate) all exhibit meandering, suggesting that this instability is
a universal feature of erosion by channelized flow [Seminara, 2006]. Sinuousity is a common
observation in lava tubes on Earth as well as the Moon and Mars, and although the ampli-
tude of meandering is often less than that observed in other systems [Leopold and Wolman,
1960, Schubert et al., 1970, Karlstrom et al., 2011] we suspect that similar instabilities are
responsible.

In general, we would like to understand meandering as a function of incision mechanism,
substrate and fluid properties. Simple metrics of meandering such as the ratio of mean-
der wavelength to channel width are distinct between settings (e.g., alluvial rivers versus
supraglacial streams versus lava channels). A sufficiently general theory for meandering may
offer predictive power in settings where macro scale morphology is observable but measuring
flow properties is unrealistic, such as on other planets or remote locations on Earth. In what
follows we develop a model for meandering lava channels that allows us to explore controls
on channel sinuousity. The next step of comparing lava channel meanders to that of other
channels is not attempted, but we do offer predictions that may be tested and refined in
future work.

7.2 Model Development

Flow in lava channels is strongly coupled to heat transfer [Keszthelyi, 1995, Cashman et al.,
1999], and thermally–insulated lava tube flow differs in this regard from open channel flow in
which thermal radiation sets the cooling rate. To model this system we solve two problems,
the flow field field within a lava channel and the migration due to melting and/or mechanical
erosion of channel banks. In hydrologic settings these two problems are largely decoupled, as
the timescale for water advection is quite small compared to the timescale for channel erosion
so flow is effectively steady on bank migration timescales. Lava flows, despite their larger
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viscosity, are rapidly moving flows (characteristic speed > 10 m/s in some cases [Geist et al.,
2008]) so this decoupling also applies. Spatially variable shear stresses and heat transfer
provide the coupling between steady streamflow and bank erosion.

Coordinate system

We use “meandering coordinates” to express the appropriate conservation equations in a
translating coordinate system that tracks the channel centerline described by coordinates
(X∗0 (s∗), Y ∗0 (s∗), Z∗0) (figure 7.1). This coordinate system, in which s∗ and n∗ represent
downstream and cross-stream positions (stars indicate dimensional variables), is mapped to
a fixed cartesian basis (X∗, Y ∗, Z∗) via

(X∗, Y ∗, Z∗) = (X∗0 − n∗ sinφ, Y ∗0 + n∗ cosφ, Z∗), (7.1)

from which we obtain the metric coefficients

(h∗s, h
∗
n, h

∗
z) = (1 + n∗κ∗(s∗), 1, 1), (7.2)

where κ∗(s∗) = dφ/ds∗ is the curvature of the channel centerline, φ is the angle of the
centerline from the X∗ axis, and the slope of the channel axis is assumed to be small. More
details about the derivation of this coordinate system and the resulting curvilinear differential
operators may be found in, for example, Seminara and Turbino [1992]. The channel half–
width B∗0 is assumed to be fixed, implicitly requiring a lowering of the glacial surface to
enable lateral channel migration. This assumption is grounded observationally, as meanders
of nearly constant width are often observed with steep banks on the outside of bends and
low angle banks on the inside (Figure 7.1(b)). The radius of curvature scales with its typical
lengthscale R∗0 as 1/κ∗ = R∗0/κ.

Governing Equations

In the meandering coordinate system we employ the non–dimensionalization

(s, n) =
(s∗, n∗)

B∗0
, (u, v, w) =

(u∗, v∗, w∗)

U∗0
, (h,D, z) =

(h∗, D∗, z∗)

D∗0
, (7.3)

where (u, v, w) are velocity components taking characteristic value U∗0 and (h,D, z) are the
lava surface height, the lava depth, and the height above a datum respectively (figure 7.1)
that scale with the characteristic depth D∗0. After applying the depth averaging operation
〈·〉 = 1/D

∫ h
h−D (·) dz, the equations for mass and momentum are

NU
∂U

∂s
+ V

∂U

∂n
+ ν0Nκ UV +N

∂H

∂s
+ β Fr2 τsz

D
− 1

Reβ

∂τsn
∂n

+
1

Reβ
Nκτsn = 0 (7.4)
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NU
∂V

∂s
+ V

∂V

∂n
− ν0NκU

2 +
∂H

∂n
+ β Fr2 τnz

D
− 1

Reβ

∂τns
∂n

= 0 (7.5)

N
∂

∂s
(DU) +

∂

∂n
(DV ) + ν0NκDV = 0. (7.6)

Here U = 〈u〉, V = 〈v〉 and H = h/Fr2, τsz, τnz are depth averaged downstream and cross-
stream bed shear stresses, and τns is the depth averaged lateral shear stress in the flow.
Equations (7.4–7.6) are similar in structure to those of Blondeaux and Seminara [1985],
who also neglect the vertical structure of the flow. However, we include additional shear
stress terms (as derived in the appendix) to account for lateral gradients in viscosity. N =
[1+ν0nκ]−1 is the longitudinal metric coefficient of the co–ordinate system with ν0 = B∗0/R

∗
0,

β = B∗0/D
∗
0 is the half–width to depth ratio, Fr = U∗0/

√
gD∗0, is the Froude number and

Re = ρU∗0D
∗
0/µ0 is the Reynolds number based on reference viscosity µ0.

Basal shear stresses are modeled as

τ ∗sz = τ ∗nz = ρgD∗, (7.7)

while lateral viscous stresses are

τ ∗sn = µ(T )
∂U∗

∂n∗
. (7.8)

Equations (7.4)-(7.6) are coupled to a dimensionless and depth averaged heat balance for
the flow, in meandering coordinates and after applying continuity

ρcp

(
NU∗D∗

∂T ∗

∂s∗
+NκV ∗D∗T ∗ + V ∗D∗

∂T ∗

∂n∗

)
= q|∗z=h−D − q|∗z=h + 〈a∗〉 (7.9)

where T ∗ is lava temperature, q|∗z=h−D, q|∗z=h are heat transfer at the bottom and top in-
terfaces of the flow, cp is lava specific heat and 〈a∗〉 is the depth averaged viscous dis-
sipation. We use a Reynolds analogy to parameterize temperature in terms of velocity,
T ∗ = T ∗l + ∆TJ ∗U∗0U∗. This relation assumes strong coupling between heat and momen-
tum transfer with T ∗l the temperature at which magma becomes locked due to cooling and
crystallizing past a locking threshold [e.g., Harris and Allen, 2008] and ∆T ∗ the bulk flow
temperature above T ∗l . All temperares in this work are scaled by ∆T ∗. J ∗ is an empiri-
cal and dimensional constant that measures the strength of coupling between velocity and
temperature gradients in the Reynolds analogy T ∗ = J ∗∆T ∗U∗. For flow past a flat plate
with Prandtl number Pr equal to unity J ∗ = 1/U∗0 [Schlichting, 1960], but we consider it a
variable parameter here.

Heat transfer at the upper interface is dominated by thermal radiation for open channel
flow [Cashman et al., 1999], so that

q|∗z=h = q∗radiative = σ
(
T ∗4 − T ∗4a

)
= σ

(
(T ∗l + ∆T ∗J ∗U∗0U∗)4 + T ∗4a

)
(7.10)

where σ = 5.6x10−8 W/m−2K−4 is the Stefan–Boltzmann constant and Ta is the air temper-
ature. For lava tubes, this upper interface is insulated from the atmosphere, and we assume
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that heat transfer is conductive over a thermal boundary W ∗ that scales with channel depth
D∗

q|∗z=h = q∗conductive = −k
(
T ∗l − T ∗g

)
/W ∗ ∼ −k

(
T ∗l − T ∗g

)
/D∗ (7.11)

with T ∗g a far field steady temperature of the ground and k the thermal conductivity of
magma or basalt.

Heat transfer through the bottom interface of the flow depends on interface position,
a free boundary as phase change occurs. We are able to model both erosion and solidifi-
cation, however we stick to a parameter range in which channel erosion outpaces channel
construction.

The kinematic (Stefan) condition for the bottom boundary is

|nz|
∂(h∗ −D∗)

∂t∗
=

1

ρL
(q|∗z=h−D − q∗g) + Sρg∂h

∂s
U∗D∗, (7.12)

accounting for lowering by thermal erosion (first two terms on the RHS) [Kerr, 2001] as well
as mechanical erosion (last term on RHS) through wear [Siewert and Ferlito, 2008]. Our
simple model for mechanical erosion assumes wear is proportional to the normal load and
sliding distance, inversely proportional to substrate hardness as measured by S an empirical
constant determined from experiment in the range of 10−7− 10−11 Pa−1, U∗ = U∗0

√
U2 + V 2

the flow speed and ∂h
∂s

a small angle approximation to the basal slope. |nz| is a unit vector
perpendicular to the interface. The basal melting time is scaled as t∗ = LD∗0/U

∗3
0 t with L

the latent heat of fusion. This timescale is large compared to the other obvious timescale of
flow B∗0/U

∗
0 for the conditions we model here. Therefore we set ∂(h − D)/∂t to zero while

calculating the flow field, but include it when considering boundary melting. q∗g = q∗conductive
is the vertical conductive heat loss obtained from equation 7.11.

Dissipation 〈a〉 in the stream is modeled as

〈a〉 = µ(T )〈ε̇ : ε̇〉, (7.13)

where in meandering coordinates contraction of strain rate tensor ε̇ (derived in appendix)
reduces to 〈ε̇∗ : ε̇∗〉 = U∗2/D∗2. Viscosity of basaltic lava is often modeled with an Arrenhius
or power law dependence on temperature (also accounting for crystallization below the liq-
uidus) [Harris and Allen, 2008]. We assume that cooling near the banks defines the channel,
but in the bulk flow rapid advection maintains high temperatures and thus roughly constant
viscosity. We thus take viscosity µ(T ) = µ0 = const while solving the flow equations, ac-
knowledging that this is most valid in the limit of large channel aspect ratio β. Dissipation
is then

〈a〉 =
µ0U

∗2
0

D∗20

U2

D2
, (7.14)

and we can write the final dimensionless energy balance for lava flows as

NDU
∂U
∂s

+DV
∂U
∂n

= Π1
∂(h−D)

∂t
− Π2

Tl − Tg
D

− Π3
∂h

∂s
UD

−Π4

(
(Tl + ∆TJU∗0U)4 + T 4

a

)
+ Π5

U2

D2
(7.15)
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where the dimensionless numbers Π1−Π5 are the explicit control parameters measuring the
relative importance of advection versus basal lowering (Π1), conduction (Π2), mechanical
wear (Π3), thermal radiation (Π4) and viscous dissipation (Π5). These take the form:

Π1 =
βU∗0
J ∗∆Tcp

, Basal lowering
Heat advection

Π2 = β2k
J ∗D∗

0U
∗2
0 ρcp

, Conductive heat loss
Heat advection

Π3 =
βSρgLD∗

0

J ∗∆TU∗0 cp
, Mechanical wear

Heat advection
Π4 = β2σ∆T 3

J ∗U∗20 ρcp
, Thermal Radiation

Heat advection

Π5 = βµ0

2ρcpJ ∗∆TD∗
0
. Viscous dissipation

Heat advection

(7.16)

We also note that open channel flow differs from lava tube flow only in the relative importance
of Π4 and Π2 in this model. For tube flow we set Π4 = 0 and double Π2. These thermal
dimensionless parameters, along with the channel aspect ratio β, Froude number Fr and
Reynolds number Re from the momentum balance (equations 7.4 - 7.6) set the parameter
space and dynamical behavior in our model.

Boundary Conditions

Equations (7.4–7.6) and (7.15) have Dirichlet boundary conditions stating that the channel
walls are impermeable to flow,

V = 0 at n = ±1 (7.17)

and that the temperature at the channel walls is equal to the locking temperature T = Tl.
This isothermal boundary condition implicitly assumes that magma viscosity rapidly in-
creases near the boundary. With our parameterization of temperature this condition implies
that flow speed drops to zero at the boundaries:

U = 0 at n = ±1. (7.18)

Lateral channel migration

We close our mathematical formulation by modeling lateral migration of the channel walls.
Bank migration may reflect both mechanical and thermal erosion, and may be additionally
influenced by the rate of downcutting on similar timescales. A Stefan condition governs
thermal erosion, while mechanical wear is set by lateral shear stresses τ ∗sn rather than the
normal load as in equation 7.12. The rate of lateral migration of the channel bank is a
condition on y∗b

|ny|
∂y∗b
∂t∗

=
1

ρL

(
ql∗m − ql∗conductive − ρL

∂(h∗ −D∗)
∂t∗

)
+ µ0U

∗∂U
∗

∂n∗
at n∗ = B∗0 , (7.19)
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where the unit vector |ny| ensures that erosion occurs perpendicular to the bank and ql∗m, q
l∗
cond

are the lateral heat fluxes at the locked lava interface. q∗conductive is given by equation 7.11,
and we calculate q∗m from the flow field via

q∗m = k
∂T ∗

∂n∗
=
k∆TU∗0J

B∗0

∂U

∂n
. (7.20)

Equation 7.19 is somewhat more general than similar models for bank migration in allu-
vial [Blondeaux and Seminara, 1985] and supraglacial [Parker, 1975, Karlstrom et al., 2011]
settings, allowing for variable influence of vertical incision rate on lateral incision and a
combination of thermal and mechanical mechanisms for bank erosion. In what follows we
explore the dependence of meandering instabilities on these parameters, with the goal of
constraining the mechanisms of lava channel incision through observation.

7.3 Linear Stability Analysis

We perform a linear stability analysis on equations (7.4–7.6) and (7.15), examining a channel
whose centreline exhibits small–amplitude perturbations with respect to the straight config-
uration. We are interested in the conditions for which these perturbations grow in time, with
the largest growth rate assumed to determine the finite amplitude behavior of the instability.
We study harmonic perturbations (using c.c. for complex conjugate)

κ(s) =
1

R0

[
ei(λms−ωt) + c.c.

]
, (7.21)

where λm is a non–dimensional meander wavenumber scaled by the half–width B∗0 , and ω is
a frequency that may be directly related to the propagation speed of the disturbances.

We perturb the channel centerline as

yc = ε(t)
[
ei(kx−ωt) + c.c.

]
, (7.22)

where yc, ε, k and x are quantities normalized by the half width B∗0 , and ε � 1. This
approximation implies that

ν0 = k2ε (7.23)

λm = k +O(ε2k2) (7.24)

s = x+O(ε2k2). (7.25)

Hence the channel slope, the average depth D∗0, the average speed U∗0 and thus the average
Froude number all undergo variations due to the bend growth which are O(ε2k2) and so are
negligible. Moreover the relationship (7.23) implies that in order for the amplitude ε to be
small, ν0 and k should satisfy the inequality

λm ∼ k � ν
1
2
0 . (7.26)
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Perturbation of flow variables (U, V,H,D) is performed as an expansion

(U, V,H,D) = (1, 0, h0, 1) + ε(t)(A1,B1,H1,D1)
[
ei(kx−ωt) + c.c.

]
+O(ε2k2), (7.27)

where A1, B1, H1, D1 are all functions of n alone and h0 is the nondimensional unperturbed
depth.

We ensure that perturbations to the flow variables do not greatly affect externally con-
trolled aspects of this problem that are built into the governing equations. Thus the average
discharge and surface slope must remain unaffected by the O(ε1) perturbations as expressed
by the integral conditions ∫ 1

−1
(A1 +D1)dn = 0 (7.28)

and ∫ 1

−1
(H1 −D1)dn = 0. (7.29)

Solution of the linearized problem

Substituting all the expansions into the governing differential system (7.4–7.6) and (7.15),
at O(ε0) we find the uniform flow solution and energy balance within the channel,

dh0

ds
= −Fr2

Re
(7.30)

−Π2
d(Fr2h0)

dt
= −Π3

Tl − Tg
∆T

+
Π4Fr2

Re
− Π5

((
Tl

∆T
+ JU∗0

)4

−
(
Ta
∆T

)4
)

+
1

4
Π6. (7.31)

These equations express the basic momentum balance of the unperturbed channel – that
surface slope is set by viscous stresses – and the basic energy balance that determines channel
lowering as a function of heat sources and sinks from the top and bottom interfaces as well
as heat generation by viscous dissipation.

At O(ε1) we have the following system of linear equations
a1

d
dn

0 a1

a2
d2

dn2 + a3 0 a4 a2
d2

dn2 + a5

a6
d
dn

a7 a8
d
dn

a6
d
dn

a9 0 a10 a11



A1

B1

H1

D1

 =


0
βnλ2

m
1

Re

λ2
m

0

 . (7.32)
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with the coefficients ai(i = 1, 2, . . . , 11) defined by

a1 = iλm, a2 = 1
Reβ

a3 = iλm + 1
Re
, a4 = iλm

Fr2

a5 = − 1
Re
, a6 = −iλm 1

Reβ
,

a7 = iλm + 1
Re
, a8 = 1

Fr2 ,

a9 = −iλm + Π3
Fr2

Re
− Π44JU∗0 (JU∗0 + Tl

∆T
)3 + Π5

2
,

a10 = iΠ1ω − iΠ3λm,

a11 = −iΠ1ω + Π2

(
Tl

∆T
− Tg

∆T

)
− Π3

1
Re

Fr2 − Π5

2
,


(7.33)

By manipulating this system we can obtain a simpler 4th order equation

Σ1A1 + Σ2
dA1

dn
+ Σ3

d2A1

dn2
+ Σ4

d4A1

dn4
= Σ0 (7.34)

where

Σ0 = λ2
m

(
1− a8

a4Re

(
1 + a10

a5 − a3

σ

))
(7.35)

Σ1 = a7 (7.36)

Σ2 =
−a7

a1

(7.37)

Σ3 =
a3a8

a1a4

+
a8(a5 − a3)(a3a10

a4
− a9)

a1a4σ
(7.38)

Σ4 =
a2a8

a1a4

(
1 +

a10(a5 − a3)

a4σ

)
, (7.39)

with σ = a11 − a9 − a10(a5 − a3)/a4 along with coupled equations in the other variables.
Equation (7.34) has the form of a forced linear oscillator, also characteristic of alluvial
meander models.

The boundary conditions, equations (7.17) and (7.18), at O(ε1) become

B1 = A1 = 0 at n = ±1. (7.40)

The general solution to (7.34) is

A1(n) = C1e
r1n + C2e

r2n + C3 e
r3n + C4 e

r4n (7.41)

where (r1, r2, r3, r4) are the four linearly independent roots of the characteristic equation

0 = Σ1 + Σ2r + Σ3r
2 + Σ4r

4. (7.42)

The constants (C1, C2, C3, C4) are unwieldy analytic expressions not presented here (avail-
able upon request to the authors), evaluated by substituting equation (7.41) into (7.32), from
which B1, D1 and H1 follow.
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Lateral channel instabilities

Perturbations to the flow field will lead to harmonic meandering instabilities on the timescale
of melting, following equation (7.19). The linear contribution to this balance governs the
amplification of perturbations to the channel centerline, and we note that because of the
assumed fixed channel width

yb = 1 + yc +O(ε2k2). (7.43)

The O(ε1) contribution reads

∂yc
∂t

=

(
k∆TJ
βρU∗20

+
µ0LS
βU∗0B

∗
0

)
∂A1

∂n
+

(
k∆T

βρU∗30

(Tl − Tg) +
iω

β

)
D1 −

iω

β
H1, (7.44)

where we scale the time variation of perturbations ω∗ = LD∗0/U
∗3
0 ω as we do time. This

balance explicitly illustrates the competition between conductive heat loss, mechanical wear
and vertical downcutting in setting the lateral bank migration rate.

7.4 Results

We find a wide range of parameters for which our model produces a meandering instability
with unique wavelength (Figure 7.3). Both the amplitude and wavelength of this instability
vary quite strongly over the range of parameters we consider reasonable, and transitions
to stability (perturbation amplitudes are negative so become damped in time) and high
frequency instability (perturbation amplitudes become increasingly unstable at small wave
lengths) are predicted for some parameters. We find that, for finite amplitude meanders,
the instability generally propagates upstream (celerity, the imaginary part of the solution, is
negative). This is in contrast to meandering instabilities for supraglacial streams [Karlstrom
et al., 2011] and most alluvial models [Seminara, 2006]. However, we also find stationary
meanders (e.g., Figure 7.3.c) and cases in which downstream propagation occurs.

There are a large number of dimensionless parameters in our solution, and many dimen-
sional parameters that are poorly constrained. A complete exploration of the parameter
space is not attempted here, but we do wish to demonstrate which parameters control me-
ander instabilities in specific cases that are relevant for real lava channels, and rationalize
the physical controls on meandering implied by model behavior. Sinuousity provides infor-
mation about substrate strength and erosion processes in other settings [Seminara, 2006],
and we anticipate that a fit of our model to data may inform the debate on lava channel
erosion. However, before attempting this we must first demonstrate that our model makes
predictions that are reasonable.

To this end we pick two end member cases, a channel with width similar to Lunar
sinuous rilles (B∗0 = 100 m, Schubert et al. [1970]) and a channel similar to typical those
observed during terrestrial basaltic eruptions (e.g., Hawaii and Mount Etna) (B∗0 = 1 m)
[e.g., Peterson et al., 1994, Siewert and Ferlito, 2008] as illustrated in Figure 7.1. Many
unknown parameters in our problem covary, as they do in setting the hydraulic geometry
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of alluvial rivers [Leopold and Maddock, 1953], but this covariance is poorly constrained for
lava flows. Dimensional parameters chosen for each of these cases are listed in Table 1, along
with the corresponding dimensionless numbers in Table 2. Selected variation of dimensional
parameters is shown in Figure 7.4.

For the large channel we choose a mean flow velocity (10 m/s) and channel width (100
m) similar to that estimated for the original width (before erosion of channel walls) of lunar
rilles. We then explore the selected wavelength of the meander instability as a function of
channel aspect ratio varying 4 other parameters: the magma viscosity µ0, bulk temperature
difference ∆T , downcutting rate of perturbation ω, and efficacy of mechanical erosion S. It
is evident that quite different model behavior results from varying these parameters, and
finite amplitude meandering is not a feature of all parameter choices (note the transitions
to instability at small wavelengths – a high frequency instability that is not realistic – and
stability in Figure 7.4).

In terms of dimensional parameters, it appears that lowering rate ω and lava viscosity µ0

have the largest effect on selected wavelength, with finite lowering rate resulting in a much
reduced meander wavelength irrespective of other parameters. Mechanical erosion appears
to have only modest control on the solution for these parameters, while temperature differ-
ence between the bulk flow and locking temperature ∆T exerts greater influence. However
dimensional quantites affect the solution through the 8 dimensionless governing parameters
in equation 7.4-7.6 and 7.15, and more complete physical insight follows from examining the
relative magnitudes of these numbers for the parameter choices in figure 7.4. These ranges
are listed in Table 2.

Influence of the dimensionless numbers in our problem follows the governing equations,
and thus they may be easily interpreted physically. Reynolds number Re appears in inverse
in the governing equations. Increasing Re generally decreases the viscous stresses and results
in a larger meander wavelength. Viscous stresses introduce a stabilization of the meander
instability that is increasingly suppressed as Reynolds number increases. Vertical shear
stresses will increase with Froude number, and directly correlate with increase wavelength.
Thermal parameters exhibit trends that match their sign in the heat balance – increasing Π1

(downcutting energy) and Π5 (viscous dissipation) result in increased meander wavelength,
while Π2,Π3 and Π4 are inversely correlated with meander wavelength.

The smaller channel that we explore, with half-width B∗0 = 1 m, exhibits quite different
behavior. In this case, typical values for flow parameters (U∗0 and D∗0) result in stable
channels for significant range of the parameter space, irrespective of thermal parameters.
This results from the fact that Reynolds numbers for these flows are much smaller, so the
stabilizing effect of viscous stresses in enhanced relative to the large channel. This reduced
range of instability is exhibited in Figure 7.5 for select parameter choices. It is evident from
this figure that thermal parameters exert a second order influence on selected wavelength
compared to flow parameters. In cases that thermal parameters dominate the Reynolds
number effect, we see similar dynamic trends as with the larger channel.

We can also explore the transition from open channel flow to tube flow. Our model for
the transition between these flow types consists of turning on and off the radiative heat loss
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at the top interface of the channel in our energy balance (equation 7.15). We find that for
some parameter choices there are quantitative differences between the selected wavelength
and stability of perturbations with and without radiative heat transfer. Examples for a large
channel (B∗0 = 100 m) are plotted in Figure 7.6. We see in this case that, all else constant,
for large flow velocities (U∗0 = 10 m/s) meanders result over a greater range of aspect ratio
with greater wavelength in channels for which radiation is suppressed (tube flow). However,
we also show that varying other parameters in the problem (for example, the magnitude of
mechanical erosion in Figure 7.6) may suppress this difference.

The selected wavelengths produced by our model are linear solutions, and finite ampli-
tude effects may modulated the initial instabilities that we model here. Still, these linear
perturbations are expected to most closely represent true meander wavelengths. While there
is little published quantitative data on the sinuousity of lava channels, Schubert et al. [1970]
provide measurements of Lunar sinuous rilles that we can use to provide some constraints
on our model. Their Figure 12 shows measure meander wavelength to width ratios of 2–10,
and we overlay this measurement on Figures 7.4 and 7.6. If we compare this quantity to the
dimensionless wavelengths plotted in figure 7.4, we would infer that downcutting occurred
during rille formation in order to produce small wavelength to width ratios. We also rule
out cool flows with only thermal erosion (curve excluded from the shaded box in Figure 7.4).
Further constraints on channel aspect ration may inform whether lunar rilles are tube or
open channel flows (Figure 7.6) or whether we can rule out particular erosion mechanisms.
However, even without this more detailed comparison we have demonstrated that meander-
ing is a common instability in lava channels. This model makes testable predictions that
may inform other studies of these flows, and illustrates that meandering lava channels share
a common origin with meandering in other fluvial systems.

7.5 Appendix

Derivation of the governing equations for alluvial meandering has been presented in detail
in, e.g., Smith and McLean [1984] and Seminara and Turbino [1992], however these models
are not appropriate for viscous flow. We therefore present in detail the shear stress terms in
equations 7.4-7.5 and viscous dissipation in equation 7.15.

Shear stress in meandering coordinates

In meandering coordinate with metric coefficients given by (h∗s, h
∗
n, h

∗
z) = (1 +n∗κ∗(s∗), 1, 1),

divergence of the general stress tensor is given by

∇ · τ =
[
N ∂τss

∂s
+ ∂τns

∂n
− κNτns + ∂τsz

∂z

]
es

+
[
N ∂τsn

∂s
+ ∂τnn

∂n
+ κN(τss − τnn) + ∂τnz

∂z

]
en

+
[
N ∂τsz

∂s
+ ∂τnz

∂n
− κN ∂τsz

∂s
+ ∂τzz

∂z

]
ez

 (7.45)
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with N and κ defined in the main text and (es, en, ez) unit vectors in downstream, cross
stream and vertical directions respectively. Models for meandering alluvial streams simplify
this general expression considerably, arguing that in large aspect ratio rivers the dominant
boundary layer shear flow of low viscosity fluid implies vertical stresses dominate. τsz, τnz
are then the only nonzero components of the stress tensor.

Lava channels are likewise dominantly shear flows, but strongly temperature dependent
viscosity and lower aspect ratios than alluvial systems imply that wall cooling may signifi-
cantly affect viscous stresses. For example, assuming that the lava channel boundary is set
by the locking temperature Tl = 800 − 1000◦C, lava viscosity increases roughly 3 orders of
magnitude (roughly O(10) Pas to O(104) Pas) from conditions likely found in the bulk flow
(T = 1200 − 1300C) near to the vent [Harris and Allen, 2008]. Therefor we include lateral
shear stresses τns that arise from viscosity variations in our modeling as well as bed shear
stresses. All other components vanish upon depth averaging or are negligible.

Viscous dissipation in meandering coordinates

Viscous dissipitaion occurs at the smallest length scales in a flow as fluid viscosity turns
momentum into heat. It may be expressed as a contraction of the stress tensor τ with the
strain rate tensor ε̇ of the flow which for the (thermo) viscous flow considered here takes the
form

a = 2µ(T ) ε̇ : ε̇, (7.46)

where ε̇ = (∇u+∇uT )/2 is the strain rate tensor.
In meandering coordinates strain rate is

∇u =

 N
(
∂u
∂s
− κv

)
N
(
∂v
∂s

+ κu
)

N ∂w
∂z

∂u
∂n

∂v
∂n

∂w
∂n

∂u
∂z

∂v
∂z

∂w
∂z

 , (7.47)

and the contraction ε̇ : ε̇ may be expressed (after applying continuity) as

ε̇ : ε̇ = 2

[
∂un
∂n

]2

+
1

2

[
N

(
∂un
∂s

+ κus

)
+
∂us
∂n

]2

+

[
1

2

∂us
∂z

]2

+

[
1

2

∂un
∂z

]2

. (7.48)

after a depth averaging operation assuming 〈φψ〉 ≈ 〈φ〉〈ψ〉, two terms arise that do not
involve derivatives with respect to n or s and thus will dominate the expression, leaving

〈ε̇ : ε̇〉 =
U2 + V 2

4D2
(7.49)

as the viscous dissipation in our model.
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Parameter Large Channel Small Channel
B∗0 100 m 1 m
D∗0 1− 10 m/s 0.01− 1 m
U∗0 1− 5 m/s 0.01− 2 m/s

∆T ∗ 100, 500 ◦C 100, 500 ◦C
µ∗0 1, 100 Pas 1, 100 Pas
S∗ 10−7, 10−10 Pa−1 10−7, 10−10 Pa−1

T ∗l 700 ◦C 700 ◦C
κI 1 W/m K 1 W/m K
L 400 kJ/kg 400 kJ/kg
ρ 3000 kg/m3 3000 kg/m3

cp 4 kJ/kg K 4 kJ/kg K

Table 7.1: Estimates for model parameters, for case of large and small channel.

Symbol Physical ratio Large Channel Small Channel
β Channel width to depth 5− 100 1− 100
Fr Inertia to gravity 0.05− 4 0.003−4
Re Viscous stresses to inertia 100 − 105 10−4 − 102.5

Π1 Latent heat to advection 10−5 − 100 10−8 − 10−1

Π2 Conduction to advection 10−9 − 10−3 10−7 − 102

Π3 Mechanical erosion to advection 10−8 − 10−1 10−6 − 101/2

Π4 Radiation to advection 10−9 − 10−2 10−8 − 102

Π5 Viscous dissipation to advection 10−10 − 10−6 10−9 − 10−3

Table 7.2: Dimensionless numbers, their meaning, and ranges for the two example cases of
a large channel (B∗0 = 100 m) and a small channel (B∗0 = 1 m)
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Figure 7.1: (a) Example of a sinuous (frozen) lava channel on Mt Etna, with width between
8 and 16 m [from Siewert and Ferlito, 2008]. (b) Transition from open channel flow to tube
flow through roof building during the 1970 Mauna Ulu eruption, Hawaii [from Peterson et al.,
1994] (c). Sinuous rilles on the Moon [from Schubert et al., 1970]. Width of this photo is 50
km.
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Figure 7.3: Dimensionless lateral bank perturbation amplitude (equation 7.44) versus
wavenumber for selected cases to demonstrate typical model output. Blue cruves are the
growth rate (real part of perturbation) while red curves are the propagation direction (imag-
inary part of perturbation). Variable parameters are listed at the top of each panel. We
assume a locking temperature Tl = 700 C, and J = 1 s/m for all cases.
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β for a wide (B∗0 = 100 m) lava channel. Curves are for selected parameters listed in the
table. Transitions to stability (perturbation amplitude is negative) and to uniform instability
(perturbation amplitude grows with wavenumber) are labeled. The gray box is the range of
dimensionless wavelength measured for Lunar rilles by Schubert et al. [1970].
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Chapter 8

Conclusion

Crustal magma transport integrates processes that occur over 12–15 orders of magnitude in
space and time, culminating in volcanic eruptions and intrusions that build and chemically
evolve the crust. Magma transport is relevant both for understanding Earth history and
volcano–human interactions, but it is largely inaccessible to direct observation. Constraints
come both from observations of active magma transport and from study of the frozen record
of intruded magmas, erupted lavas, ash and volcanic landforms. Integrating active moni-
toring with the geologic record is of primary importance for understanding the variability
and consequences of magma transport over geologic time. However, as with other Earth Sci-
ence disciplines [e..g., Oskin et al., 2007], it is not always easy to reconcile observed modern
observations with the partial preservation and time–averaged nature of geologic data.

Extreme volcanic eruptions with erupted volume > 1000 km3 [Self, 2006] are a prime
example and have no historical analog. Their infrequence relative to human timescales
(105−106 year recurrence [Miller and Wark, 2008], compared to 30–100 year global recurrence
of great earthquakes [McCaffery, 2008]) provides us with little direct evidence for their
assembly, eruption or global impact. Yet these large events are preferentially preserved in
the geologic record and represent the largest perturbations to other Earth Systems (e.g.,
climate, ecology). There are a variety of indirect means to reconstruct evolving eruption
cycles, but we lack an unambiguous observational record. Thus for both the study of short–
term volcanic hazards and longer–term coupling of eruption cycles to tectonics and climate it
is necessary to extrapolate from modern to geologic constraints. Integration of such diverse
data benefits from quantitative models for magma transport.

This thesis develops models for the time–evolving dynamics of individual magma trans-
port components, dikes, magma chambers and volcanic conduits. Modeling demonstrates
that these internal components exert significant control on the episodic nature of surface vol-
canism. Applications to stratovolcano spacing in arc settings, to the distribution of caldera
forming eruptions in the geologic record, and to the duration of “main phase” eruptions of
Large Igneous Provinces, suggest that these models provide a consistent explanation for a
range of volcanic phenomena on large scales.

Chapters five and six model meander formation in the channels of water on glaciers
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and lava from effusive eruptions. These features, while distinct in transported fluid, sub-
strate, and mechanisms of erosion, nonetheless exhibit similar morphological instabilities. A
mathematical framework developed for alluvial meanders [Blondeaux and Seminara, 1985]
demonstrates that the instability responsible for meander formation is a generic feature of
flow over an erodable substrate. This work provides general justification for developing
mechanistic rather than empirical models for transport processes: large scale features, while
differing in detail, are often controlled by processes that are independent of setting. Applied
to subsurface magmatic plumbing this perspective suggests that, despite an enormous range
of environmental conditions, primary transport features reflect emergent organization from
underlying nonlinear thermodynamic and mechanistic controls.

Of course, similarity does not necessarily imply universality [e.g., Stanley et al., 2000],
and important mechanistic information may be obtained by focusing on differences between
similar phenomena in different environments. The scaling between meander wavelength and
channel width, for example, is slightly different between meanders on gravel, bedrock, ice,
and lava. This likely reflects differences in erosion mechanism between these settings, and
has geological applications to planetary settings in which meanders are observed but the
nature of the substrate and eroding fluid is unknown. Future directions towards this goal
will synthesize data from lava channels [e.g., Schubert et al., 1970], supraglacial streams [e.g.,
Parker, 1975, Karlstrom et al., 2011], bedrock and alluvial rivers [e.g., Leopold and Wolman,
1960] to constrain the parameters of erosion in different settings. The models in this thesis
also predict a time evolution of meanders that can be tested.

Connecting frozen magma transport to other Earth systems that have evolved over geo-
logic time (e.g., climate, mantle circulation) requires understanding these couplings and the
effect of background forcing on the transport processes. Testing of models presented here
will require subtracting background signals due to tectonics, climate, and mantle dynamics.
Planetary analogs, such as the Tharsis magmatic province on Mars, provide examples of vol-
cano spacing in non–plate tectonic settings with which to test magmatic lensing [Karlstrom
et al., 2010b] and thus a control on tectonic forcing. To address other influences, settings
with many well–characterized volcanic centers are required to provide a statistical basis for
removing background signals. Volcanic zones such as the Cascades may provide sufficient
data to accomplish this task.

The Cascades have been a continuous and well–defined arc since the Eocene, with slab-
and mantle wedge-derived melt available to drive crustal magma transport [Hildreth, 2007].
However, the distribution of Cascades volcanism is far from uniform in space or time [Guffanti
and Weaver, 1988]. Eruptive output concentrates at evolved, long–lived volcanic centers for
parts of the arc, but significant contributions come also from broadly distributed and largely
mafic monogenetic cones. These monogenetic eruptions most directly sample the mantle
source regions, with little modulation or storage in the crust. Roughly 75% of erupted lavas
come from individual edifices versus distributed cones in the segment of the arc from Wash-
ington to British Columbia, dropping to 10% in the Oregon Cascades but up to 65−80% for
the Lassen and Shasta segments in California [Hildreth, 2007]. All eruptive centers evolve
in output over time. Eruption rates (as constrained by dating and mapping of flows) vary
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widely, from 0.01 - 100 km3/yr at individual centers throughout the Quaternary [Hildreth,
2007]. Although partial preservation dictates that the geologic portrait of Cascades mag-
matism will never be complete, this may be a suitable setting to test dynamic models for
magma transport.

A primary goal in volcanology, as in many branches of Earth Science, is to understand
natural systems well enough to mitigate human hazards. As with many branches of Earth
Science, the extreme range of interacting nonlinear components involved in magma transport
makes hazard forecasting difficult. However, relative to other hazards such as earthquakes
that provide seconds at most of warning before strong ground motion occurs, volcanic erup-
tions are often preceded by prolonged precursors, in the form of seismicity [Voight and Cor-
nelius, 1991, Chouet, 1996], ground inflation [Mogi, 1958, Geist et al., 2008], and changes in
gas discharge [e.g., Swanson et al., 1983, Spilliaert et al., 2006]. Combined with models for
magma transport, these precursors provide complicated but far–reaching information about
the subsequent surface eruption [e.g., Anderson and Segall, 2011].

Further refinements to these models make true eruption forecasting a real possibility, and
it is likely that within 50 years there will be an effective short–term eruption early warning
system similar to weather forecasting. On longer time scales magmatism is likely chaotic, so
in the absence of knowledge about all relevant initial conditions true prediction is impossible.
However, extreme volcanic events such as Large Igneous Provinces that represent anomalous
perturbations to the magma transport system are more tractable, and represent opportunities
to invert the frozen igneous record for drivers and consequences of volcanism. The models
provided here represent a template both for hazard mitigation on human timescales and a
probe of Earth history through prehistoric eruptions. This follows in the rich Earth Science
tradition of extrapolating processes understood on human scales to inaccessible domains of
time and space.
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