- Main
The oncogenic fusion protein EML4-NTRK3 requires three salt bridges for stability and biological activity.
Published Web Location
https://doi.org/10.1016/j.heliyon.2024.e36278Abstract
AIM OF STUDY: Chromosomal translocations involving neurotrophic receptor tyrosine kinases (NTRKs) have been identified in 20 % of soft tissue sarcomas. This work focuses on the EML4-NTRK3 translocation identified in cases of Infantile Fibrosarcoma, which contains the coiled-coil multimerization domain of Echinoderm Microtubule-like protein 4 (EML4) fused with the tyrosine kinase domain of Neurotrophic Receptor Tyrosine Kinase 3 (NTRK3). The aim of the study was to test the importance of tyrosine kinase activity and multimerization for the oncogenic activity of EML4-NTRK3. METHODS: These studies examined EML4-NTRK3 proteins containing a kinase-dead or WT kinase domain, together with mutations in specific salt bridge residues within the coiled-coil domain. Biological activity was assayed using focus assays in NIH3T3 cells. The MAPK/ERK, JAK/STAT3 and PI3K/AKT pathways were analyzed for downstream activation of signaling pathways. Localization of EML4-NTRK3 proteins was examined by immunofluorescence microscopy, and the ability of the EML4 coiled-coil domain to drive protein multimerization was examined by biochemical assays. RESULTS: Activation of EML4-NTRK3 relies on both the tyrosine kinase activity of NTRK3 and salt-bridge stabilization within the coiled-coil domain of EML4. The tyrosine kinase activity of NTRK3 is essential for the biological activation of EML4-NTRK3. Furthermore, EML4-NTRK3 activates downstream signaling pathways MAPK/ERK, JAK/STAT3 and PKC/PLCγ. The disruption of three specific salt bridge interactions within the EML4 coiled-coil domain of EML4-NTRK3 blocks downstream activation, biological activity, and the ability to hetero-multimerize with EML4. We also demonstrate that EML4-NTRK3 is localized in the cytoplasm and fails to associate with microtubules. CONCLUDING STATEMENT: These data suggest potential therapeutic strategies for Infantile Fibrosarcoma cases bearing EML4-NTRK3 fusion through inhibition of salt bridge interactions and disruption of multimerization.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-