Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Electronic Theses and Dissertations bannerUC Irvine

Symmetries, Dark Matter and Minicharged Particles

Abstract

This theoretical particle physics thesis is an investigation into old and new symmetries of Nature. Known symmetries and conservation laws serve as a guide for dark and visible sector model building. New symmetries of Nature are proposed, broken and subsequently reinstated at high temperatures in order to discover well motivated particle physics models for cosmological observations implying the existence of a dark sector. Candidate processes for creation of a non-primordial matter/antimatter asymmetry result from out of equilibrium spontaneous breaking of these symmetries in the early Universe. Using the Standard Model of particle physics as a foundation with minimal new degrees of freedom, minicharged and millicharged particles emerge from a proposed spontaneous breaking of known symmetries. Experimental predictions and constraints for such dark matter candidates are given briefly here and outlined for future work. Constraints on neutrino-like particles found in the debris of broken local (gauge) symmetries are given, a subset of which are sterile and appear to be viable particle dark matter candidates.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View