Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Generalized comparison trees for point-location problems

Published Web Location

https://arxiv.org/abs/1804.08237
No data is associated with this publication.
Abstract

Let H be an arbitrary family of hyper-planes in d-dimensions. We show that the point-location problem for H can be solved by a linear decision tree that only uses a special type of queries called generalized comparison queries. These queries correspond to hyperplanes that can be written as a linear combination of two hyperplanes from H; in particular, if all hyperplanes in H are k-sparse then generalized comparisons are 2k-sparse. The depth of the obtained linear decision tree is polynomial in d and logarithmic in |H|, which is comparable to previous results in the literature that use general linear queries. This extends the study of comparison trees from a previous work by the authors [Kane et al., FOCS 2017]. The main benefit is that using generalized comparison queries allows to overcome limitations that apply for the more restricted type of comparison queries. Our analysis combines a seminal result of Forster regarding sets in isotropic position [Forster, JCSS 2002], the margin-based inference dimension analysis for comparison queries from [Kane et al., FOCS 2017], and compactness arguments.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item