Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Paracrine signalling by pancreatic δ cells determines the glycaemic set point in mice

Abstract

While pancreatic β and α cells are considered the main drivers of blood glucose homeostasis through insulin and glucagon secretion, the contribution of δ cells and somatostatin (SST) secretion to glucose homeostasis remains unresolved. Here we provide a quantitative assessment of the physiological contribution of δ cells to the glycaemic set point in mice. Employing three orthogonal mouse models to remove SST signalling within the pancreas or transplanted islets, we demonstrate that ablating δ cells or SST leads to a sustained decrease in the glycaemic set point. This reduction coincides with a decreased glucose threshold for insulin response from β cells, leading to increased insulin secretion to the same glucose challenge. Our data demonstrate that β cells are sufficient to maintain stable glycaemia and reveal that the physiological role of δ cells is to provide tonic feedback inhibition that reduces the β cell glucose threshold and consequently lowers the glycaemic set point in vivo.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View