Skip to main content
eScholarship
Open Access Publications from the University of California

Controlling the Temperature and Speed of the Phase Transition of VO2 Microcrystals

Abstract

We investigated the control of two important parameters of vanadium dioxide (VO2) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ∼70 to ∼1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition by using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10(2) to 1.7 × 10(4) μm/s as the width decreases from ∼50 to ∼2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO2, the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO2 microcrystals. Our findings not only enhance the understanding of VO2 intrinsic properties but also contribute to the development of innovative electronic devices.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View