- Main
New route towards internally phase stabilized Kerr combs
- Vinod, Abhinav Kumar
- Advisor(s): Wong, Chee Wei
Abstract
Optical frequency comb (OFC) technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, redefinition of time, extreme light-matter interaction, and attosecond sciences. While the current mode-locked laser-based OFC has had great success in extending the scientific frontier, its use in real-world applications beyond the laboratory setting remains an unsolved challenge. Microresonator-based OFCs, or Kerr frequency comb, have recently emerged as a candidate solution to the challenge because of their preferable size, weight, and power consumption (SWaP). On the other hand, the current phase stabilization technology requires either external optical references or power-demanding nonlinear processes, overturning the SWaP benefit of Kerr frequency combs. Introducing a new concept in phase control, here we report an internally phase stabilized Kerr frequency comb without the need of any optical references or nonlinear processes. We describe the comb generation analytically with the theory of cavity induced modulation instability, and demonstrate for the first time that the optical frequency can be stabilized by control of two internally accessible parameters: an intrinsic comb offset and the comb spacing frep. Both parameters are phase locked to microwave references, with 55 mrad and 20 mrad residual phase noises, and the resulting comb-to-comb frequency uncertainty is 0.08 Hz or less. Out-of-loop measurements confirm good coherence and stability across the comb, with measured optical frequency fractional instabilities of (5�〖10〗^(-11))⁄√τ. The new phase stabilization method preserves the Kerr frequency comb’s key advantages and potential for chip-scale electronic and photonic integration
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-