Skip to main content
Download PDF
- Main
An Essential and Synergistic Role of Purinergic Signaling in Guided Migration of Corneal Epithelial Cells in Physiological Electric Fields
Published Web Location
https://doi.org/10.33594/000000014Abstract
Background/aims
Directional migration of corneal epithelial cells is essential for healing of corneal wounds, which is a robust response mediated by biochemical and bioelectrical cues. Naturally occurring electric fields at corneal wounds provide a powerful guidance cue for directional cell migration, as does extracellular ATP. Our recent large-scale siRNA library screening identified a role for purinergic signaling in the electric field-guided migration (galvanotaxis/electrotaxis) of human corneal epithelial (hTCEpi) cells.Methods
We examined the effect of extracellular ATP on galvanotaxis of hTCEpi cells. Galvanotactic cell migration was recorded by video microscopy, and directedness and migration speed was calculated. The role of purinergic receptors in galvanotaxis regulation was evaluated by pharmacological inhibition or knocking down of P2X and P2Y receptors.Results
Addition of ATP enhanced galvanotaxis, and most remarkably sensitized galvanotaxis response to very low level of electric fields in the physiological range (10-30 mV/mm). The stimulatory effect of extracellular ATP was diminished by apyrase treatment. Importantly, cells stimulated with extracellular ATP migrated with significantly increased directedness and speed, which were diminished by knocking down or pharmacological inhibition of P2X and P2Y receptors. Inhibition of pannexin-1 (ATP permeable channel) significantly impaired galvanotaxis. Moreover, pharmacological inhibition of ectoATPase enhanced galvanotaxis.Conclusion
Extracellular ATP and physiological electric fields synergistically enhanced the galvanotaxis response of hTCEpi cells. hTCEpi cells are likely to secrete ATP actively, and purinergic signaling is down-regulated by ecto-ATPases. Both P2X and P2Y receptors coordinately play a role for galvanotaxis of hTCEpi cells.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%