Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Superior cervical ganglion stimulation results in potent cerebral vasoconstriction in swine.

Abstract

Introduction

Sympathetic activity from the superior cervical ganglion (SCG) has been shown to cause cerebral hypoperfusion in swine, similar to that seen with clinical cerebral vasospasm. Although the mechanism of such perfusion deficit has been speculated to be from pathologic cerebral vasoconstriction, the extent of sympathetic contribution to vasoconstriction has not been wellestablished.

Objective

We aimed to demonstrate that SCG stimulation in swine leads to significant cerebral vasoconstriction on digital subtraction angiography (DSA). Additionally, we aimed to show that inhibition of SCG can mitigate the effects of sympathetic-mediated cerebral vasoconstriction.

Methods

Five SCGs were surgically identified in Yorkshire swine and were electrically stimulated to achieve sympathetic activation. DSA was performed to measure and compare changes in cerebral vessel diameter. Syngo iFlow was also used to quantify changes in contrast flow through the cerebral and neck vessels.

Results

SCG stimulation resulted in 35-45% narrowing of the ipsilateral ascending pharyngeal, anterior middle cerebral and anterior cerebral arteries. SCG stimulation also decreased contrast flow through ipsilateral ascending pharyngeal, internal carotid and anterior cerebral arteries as seen on iFLow. These effects were prevented with prior SCG blockade. Minimal vessel caliber changes were seen in the posterior cerebral, posterior middle cerebral and internal carotid arteries with SCG stimulation.

Conclusion

SCG stimulation results in significant luminal narrowing and reduction in flow through various intracranial arteries in swine. The results of sympathetic hyperactivity from the SCG closely models cerebral vasoconstriction seen in human cerebral vasospasm. SCG inhibition is a potential promising therapeutic approach to treating cerebral vasospasm.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View