Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Biomechanical metamaterials fabricated through multiphoton lithography by tailoring 3D buckling

Abstract

The advances in laser fabrication technologies have provided the means to create complex structural features in micro- and nanoscale. Hierarchical features, imitating natural materials, can be architected, providing remarkable mechanical performance. In addition, metamaterial structures, ranging from mechanical to bioengineering, with unprecedented properties, can be utilized for engineering applications. In this paper, we summarize conducted work on the laser-aided fabrication of architected structural and biological materials. To effectively design "meta-implants", the design and structural principles encompassing these architected materials must be comprehended and substantiated. To this end, we fabricated by multiphoton lithography 3D mechanical metamaterial structures having as the principal objective to control failure and increase the strain energy capacity of the structure. New design concepts for 3D mechanical metamaterials were also introduced, exhibiting tailored buckling for enhanced strain hardening, high energy absorption and resilience to large deformations. Furthermore, we developed the processes required to create large scale bioscaffolds, that can be utilized in biological science and biomedical engineering for in vitro models.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View