Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Constant-potential molecular dynamics simulations of molten salt double layers for FLiBe and FLiNaK

Published Web Location

https://doi.org/10.1063/5.0097697Creative Commons 'BY' version 4.0 license
Abstract

We report the results of constant-potential molecular dynamics simulations of the double layer interface between molten 2LiF-BeF2 (FLiBe) and 23LiF-6NaF-21KF (FLiNaK) fluoride mixtures and idealized solid electrodes. Employing methods similar to those used in studies of chloride double layers, we compute the structure and differential capacitance of molten fluoride electric double layers as a function of applied voltage. The role of molten salt structure is probed through comparisons between FLiBe and FLiNaK, which serve as models for strong and weak associate-forming salts, respectively. In FLiBe, screening involves changes in Be-F-Be angles and alignment of the oligomers parallel to the electrode, while in FLiNaK, the electric field is screened mainly by rearrangement of individual ions, predominantly the polarizable potassium cation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View