Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A panel of CpG methylation sites distinguishes human embryonic stem cells and induced pluripotent stem cells.

Abstract

Whether human induced pluripotent stem cells (hiPSCs) are epigenetically identical to human embryonic stem cells (hESCs) has been debated in the stem cell field. In this study, we analyzed DNA methylation patterns in a large number of hiPSCs (n = 114) and hESCs (n = 155), and identified a panel of 82 CpG methylation sites that can distinguish hiPSCs from hESCs with high accuracy. We show that 12 out of the 82 CpG sites were subject to hypermethylation in part by DNMT3B. Notably, DNMT3B contributes directly to aberrant hypermethylation and silencing of the signature gene, TCERG1L. Overall, we conclude that DNMT3B is involved in a wave of de novo methylation during reprogramming, a portion of which contributes to the unique hiPSC methylation signature. These 82 CpG methylation sites may be useful as biomarkers to distinguish between hiPSCs and hESCs.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View