Skip to main content
eScholarship
Open Access Publications from the University of California

How Dock-less Electric Bike Share Influences Travel Behavior, Attitudes, Health, and Equity: Phase II

Published Web Location

https://doi.org/10.7922/G2FF3QN5
Abstract

Dock-less, electric bike-share services offer cities a new transportation option with the potential to improve environmental, social, and health outcomes. But these benefits accrue only if bike-share use replaces car travel. The purpose of this study is to examine factors influencing whether bike-share substitutes for driving and the degree to which and under what circumstances bike-share use reduces car travel. Major findings in this report include (1) bike-share in the Sacramento region most commonly substitutes for car and walking trips, (2) each bike in the Sacramento bike-share fleet reduces users’ VMT by an average of approximately 2.8 miles per day, (3) areas with a higher proportion of low-income households tend to use bike-share less, (4) bike-share availability appears to induce new trips to restaurants and shopping and for recreation, (5) bike-share trips from commercial and office areas were more likely to replace walking or transit trips, while bike-share trips from non-commercial areas (and trips to home or restaurants) were more likely to replace car trips, (6) expanding the bike-share service boundary at the same fleet density decreases system efficiency and VMT reductions per bike. Our result suggests the need for an efficient rebalancing strategy specific to areas by time of day to increase the service efficiency and its benefits. Further analysis of the data used in this study to examine questions such as how bike share can improve transit connections and factors inducing bike use at the individual level will contribute to the development of more robust models and provide additional insights for bike share operation strategies and policy implementation.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View