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ABSTRACT OF THE DISSERTATION

Design of efficient and statistically powerful approaches
for human genetics

by

Jae Hoon Sul
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Eleazar Eskin, Chair

The advent of genotyping and sequencing technologies has enabled human ge-

netics to discover numerous genetic variants associated with many diseases and traits

over the past decades. One of the most effective approaches to detect those variants

has been genome-wide association studies (GWASs) that scan all variants found in

genomes. GWASs collect people with a disease (called cases) and people without a

disease (called controls) and compare allele frequencies between cases and controls

to identify genetic variants associated the disease. This simple yet effective approach

has been widely utilized by many studies, and more than 1,600 GWASs have been

published during the last decade.

An underlying assumption of GWAS is that cases and controls are sampled from

the same population. If they are not, then a phenomenon called population structure

may cause spurious associations. Correcting for population structure in GWASs has

been a very important problem in human genetics, and several methods have been

proposed. However, those methods fail to correct for complex structure or are compu-

tationally too challenging for current GWAS datasets. I will introduce a new statistical

approach that correctly removes effects of population structure and reduces the com-
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putational time from years to hours.

Recently, sequencing technologies that enable a detection of rare variants have

received considerable attention and been utilized by many GWASs. In these stud-

ies, rare variants in a gene are often grouped together to test the aggregated effect of

rare variants on disease susceptibility. However, there are many different approaches

to combine information of multiple rare variants, and it is unknown which approach

is optimal in detecting associations of rare variants. I will introduce two novel ap-

proaches to better identify a group of rare variants involved in a disease. I will show

using simulations that our approaches outperform previous methods, and using real

sequencing data, I will show that our methods can identify an association reported by

a previous study.

Finally, I will introduce a statistical approach to identify expression quantitative

trait loci (eQTL) or genetic variants that are associated with gene expression in multi-

ple tissues. Recent technological developments and cost decreases have enabled eQTL

studies to collect expression data in multiple tissues, but most studies focus on finding

eQTLs in each tissue separately. I will introduce a statistical approach that combines

results from multiple tissues to better identify eQTLs. I will show by using simulations

and multiple tissue data from mouse that our approach detects many eQTLs undetected

by traditional eQTL methods.
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CHAPTER 1

Introduction

Humans have three billion letters or nucleotides of DNA sequences, and a majority

of them (99.9%) are identical for all humans. It is the 0.1% of DNA sequences that

make us all different, and they are referred as genetic variants. One of the primary

goals in genetics studies is to identify DNA sequences or genetic variants that cause

a difference in traits or diseases. For example, individuals who carry a mutation at a

certain DNA position may be more susceptible to a certain disease than individuals

without the mutation. Similarly, certain genetic variants may influence the height or

weight of individuals. Identifying genetic variants related to or “associated” with traits

or diseases is very important to uncover the roles of genetics in diseases, which is

fundamental in understanding diseases and searching for their treatments.

One approach to detect genetic variants that cause a disease is the linkage analysis

[LS94]. It collects DNA information of a family that consists of both unaffected and

affected individuals. It then tries to detect the segments of DNA that segregate with

a disease within a family. This was the predominant approach when a technology to

obtain DNA information of individuals was limited; the linkage analysis used hundreds

of markers such as microsatellite markers that track the number of short repeats in

genomes. The linkage analysis has been successful in identifying genetic variants or

genes that cause Mendelian disorders such as Huntington’s disease [Wal07] and Cystic

Fibrosis [KRB89]. Mendelian disorders are diseases in which there is usually a single

gene that causes them. The linkage analysis, however, was shown to be unsuccessful
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in detecting genetic basis of the complex diseases, opposite to Mendelian diseases, that

involve many genes or genetic variants such as autism and type I and II diabetes.

To identify genetic mechanisms of complex traits or diseases, association studies

have been proposed. Association studies collect individuals with a disease called cases

and individuals without a disease called controls and compare their DNA information.

Specifically, an allele is one of the forms of genes or genetic variants, and association

studies determine whether certain alleles are overrepresented in cases than in controls.

The advent of microarray genotyping technologies enabled genetic studies to collect

information on numerous single nucleotide polymorphisms (SNPs) usually in the order

500K to one million in a genome-wide level. Studies that perform associations studies

on genetic variants collected genome-wide are called Genome-wide association stud-

ies (GWASs). GWASs have been very successful in detecting novel genetic variants

associated with many complex disease and traits [Con07, SSH09, AHK00, BKK94],

and more than 1,600 GWASs have been published over the past decade.

Current GWASs, however, suffer several drawbacks. First, they are susceptible to

population stratification. GWASs assume that cases and controls are sampled from

the same population. If there are not, a phenomenon called population stratification

or structure may cause GWASs to detect spurious associations [PSR00]. For example,

GWASs may collect individuals from two populations. If cases consist of more indi-

viduals from one population than those from the other population and controls have

more individuals from the other population, then any genetic variants that differ be-

tween the two populations and does not cause a disease will be spuriously associated

with the disease. Correcting for population structure in GWASs has been a very impor-

tant problem in human genetics, and several statistical approaches have been proposed

[DR99b, PPP06].

Another drawback of current GWASs is that they can only detect associations of
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common SNPs because the microarray genotyping technologies are designed to de-

tect polymorphisms in genomes that are common in populations. Results of GWASs

have indicated that common SNPs have small effects in complex traits, and they do

not explain all causes related to diseases [MCC09a]. Recently, it has been suggested

that rare variants that occur rarely among individuals may cause diseases [KPS07,

CKP04, FWW04], and researchers have been interested in the role of rare variants

in diseases. To detect rare variants, sequencing technologies that discover almost

all DNA sequences of one’s genome are used. While it cost $3 billion and took 13

years to sequence the first human genome [Con04], the advent of next generation se-

quencing technologies reduced the cost and time to sequence significantly; currently,

it costs about $1,000 and takes a week to sequence a genome. This has allowed many

GWASs to adopt sequencing technologies and to detect rare variants. Many meth-

ods that try to detect associations of rare variants have also been proposed recently

[MB09, LL08, PKB10].

The underlying requirements of statistical methods that attempt to solve the prob-

lems in GWASs are that first they need to be efficient. GWASs generate an enormous

amount of data; it collects DNA information of millions of genetic variants from thou-

sands or tens of thousands of individuals. Current sequencing technologies can easily

generate terabytes of information, and statistical methods or algorithms must be effi-

cient enough to handle this large data. Another requirement is that methods need to

statistically powerful. This means that they need to be able to detect associations of

genetic variants effectively. Genetics data are often expensive to obtain; it is expensive

to collect DNA of many individuals, to genotype or sequence their DNA, and to obtain

their traits information or disease status. Hence, we want to utilize the available data

as much as possible to find associations of genetic variants by designing statistically

powerful approaches.

3



My thesis work focuses on developing efficient and statistically powerful methods

to solve aforementioned and other problems in current human genetics. In what fol-

lows, I will briefly explain a background of a problem and a method that I developed.

Chapter 2: Variance component model to correct for population structure

Population structure as mentioned above may cause spurious associations in GWASs.

To correct for population structure, several statistical methods such as genomic control

[DR99b] and principal component analysis [PPP06] have been utilized. However, they

fail to correct for complex population structure or hidden relatedness in which individ-

uals in GWASs are related. A variance component model or mixed model [KZW08]

was proposed and shown to effectively correct for the complex population structure

in model organisms such as inbred mouse. It computes a pairwise relatedness be-

tween individuals and incorporates this relatedness to correct for population structure

or hidden relatedness. However, its complicated algorithm is not efficient enough for

large human GWAS datasets. In Chapter 2, I propose a variance component approach

that reduces the computational time for analyzing large GWAS datasets from years

to hours. I use the insight that genetic variants have small effects in humans, which

allowed me to simplify the original variance component model. I show by using two

human GWAS datasets that this method outperforms both principal component analy-

sis and genomic control in correcting for population structure.

Chapter 3: Aggregated association test for rare variants

In traditional GWASs where common SNPs are collected, each common SNP is

tested individually to detect an association between a disease and the SNP. Statisti-

cal power of this test is proportional to the minor allele frequency of SNPs; the more

common the SNP is, the higher power we achieve. This means that we have very low

power to detect associations of rare variants. In other words, it is extremely difficult to

identify a single rare variant involved in a disease. To increase the statistical power of
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rare variants, a groupwise association test has been proposed that groups rare variants

in a gene and discovers the aggregated effect of rare variants on disease susceptibility.

The idea behind this approach is that if a certain gene is involved in a disease, many

rare variants within the gene will disrupt the function of the gene and are associated

with the disease. In Chapter 3, I present a method that groups rare variants and com-

putes a weighted sum of differences between case and control mutation counts. I show

by using simulated data that this approach is more powerful than previous methods.

In addition, by using real mutation screening data of the susceptibility gene for ataxia

telangiectasia, I show that this approach can identify an association reported by a pre-

vious study that used a different statistical approach.

Chapter 4: Likelihood ratio test to increase power of groupwise association test

As discussed in Chapter 3, we take a weighted sum of statistics among multiple

rare variants to determine whether a gene is involved in a disease. However, not every

rare variant has effects in a disease, and if we include non-causal rare variants into our

weighted sum of statistics, we lose power. This means that we want to only include

causal variants into our statistical framework, but it is not known which variants are

causal. To overcome this, previous methods including the method discussed in Chap-

ter 3 used the prior information that specifies how likely each variant is deleterious.

Another source of information that can be used to determine causal variants is the ob-

served data itself since case individuals are likely to carry more casual variants than

control individuals. In Chapter 4, I introduce a likelihood ratio test (LRT) for rare

variants that use both data and prior information to infer which variants are causal and

uses this finding to determine whether a group of rare variants is involved in a disease.

I show by simulations that this method outperforms previous methods. I also develop

an efficient permutation test and decomposition of likelihood ratio to increase the com-

putational speed of our method. With this optimization, we can efficiently compute a

statistic for LRT and perform a permutation test at a genome-wide level.
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Chapter 5: Combining mixed model and meta-analysis to detect eQTLs from

multiple tissues

Expression Quantitative Trait Loci (eQTL) studies attempt to identify associations

between genetic variants and gene expression. Until recently, eQTL studies collected

gene expression data from a specific tissue and performed association studies. Recent

advancements in gene expression technologies have allowed studies to collect gene

expression from multiple tissues. One advantage of multiple tissue datasets is that

studies can combine results from different tissues to identify eQTLs more accurately

than examining each tissue separately. The idea of aggregating results of multiple tis-

sues is closely related to the idea of meta-analysis which aggregates results of multiple

studies. One challenge in applying meta-analysis to multiple tissues dataset is that

studies usually collect tissues from the same individuals, which violates the assump-

tion of meta-analysis that studies are independent. Another challenge is that eQTLs

may have effects in only a single tissue, in all tissues, or in a subset of tissues. This

heterogeneity in terms of effects presents a key challenge to detect eQTLs. In Chapter

5, I develop a statistical framework that combines mixed model and meta-analysis to

overcome these two challenges. I show by using simulations and multiple tissue data

from mouse that this approach detects many eQTLs that traditional eQTL methods do

not detect.
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CHAPTER 2

Variance component model to correct for population

structure

2.1 Background

GWASs may utilize either case-control cohorts to test for associations with diseases

or population cohorts to identify associations with quantitative traits. In both cases, it

is assumed that the cohorts consist of unrelated individuals that share the same pop-

ulation background, although this may not hold in practice for cohorts used in many

current GWASs. The presence of related individuals within a study sample results in

sample structure, a term that encompasses population stratification and hidden relat-

edness. Population stratification refers to the inclusion of individuals from different

populations within the same study sample. Hidden relatedness refers to the pres-

ence of unknown genetic relationships between individuals within the study sample

[VP05, WAH06]. The effects of sample structure present in cohorts used for genetic

association studies have been well documented and identified as a cause for some spu-

rious associations [NAM01, HYH05].

Although limiting study samples entirely to unrelated individuals may be difficult

or impossible, genotype data provides valuable information on the sample structure

that can inform genetic association analysis. For example, the STRUCTURE soft-

ware [PSR00] uses genotype data to partition the sample into subpopulations within
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which there is no sample structure and subsequently carries out association tests within

the identified subpopulations. To eliminate the effects of hidden relatedness, one can

estimate the proportion of genes identical by descent (IBD) between any pair of in-

dividuals in the sample and exclude from the analysis those individuals that appear

closely related [VP05, Con07]. Population stratification and hidden relatedness, how-

ever, constitute just two extreme manifestations of sample structure, and methods are

needed to correct for other forms of sample structure. In the genomic control ap-

proach [DR99a, BDR02], which has been widely adopted, the distribution of test

statistics from the single-marker analysis is used to estimate the inflation factor, λ,

with which the test statistics are subsequently rescaled, constraining the risk of false

positives. The EIGENSTRAT software [PPP06, PPR06] uses principal components

analysis (PCA) to detect and describe sample structure and has been widely used in

GWASs. Some principal components may represent broad differences across indi-

viduals within a given data set, effectively capturing a few major axes of population

structure, but it is unclear how to interpret the rest of the principal components as sur-

rogates of sample structure [NS08, NJB08]. Currently, association studies typically

use a combination of these strategies, first identifying close relatives to remove them

from analysis, then correcting for broad sample structure using principal components

or spatial information and finally correcting for the residual inflation with genomic

control [Con07, SSH09, CGK09].

If we knew the complete genealogy of the population, we could, in principle, ap-

ply a variance component method to model the effects of the genetic relationships

on the phenotypes; this approach would be similar in spirit to the classical polygenic

model [Fis18] directly applied to association mapping [OAM01]. The variance com-

ponent would capture the complex mixture of both population stratification and hid-

den relatedness that directly results from the genealogy and would correct for these

relationships during the mapping. Although the exact genetic relationships between
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individuals in the samples are unknown, we could take advantage of the high-density

genotype information to empirically estimate the level of relatedness between report-

edly unrelated individuals.

In this chapter, we report an approach for correcting for sample structure within

GWASs, based on a linear mixed model (also sometimes referred to as a mixed linear

model) with an empirically estimated relatedness matrix to model the correlation be-

tween phenotypes of sample subjects. Similar variance component approaches have

been used successfully in animal models [YPB06, ZAK07, KZW08]. However, ap-

plying even an efficient implementation of a variance component approach, such as

EMMA (ref. [KZW08]), is computationally intractable for data sets consisting of

thousands of individuals, owing to the heavy computational burden in the estimation

of variance parameters. Capitalizing on the characteristics of complex traits in hu-

mans, we make a few simplifying assumptions that allow us to markedly increase the

speed of computations, making our approach readily applicable to GWASs with tens

of thousands of individuals assayed at hundreds of thousands of SNPs. For most ge-

netic association studies in humans, because the effect of any given locus on the trait

is very small [MCC09b], we need to estimate the variance parameters only once for

each data set, and we can globally apply them to each marker. Our computational im-

provements reduce the running time for the analysis of a typical GWAS data set using a

variance component model from years to hours. The advantage of the variance compo-

nent approach is that the empirical relatedness matrix encodes a wide range of sample

structures, including both hidden relatedness and population stratification. Principal

componentbased methods, in contrast, by estimating major axes of the pairwise ge-

netic similarity matrix, capture some, but not all, of the sample structure, as we show

in this chapter.

We evaluate our method using two human GWAS data sets, from the 1966 North-
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ern Finland Birth Cohort (NFBC66) [SSH09, Ran69] and the Wellcome Trust Case

Control Consortium (WTCCC) [Con07]. The NFBC66 is based on a founder popula-

tion, which is expected to minimize genetic heterogeneity, increasing the chances of

mapping genes underlying traits of interest [VP04]. This is an ideal sample to evaluate

our method because a detailed study [JRV08] of this data set has revealed the presence

of substantial population structure that could influence the results of genetic associa-

tion studies. In addition, we apply our method to the case-control studies for seven

common complex diseases conducted by the WTCCC [Con07]. In both data sets,

our method consistently outperforms both genomic control and principal component

analysis. We term our method EMMA eXpedited (EMMAX) because it builds on the

previous approach EMMA (ref. [KZW08]) and markedly reduces the computational

cost.

2.2 Methods

2.2.1 Variance component model

We consider here the simplest form of Fisher [Fis18]’s polygenic model. Let Zi,j be

the contribution of factor j to person i, then we assume that the phenotype yi can be

modeled as

yi =
J∑
j=1

Zi,j + εi, E(εi) = 0, Cov(εi1, εi2) = 0 if i1 6= i2 (2.1)

with εi being a random variable representing environmental effects on the phenotype.

In equation (2.1) and throughout the chapter, we include only variables accounting

for the genetic factors, and all genetic factors contribute additively. This is purely a

convenient assumption to simplify notation, and nongenetic factors can be modeled as

additional regressors with a straight-forward extension. Epistatic loci can be incorpo-
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rated by including additional interaction terms in equation (2.1) to model a diverse set

of possible types of interactions

Let the vector Y = {yi, . . . , yn} contain the phenotypes of the individuals com-

puted from a pedigree. Assuming that the environmental components are uncorrelated,

the variance covariance structure of Y depends on the number of genes shared among

subjects. In absence of dominance effects, we have

Var(Y ) = 2σ2
aΦ + σ2

eI, (2.2)

where Φ is the matrix of kinship coefficients between each pair of individuals in the

pedigree, and I is an identity matrix [FM96]. Let σ2
a represent the parameter for ad-

ditive genetic variance and σ2
e represent the parameter for random environmental vari-

ance. An analysis of variance with random effects leads to the estimates of σ2
a and σ2

e ,

and in turn to the evaluation of heritability σ2
a/(σ

2
a + σ2

e) [FM96].

In linkage studies, this decomposition of variance is carried one step further. By

tracking the transmission of marker genes in the vicinity of locus k, one can calculate

the conditional kinship coefficients (Φk, probabilities that two genes sampled from two

individuals at locus k are IBD), and decompose the variance Var(Y ) to emphasize the

contribution of the k-th locus

Var(Y ) = 2σ2
akΦk + 2Φσ2

a + σ2
eI.

To investigate the contribution of locus k to the phenotype, one tests the null hypothesis

that σ2
ak = 0. The values of the variance parameters are estimated with maximum

likelihood procedures [Lan02].

In association studies, using a much denser set of genotypes, we aim to associate

the phenotypes directly to the alleles at marker loci; in other words, our goal is to

estimate fixed effects. Assuming additive effects only, equation (2.1) can be translated
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to the following regression framework:

yi = β0 +
M∑
k=1

βkXik + εi, (2.3)

with Var(ε) = σ2
eI , and Xk being the individuals’ minor allele counts at locus k ∈

{1, 2, L,M} (for simplicity, we assume all markers are biallelic). Our goal is to iden-

tify which elements in the M × 1 vector β are different from 0.

While model (2.3) is fundamentally a multivariate one, association studies are typ-

ically carried out by testing the hypothesis H0 : βk = 0, for each of the M loci, one

locus at a time, on the basis of model

yi = β0 + βkXik + ηik (2.4)

where βk is the effect size of marker k, and the error term ηik =
∑

s 6=k βsXis + εi.

With respect to model (2.3), model (2.4) is mis-specified if ηik are assumed to be

independently and identically distributed (i.i.d.): relevant regressors are omitted, or, in

other words, we ignore the polygenic background of the trait.

The appropriate statistical methods to estimate βk in (2.4) depends on the nature

of the sample. If the n individuals are related with a known degree of relatedness, the

variance covariance of ηik in model (2.4) can be represented approximately as in (2.2).

That is, the effect of the genotype at locus k can be modeled as a main effect, whereas

the relationships among all individuals are taken into account by means of variance

components of random polygenic effects [OAM01]. This model is sometimes referred

to as an instance of a “mixed effect” model [YPB06].

If the n individuals are unrelated and there is no dependence across the genotypes,

so that the ηik values are i.i.d., a simple linear regression would make appropriate

inference. However, these conditions are not easily met. First, because of linkage

disequilibrium, Xk values corresponding to markers with close genomic position are
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correlated. Moreover, neither the homogeneity of population background nor the level

of relatedness are easily controlled in the sampling stage. If the n individuals in the

sample belong to distinct populations or are (albeit distantly) related, one can expect

a substantial correlation between the rows and columns of X . This translates to bias

in the estimate of βk from equation (2.4), and the distribution of β̂k, a best unbiased

linear estimation of βk, is different from what is assumed in standard linear regression

(that is, the ηik values in (2.4) are not i.i.d.).

Using dense, genome-wide genotype data, it has become possible to estimate the

degree of relationship or kinship matrix between independently ascertained subjects

[LR99, EDB00, TH00] in the absence of genealogical information. With an estimated

kinship matrix one can, in principle, use variance component techniques in linear

mixed models (as in Ober et al. [OAM01]) to analyze population samples. If many

SNPs are involved in a trait and the contribution of each SNP to the total trait variance

is almost negligible, as appears to be the case for human quantitative traits [20,56], the

variance components for ηik in (2.4) can be approximated to ηi =
∑M

s=1 βkXik+εi and

may not need to be estimated separately for each SNP. Instead, one might estimate the

values σ2
a and σ2

e from a variance decomposition model as in equation (2.2), keep them

fixed, and then estimate the parameter βk in equation (2.4) using a GLS procedure.

2.2.2 Application to quantitative traits

We used the following procedure to analyze human population samples in association

studies for quantitative traits. Let n be the sample size, p the total number of genotyped

SNPs and Y the vector of observed phenotypes.

1. Use the genotype data to calculate the n×nmatrix Ŝ pairwise genetic relatedness

between individuals, such as identity by state (IBS) or Balding-Nichols matrix,

and normalize Ŝ to have sample variance 1 using a Gower’s centered matrix
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[MA01].

ŜN =
(n− 1)Ŝ

Tr(PŜP )
(2.5)

where P = I − 11′/n and 1 is vector of ones. It should be noted that Ŝ can

be substituted to various other pairwise relatedness matrices estimated from

the genotypes [PPP06, Rit09, MS00, Mil03], as long as the matrix is positive-

semidefinite.

2. Use a variance component model to estimate the restricted maximum likelihood

parameters (or alternatively, maximum likelihood parameter) of σa and σe in:

Var(Y ) = σ2
aŜN + σ2

eI (2.6)

Test the hypothesis H0 : σ2
a = 0. If the null hypothesis is rejected, proceed to

step 3; otherwise, use ordinary least squares to estimate the coefficients of each

of the SNPs genotyped.

3. For each marker, use GLS F-test [KK04], or alternatively a score test, to estimate

the effects βk and test the hypothesis βk 6= 0 in the following model.

yi = β0 + βkXik + ηi Var(η) = V ∝ σ̂2
aŜN + σ̂2

eI. (2.7)

The above model can be easily extended to have additional confounding variables

by substituting β0 for a multi-column matrix containing the confounding variables,

such as sex and age. Note that these additional confounding variables should be in-

cluded in the procedure of restricted maximum likelihood estimation of the variance

component parameters. Multi-locus models can be incorporated by including addi-

tional interaction terms [MDC05, EMM06]. For the variance component estimation

procedure in step 2, we use EMMA [KZW08]. We term our method EMMAX (EMMA
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eXpedited) because it markedly reduces the computational cost compared to the orig-

inal EMMA by avoiding the repetitive variance component estimation procedure for

each single marker. We investigated the effects of this simplification on the data sets

we analyzed.

2.2.3 Application to case control data sets

Although EMMAX was developed with quantitative traits in mind, it can also be

adapted to the analysis of case-control data sets. As the case-control phenotypes do

not follow a normal distribution, applying a generalized linear mixed model using logit

or probit link function is preferable to a linear mixed model. However, the computa-

tional cost of a generalized linear model with a correlated variance component is much

higher, and currently available algorithms cannot handle thousands of individuals si-

multaneously [McC03].

When the hypothesis of additive model appears reasonable, the Armitage trend test

[Arm55] can be used to test for the presence of a genetic effect. (See, for example,

Devlin and Roeder [DR99a] and note the equivalence of an Armitage test to a score

test in logistic regression for H0 : β = 0 [AW90]). The Armitage test can be described

as testing the significance of the slope coefficient in a linear regression of a 0-1 variable

representing case/control status on the additively coded genotypes. Armitage [Arm55]

suggested using a χ2
1 test that is slightly different from the square of a standard t test

in linear regression. The statistic proposed by Armitage is χ2
0 = β/var(β), but instead

of estimating the variance of the error terms using the residuals from the regression,

we estimate it using the variance of the response variable. Therefore, χ2
0 is equal to the

square of the correlation between the response and the genotype variables, multiplied

by the number of samples.

Despite this suggestion, Armitage indicated that the standard t statistic may be
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preferable, especially to construct confidence intervals. Therefore, it seems that one

can carry out tests in the spirit of Armitage simply using a standard linear regression

framework with a 0-1 quantitative response variable representing the case control sta-

tus. Adopting this approach, we were immediately able to translate the problem to the

methodology suggested for quantitative traits.

2.2.4 Genotype and phenotype data

We analyzed two data sets: one that contains measurements on quantitative traits

(NFBC66), and one for binary disease traits (WTCCC). Genotype data were available

for 5,546 Finnish subjects from NFBC66 (ref [SSH09]), all with genotyping complete-

ness >95%. We excluded subjects from further analysis because they had withdrawn

consent (15), had discrepancy between reported sex and sex determined from the X

chromosome (14), were sample duplications (2), were too related to another subject

(77), had more than 5% missing genotypes (1), or had no phenotype data (111), leav-

ing 5,326 subjects for analysis. For the relatedness criterion, we identified all pairs

of subjects with probability of IBD > 20%, and included one subject from each such

pair in further analyses. In most cases, the subject with the most nonmissing pheno-

type data was chosen for analysis. If the two subjects had an equal amount of missing

phenotype data, the subject with the most nonmissing genotype data was used.

Using these 5,326 subjects, we examined the 368,177 SNP markers for Hardy

Weinberg Equilibrium (exact test), genotyping completeness, and minor allele fre-

quency. Markers were excluded for more than two discordant genotype calls between

different methods (4,711), Hardy-Weinberg equilibrium P < 10−4 (5,260), genotyp-

ing completeness < 95% (2,535) and minor allele frequency < 1% (27,002), leaving

331,475 markers for analysis (some SNP markers failed quality checks on more than

one criterion). We adjusted the nine phenotypes used in the original data for sex, preg-
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nancy status and use of oral contraceptive, as described [SSH09], and adjusted height

or sex only.

The NFBC66 database contains information on the birth locations of subjects and

their parents, which can be used to derive ancestry information. Ref [SSH09] describe

how six distinct linguistic and geographical groups can be identified in the northern

provinces of Finland. Given the patterns of internal migrations and their variation over

time, we can assign individuals in NFBC66 to one one these groups when both parents

were born in a municipality within the same group. Approximately 50% of the sample

can be assigned this way, and these individuals are used to compare the results of

population stratification analysis based on genotypes.

We also obtained the genotypes of the WTCCC subjects collected for a GWAS

of seven common diseases [Con07]. We applied the same quality-control criteria as

suggested in the original paper. We also excluded the SNPs that the original studies

excluded in their analysis. We considered a total of 404,862 SNPs after the quality

control across 2,938 shared controls and 13,241 case individuals across seven diseases.

Additionally, it appears that using the simple identity-by-state (IBS) between in-

dividuals, rather than the more laboriously constructed kinship coefficients, may be

sufficient, and in some cases more appropriate, to model the dependency in the sam-

ple. We investigate this assumption further in the Method, Table 2.6 and Figures 2.8b

and 2.11.

2.2.5 Estimation of relatedness from high-density markers

Unlike a traditional variance component model which uses IBD (identity by descent)

coefficients estimated from the pedigree [OAM01], our proposed method empirically

estimate the genetic relatedness between the individuals from high-density markers.

In model organism studies, Yu et al. [YPB06] estimated kinship coefficients from
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multi-locus genotypes using method-of-moment estimators [LSN95, Rit09], and Zhao

et al. and Kang et al. [ZAK07, KZW08] demonstrated that using a haplotype-based

IBS matrix or a simple IBS matrix more robustly corrects for the population structure

resulting in a lower inflation factor than using the estimated IBD matrix from struc-

tured model organism samples. Several other methods [BSS08, CWW09, BN95] have

been proposed to estimate IBD kinship coefficients or sample structure from multi-

locus genotypes including the maximum-likelihood method implemented in PLINK

software [PNT07, Mil03] and the PREST software [MS00]

The effectiveness of the empirically estimated pairwise relatedness in correcting

for sample structure has not been comprehensively examined in a large-scale human

association mapping studies, where the sample structure is much less heterogeneous

than those among the strains of model organisms. For this reason, we compared three

different empirical estimates of pairwise genetic relatedness from the NFBC66 sam-

ples. First is a simple IBS coefficient, and the second is a maximum-likelihood esti-

mates (MLE) of IBD kinship coefficient [Mil03] implemented in the PLINK [PNT07]

software. The third is the Balding-Nichols (BN) kinship coefficient [BN95].

The pairwise plots across these three methods suggest that the relatedness estimates

computed by these methods are highly correlated with each other (Figure 2.11). The

MLE-based IBD estimates [Mil03] shows a correlation of r = 0.62 with IBS coeffi-

cient, and r = 0.48 with BN coefficient. The MLE-based methods estimates 37% of

the pairwise kinship coefficients to be positive, and those individual pairs show strong

correlation of r = 0.68 between BN and IBS coefficients. Among the 63% of indi-

vidual pairs where the MLE-based kinship coefficient are zero, a strong correlation

of r = 0.54 is observed between the IBS and BN coefficients, suggesting that the

unrelated individual pairs may still have different degrees of distant relatedness.

We applied either the simple IBS or the BN matrix as the surrogate of sample struc-
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ture when applying EMMAX, and results with IBS matrix is reported unless specified

or compared between the two methods. The MLE-based method does not guaran-

tee that the estimated kinship matrix is positive semidefinite (all eigenvalues are non-

negative), making it difficult to use in a variance component model. The EMMAX

p-values across the two methods provide a very high concordance to each other (Table

2.6 and Figure 2.8B).

2.2.6 Methods for estimating marker specific inflation factors

Assuming that model 2.4 is true with V = Var(η) and marker k has no effect on

the phenotype, we define the inflation factor for marker k as the ratio between the

expectation of the F statistics calculated from OLS for a model that includes k, to

the expectation of the F statistics for the same model calculated from GLS. In fact,

we do not compute this ratio explicitly, but simply provide an approximation. If one

considers that as n −→ ∞, the expectation of the GLS F statistics under arbitrary V ,

as long as V is non singular, converges to 1; hence we simply need an approximation

for the numerator of the ratio.

Specifically, let us assume, to simplify notation, that Y andXk are centered to have

zero sample mean so that β̂0 = 0 holds. In such a case, V = Var(η) has to be centered

to VC = PV P where P = I − 11′/n. In addition, for convenience purposes, we

standardize Xk to satisfy XT
k Xk = n− 1, where n is the number of individuals. Then

the F-test statistic based on OLS [RD02] becomes

FOLS =
((X ′kXk)

−1X ′kY )2(X ′kXk)(n− 2)

Y ′(I −Xk(X ′kXk)−1X ′k)Y
(2.8)

=
(X ′kY )2(n− 2)

nY ′Y − (X ′kY )2
. (2.9)

If V = σ2I , then FOLS follows a F-distribution with (1, n− 2) degree of freedom.
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Then if n is large, FOLS asymptotically converges to chi-square distribution with 1

degree of freedom. While the distribution of FOLS is difficult to calculate when V

has off-diagonal elements, the expected values of numerator and denominator in FOLS

are relatively easy to compute. The expectation of denominator becomes nTr(VC) −

X ′kVCXk, and the expectation of numerator becomes (n− 2)X ′kVCXk.

We can then take as operational definition of the marker specific inflation factor ζk

at marker k,

ζk =
(n− 2)X ′kVCXk

(n− 1)Tr(VC)− (X ′kVCXk)
(2.10)

≈ X ′kVCXk

Tr(VC)
(2.11)

Note that when V = σ2I , then ζk = 1 holds regardless of the values of Xk. Let

ŜC = PŜNP . When we take for V the specific form assumed in (7), we can further

simplify the expression above:

ζk =
(n− 2)X ′k(σ

2
aŜC + σ2

eP )Xk

(n− 1)Tr(σ2
aŜC + σ2

eP )− (X ′k(σ
2
aŜC + σ2

eP )Xk)

=
σ2
a(n− 1)X ′kŜCXk + σ2

e(n− 1)(n− 2)

σ2
a

[
(n− 1)2 −X ′kŜCXk

]
+ σ2

e(n− 1)(n− 2)

≈ σ2
aX
′
kŜCXk/(n− 1) + σ2

e

σ2
a + σ2

e

= h2aX
′
kŜCXk/(n− 1) + (1− h2a) (2.12)

where h2a = σ2
a/(σ

2
a + σ2

e) is the pseudo-heritability.

We are now in the position to discuss the meaning and implication of the marker

specific inflation factors we defined. The introduced marker-specific inflation factors

essentially estimate the effects of the mis-specification of variance component by us-

ing OLS in the place of GLS. From expression (2.12) it is clear that the amount of

inflation at any given marker depends on the level of correlation between the marker
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genotypes and the GLS variance-covariance matrix. This validates the common intu-

ition that cryptic population structure may affect tests differently at different markers

and it illustrates the reasons of such variability. Expression (2.12) also clarifies how

the same level of sample structure will affect differently the association tests for differ-

ent phenotypes. The inflation will be stronger the higher is the ratio of σ2
a to σ2

e , while

for a trait that does not follow the polygenic model σ2
a = 0, no amount of population

structure will have any impact on the association tests. Finally, it is useful to recall

that the inflation factors ζk, while marker specific, are calculated independently of the

observed association between marker and phenotype, being based on expectations of

test statistics under the null model.

More generally, if multiple confounding variables need to be accounted for in addi-

tion to the intercept under the null model, Equation (2.9) can be rewritten in a general

form of F statistic to get the expectation of numerator and denominator. Such a pro-

cedure is asymptotically equivalent to centering an arbitrary variance component V

to VC = (I − G(G′G)−1G)V (I − G(G′G)−1G), given a non-singular matrix of con-

founding variables G that includes the intercept. In this case, the SNP vector Xk also

needs to be regressed out with respected to G, and (n − 2) in Equation (2.9) needs to

be replaced with (n− q − 1), where q is the number of columns in G.

This method can also be extended for estimating the effect of mis-specified vari-

ance component or errors in the variance component estimation. Before running GLS,

let V̂ = σ̂a
2ŜN + σ̂e

2I be the estimated variance-covariance matrix when V is the true

one. Assuming that Y and Xk are centered, the F test statistics for GLS is

FGLS =
((X ′kV̂

−1
C Xk)

−1X ′kV̂
−1
C Y )2(X ′kV̂

−1
C Xk)(n− 2)

Y ′(V̂ −1C − V̂ −1C Xk(X ′kV̂
−1
C Xk)−1X ′kV̂

−1
C )Y

(2.13)

=
(X ′kV̂

−1
C Y )2(n− 2)

(X ′kV̂
−1
C Xk)Y ′V̂

−1
C Y − (X ′kV̂

−1
C Y )2

(2.14)
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where V̂C represents the centered matrix of V̂ . The ratio between expected numerator

and denominator provides the inflation factor with mis-specified variance component.

ζk =
X ′kV̂

−1
C VC V̂

−1
C Xk(n− 2)

(XkV̂
−1
C Xk)Tr(V̂ −1C V̂C)−X ′kV̂

−1
C VC V̂

−1
C Xk

(2.15)

≈ (n− 1)X ′kV̂
−1
C VC V̂

−1
C Xk

(XkV̂
−1
C Xk)Tr(V̂ −1C VC)

(2.16)

2.2.7 Accounting for large effect sizes at some SNPs

The accuracy of EMMAX relies on the assumption that the effect of each SNP on the

phenotype is negligible for the purpose of estimating σ2
a and σ2

e in model 2.7. This

is a reasonable assumption for most of current human GWAS, because a majority of

genome-wide significant signals reported so far explain only a small fraction of pheno-

typic variance [MBC08]. For example, in a genome-wide study with 5,000 individuals,

a genome-wide significance p-value of 7.2×10−8 corresponds to 0.58% of phenotypic

variance explained. 10−10 corresponds to 0.84%, and 10−15 to 1.3%. A cumulative ef-

fect of several significant SNPs are still relatively small compared to the total genetic

effects for most complex traits [MCC09b, LCP08, MBC08, Bog09].

However, a number of phenotypes do not comply with the “negligible effect” as-

sumption. There are many Mendelian traits where a single locus explains the total

phenotypic variance almost completely. Among complex traits, several autoimmune

diseases including Rheumatoid arthritis and Type I diabetes are largely explained by

HLA alleles with relative risks 4 or greater [BMS06, Cla09], with extremely significant

with p-values smaller than 10−50 or 10−100, explaining 50% or even larger variance of

these traits [Con07]. In such cases, where a number of SNPs explains a considerable

portion of the phenotypic variance, the negligible effect assumption is ungrounded,

and the strategy described so far impractical, because the variance parameter estima-
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tion can be substantially biased due to the large effect SNPs.

In fact, it is possible to use EMMAX even in this context, provided that one condi-

tions on the effects of the strongly associated SNPs. Specifically, one can condition on

the effects of the implicated SNPs by modeling them as fixed effects when estimating

σ2
a and σ2

e in model 2.7. It is crucial, then, to decide on the effect of which SNPs one

should condition upon. If we know a priori the identity of associated loci with strong

effect, such as the MHC region in the above example, the choice will be obvious. Oth-

erwise, we may condition on the effects of SNPs with highly significant p-values. It is

important to use a very stringent significance threshold to avoid loss of power. In our

analysis, we conditioned on the SNPs explaining more than 1% of phenotypic vari-

ance. In RA and T1D, 58 and 135 significant SNPs in MHC and PTPN2 region are

conditioned on. Note that this conditioning procedure is really recommended only if

(1) there are a few genomic loci largely explaining the phenotypic variance, and (2)

significant over-dispersion or under-dispersion of test statistics is observed after apply-

ing EMMAX. It should be noted that it is also possible to account for the large effect

SNPs in a more sophisticated way using regularization-based methods such as ridge

regression or LASSO [Was04], instead of a simple threshold-based conditioning.

2.2.8 URL

The EMMAX software is available at http://genetics.cs.ucla.edu/emmax.
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2.3 Results

2.3.1 Revisiting principal component analysis in the NFBC66

To more closely examine the extent of sample structure within the NFBC66, we used

PCA of the genotype covariance matrix [PPP06] and multidimensional scaling analy-

sis (MDS) of the identity-by-state (IBS) matrix from NFBC66 samples. The first two

coordinates identified by MDS are known to correlate well with geographical location

of the linguistic groups [SSH09]. The first two principal components in the current

sample correlate well with latitude and longitude of parental birthplaces for the sub-

set of individuals with known ancestry (Figure 2.1). Indeed, we noted that PCA of

genotypes and classical MDS of the IBS matrix lead to very similar results. There is a

correlation coefficient of 0.9993 between the first components from PCA and MDS and

a correlation coefficient of 0.9978 between the second components. The first five prin-

cipal components separate to varying degrees the linguistic and geographic subgroups

comprising Northern Finland (Figure 2.6), consistent with the previous analysis using

MDS [SSH09]. Despite the clear correlation between geographical regions of origin

and the first two principal components, clustering analyses of the IBS matrix using

PLINK software or hierarchical clustering in R did not identify separate subgroups.

2.3.2 Association analysis

Performing a simple uncorrected association test for each of the nine phenotypes orig-

inally examined in ref. [SSH09], we made the following estimates of the genomic con-

trol parameters λ: body mass index, 1.031, C-reactive protein (CRP), 1.007, diastolic

blood pressure, 1.031, glucose, 1.045, high density lipoprotein (HDL), 1.052, insulin

plasma levels, 1.029, low density lipoprotein, 1.098, systolic blood pressure, 1.066,

triglyceride, 1.023. These values are all higher than the ones obtained previously with
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a smaller sample size [SSH09], and substantially higher than what one would expect

in a sample with no structure. In addition, the height phenotype, which has not been

analyzed in the previous study [SSH09], has a λ value of 1.187. For reference, note

that a conservative estimate of the 95% confidence interval of the inflation factor is

between 0.992 and 1.008, assuming independence between the markers.

As hidden relatedness is a possible cause of inflated genomic control parameters,

we reanalyzed the data after excluding a larger number of possibly related subjects

(a genome-wide IBD estimates > 10% was used as a cutoff using PLINK software,

excluding additional 611 individuals). This resulted in a slight reduction of λ for some

phenotypes (Table 2.1).

As suggested in ref. [PPP06], we explored the effect of including a variable num-

ber of principal components in the association tests. Although including two or five

principal components has a considerable effect on the λ values, further augmenting the

number of principal components does not substantially decrease the genomic control

parameter (Figure 2.2). It is often suggested that only principal components having

predictive power for the phenotype should be included in the regression [NS08]. We

identified principal components for each phenotype that have a t-test p-value <0.005

as predictors; the results of their inclusion in the association tests are reported in Figure

2.2.

2.3.3 Correcting for sample structure

We analyzed the ten NFBC66 phenotypes with EMMAX using a three-step procedure

(see Methods). First, we computed a pairwise relatedness matrix from high-density

markers, which we used to represent the sample structure. Second, we estimated

the contribution of the sample structure to the phenotype using a variance compo-

nent model, resulting in an estimated covariance matrix of phenotypes that models the
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effect of genetic relatedness on the phenotypes. Third, we applied a generalized least

square (GLS) F-test [KK04], or alternatively, a score test [CA07], at each marker to

detect associations accounting for the sample structure using the covariance matrix.

The second step also provides us with the fraction of phenotypic variance ex-

plained by the empirically estimated relatedness matrix. We call this fraction pseudo-

heritability because it resembles the heritability estimated from a pedigree [LW98]

although it is not directly interchangeable with heritability of the trait because the es-

timated pairwise relatedness does not correspond exactly to the kinship coefficients.

Nonetheless, the pseudoheritability estimates are concordant with the previous heri-

tability estimates from a large family based study of Kosrae and Sardinia populations

[LMP09, PCS06] Different methods for estimating the pairwise relatedness provide

slightly different, but highly correlated estimates of pseudoheritability across the ten

traits. (Table 2.4).

Using the estimated covariance matrix, we proceeded with the GLS F-test to test

the effect of each marker on the phenotype and then apply genomic control to quantify

the amount of residual inflation. The genomic control λ parameters we obtained with

EMMAX are much lower than those obtained using either standard association meth-

ods or regression analysis including 100 principal components (Table 2.1). Figure 2.3

and Figure 2.7 illustrate the results using quantile-quantile plots of the P value distri-

butions from these three tests. Only one of the ten phenotypes showed λ values with

the 95% confidence interval of 0.992 - 1.008 with uncorrected or principal component

analysis, while all of them fell in the confidence interval with EMMAX.

Unlike genomic control, the EMMAX model alters the ranking of SNPs by their

statistics. This is especially important as many GWAS follow-up and multistage design

studies take the approach of genotyping all SNPs exceeding some predefined threshold

[EPD07, TJK09, ATG09]. We examined the extent to which the adoption of the EM-
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MAX model changes the SNP rankings in comparison to the uncorrected and principal

component analyses. We took the top k markers from the results of EMMAX, the un-

corrected method, and regression including 100 principal components (as implemented

in EIGENSOFT software), for k between 10 and 5,000. For each of these sets, we cal-

culated the number of SNPs shared between the lists and the fraction of these shared

SNPs relative to the number of unique SNPs in each pair of list. Although many of the

top SNPs reported by each method overlap, a considerable number of highly ranked

SNPs differ between the methods (Figure 2.4 and Table 2.5). In general, EMMAX

results become similar to uncorrected analysis when the inflation of test statistics is

small, but they become more similar to the PCA as the inflation increases. Notably,

the PCA consistently shows larger departures from the uncorrected analysis than EM-

MAX does across all ten phenotypes. For example, when the overdispersion of test

statistics was negligible, such as in the CRP phenotype, only 66% of the top 2,000

hits were concordant between the principal component and the uncorrected analysis,

whereas 89% were concordant between EMMAX and the uncorrected analysis.

EMMAX prevents the overdispersion of test statistics using a statistical model that

explicitly takes into account sample structure, rather than correcting the overdispersed

test statistics caused by not taking into account genetic relatedness in the statistical

model. Consequently, EMMAX can also prevent the overcorrection that would remove

true positive associations. We identified 15 genome-wide significant loci with at least

one of the uncorrected, 100 principal components-corrected, or EMMAX analyses

after genomic control at the suggested P-value threshold [DG08] of 7.2× 10−8 across

the ten phenotypes (Table 2.2). In 13 out of the 15 loci, EMMAX P values become

smaller than the uncorrected analysis. The two-sided binomial P value of the observed

asymmetry is 9.8× 10−4 if two methods have the same statistical power. With the 100

principal component-corrected analysis, 10 out of the 15 loci show smaller P value

than the uncorrected analysis (binomial p-value of 0.12). While 12 out of the 15 loci
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are found by all methods to be genome-wide significant at p < 7.2× 10−8, two known

loci [KMG08], APOB (with triglyceride)) and HNF4A (with HDL), pass the threshold

only with EMMAX. In contrast, the locus NR1H3 (with HDL), which is genome-

wide significant only with uncorrected analysis, turns out to be the only locus whose

association has not yet been replicated by an independent study among the 15 loci.

Because EMMAX estimates the variance parameters under the null hypothesis,

one may suspect that the it is underpowered compared to the full mixed model, which

estimates the variance parameters under the alternative hypothesis. This is comparable

to the difference between the score statistic and the efficient score statistic [Hin79,

WT98, CA07]. As most genetic variants associated to date with human complex traits

are estimated to explain only a small fraction of phenotypic variance [MCC09b], the

difference between the two approaches will be negligible in most cases. To assess

the seriousness of this concern, we ran the original EMMA, which uses a full mixed

effect model, on the 15 peak SNPs, and compared the resulting P values to those

estimated with EMMAX using GLS. Overall, as expected, the P values from the full

mixed effect model tend to be smaller than the P values from the GLS model, but the

magnitude of the difference was very small (Figure 2.8A). However, the running times

for EMMA were substantially longer. Because the original EMMA re-estimates the

variance parameters at each marker, given the size of the NFBC data set, it took more

than 10 min of CPU time per marker on an Intel Xeon 3GHz processor, even with an

efficient C implementation of EMMA. A simple extrapolation suggests that it would

take more than 6 years of CPU time to analyze a single GWAS data set using EMMA,

taking a full mixed model approach. The total computational time using EMMAX for

this data was 6.6 hours in a single CPU, and the procedure could be easily parallelized

to speed it up further.
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2.3.4 Application to Wellcome Trust Case Control Consortium data

We also applied our method to the WTCCC data set consisting of case-control studies

for seven common diseases [Con07]. To analyze case-control phenotypes, we applied

a linear model to the binary phenotypes, in the spirit of Armitage’s test (see Methods).

We performed association testing over the seven disease phenotypes using EMMAX,

EIGENSTRAT, and uncorrected analysis. The values we observed for inflation factors

λ were very similar to those in the original study, in which the test statistics were un-

corrected: bipolar disease, bipolar disease, 1.11; coronary artery disease, 1.06; Crohn’s

disease, 1.10; hypertension, 1.06; rheumatoid arthritis, 1.03; type 1 diabetes, 1.04; and

type 2 diabetes, 1.07. Consistent with our observations over the NFBC66 data, correct-

ing for 100 principal components only partially reduced the inflation factors (Table 2.3

and Figure 2.7). When EMMAX was applied, the estimated inflation factors were be-

low the upper bound of the confidence interval, suggesting that none of the phenotypes

show significant inflation of test statistics.

However, we noticed that two of the phenotypes, rheumatoid arthritis and type 1

diabetes, show significant deflation of test statistics beyond the 95% confidence inter-

val (λ = 0.965 for rheumatoid arthritis , λ = 0.946 for type 1 diabetes). This is not

unexpected, considering that a substantial fraction of the phenotypic variance in these

autoimmune diseases is explained by the HLA loci, leading to inaccurate estimation of

variance parameters under the null hypothesis when the HLA effect is not accounted

fort. In fact, the set of genome-wide significant SNPs (P < 7.2×10−8; ref. [DG08]) in

this region account for 47% and 60% of the phenotypic variance of rheumatoid arthri-

tis and type 1 diabetes, respectively [Con07]. We re-estimated the variance parameters

by conditioning on the 57 and 134 SNPs within the extended human MHC region

[BMS06] that explain more than 1% of phenotypic variance of rheumatoid arthritis

and type 1 diabetes, respectively (as described in the Methods section). As a result,
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the genomic control λ increased to 0.989 for rheumatoid arthritis and 0.991 for type

1 diabetes. We performed this conditioning procedure only for estimating variance

parameters and not in the SNP association test so that the P values would be consis-

tent with the unconditioned analysis. Conditioning on the SNPs with such a strong

effect may further improve the power to identify novel loci. A more sophisticated

conditional analysis - for example, one including haplotype effects or epistatic interac-

tions into covariates - may also better account for the strong effects in the autoimmune

diseases [NHW07].

2.3.5 Marker specific inflation factors

Under certain conditions, one can expect the variance of the test statistics to be inflated

by a constant across the genome [DR99a, BDR02], A formal model of hidden relat-

edness based on the coalescent theory [VP05] also suggests a constant inflation across

the genome when the sample structure is entirely due to hidden relatedness [DR99a].

However, for a more complex genealogical relationship among individuals, it is not

clear how the inflation of test statistics will behave.

Using the same variance component framework, we developed a method to esti-

mate the marker-specific inflation of test statistics using the correlation between each

marker and the empirically estimated kinship matrix (described in the Methods sec-

tion). These estimates are concordant with the genome-wide genomic control inflation

factor on average but showed substantial differences across the SNPs (Figure 2.5A). In

the height phenotype, for example, the estimated marker-specific inflation factors have

a mean of 1.107, s. d. of 0.090, and median value of 1.093. In light of this, we explored

the relationship between marker-specific inflation factors and the overdispersion of test

statistics with the uncorrected analysis. The distribution of height association P values

for SNPs with inflation factor < 1.05 shows a less marked departure from uniform
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distribution than dies the distribution for SNPs with inflation factor > 1.20 (Figure

2.5B and 2.5C). Considering that SNPs with a higher inflation factor were identified

without consideration of their possible association with the phenotype, it is reasonable

to conclude that this excess of small p-values reflects overdispersion of test statistics.

These results underscore how correcting the test statistics using a single inflation

factor may be inappropriate, possibly reducing power and not sufficiently controlling

for false positives. To further demonstrate this point, we ran a simple simulation using

the variance component model on which EMMAX is based. Although simulating data

under this model puts our method at an advantage, and the approach is therefore less

suited for comparison to other models, it does demonstrate that under some circum-

stances uniformly deflating P values may be inappropriate. We randomly simulated

100 sets of phenotypes solely from the sample structure with no SNP effects and ex-

amined the quantile-quantile plots across different methods. Although the inflation

for most of the SNPs is corrected by genomic control as expected, we observed sub-

stantial fluctuations of the test statistics at the tail of the distribution (Figures 2.9A

and 2.9B). More than 25% of the phenotypes showed inflation or deflation beyond the

95% confidence interval. This is because the SNPs with higher per-marker inflation are

not sufficiently corrected by the constant genomic control inflation factor. In contrast,

EMMAX results in P values close to the expected distribution (Figure 2.9C).

The finding that marker-specific inflation factors vary substantially across the genome

has notable implications for the meta-analyses and multistage analyses. Such studies

typically combine the test statistics after correcting for potential inflation using ge-

nomic control [ZSS08, TJK09, ATG09]. The disadvantages of using the same global

correction rather than a marker specific one can become more serious when this step is

done repeatedly. To better understand these effects in the context of meta-analysis, we

first compared the marker-specific inflation factors between the two WTCCC control
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groups, collected from essentially the same population, We observed a very strong cor-

relation (r = 0.95) (Figure 2.10A). We further compared the inflation factors across

different populations and different genotyping platforms using the NFBC66 samples

and WTCCC control samples. We observed a strong correlation of r = 0.70 (Figure

2.10B), suggesting that the marker specific inflation factors can be correlated across

the multiple data sets used in meta-analysis or multistage analysis owing to the shared

genetic history. If this is the case, the standard approach that corrects with genomic

control before merging the P values from different studies may lead to further inaccura-

cies: tests at some markers would be excessively, or not sufficiently, deflated multiple

times, resulting in an accumulation of errors.

2.4 Discussion

We report here the development of the EMMAX program, taking an expedited mixed

linear model approach to correct for sample structure within human GWASs. We

demonstrate its effectiveness with the analysis of two human GWAS data sets, includ-

ing quantitative as well as disease traits. The proposed approach differs substantially

from genomic control in that it accounts for inflation owing to population structure in

a marker-specific manner, resulting in a modified ranking of association results. Ac-

counting for marker-specific effects can reduce both false positives and false negatives.

We discuss this issue in more detail in the Methods section.

There are several other methods that take into account pedigree-based or empir-

ically estimated kinship matrices into the statistical test [TM07, GLB09, CWW09,

RS09]. One of the key differences between these methods and the mixed model meth-

ods, including EMMAX, is that the mixed model methods have a procedure of es-

timating the contribution of the kinship matrix to the phenotypes, whereas the other

methods do not. Estimating the phenotypic variance contributed by the sample struc-
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ture enabled us to avoid undercorrection or overcorrection of the sample structure in

the NFBC66 and WTCCC data sets.

The effective application of our method depends on an appropriate estimate of the

variance parameters. The IBS or Balding-Nichols matrix [BN95] appears to be better

than IBD estimates at capturing the long-distance relationships that result in variations

at the population level. However, when the structure of the sample at hand is better

described in terms of fairly recent hidden relatedness, methods based on the estimation

of IBD may have an advantage. In principle, our approach is also suitable for associ-

ation testing in a data set including individuals from a heterogeneous population with

admixed background. In such cases, it is important to consider SNP ascertainment

bias in estimating the degree of relatedness between individuals. Because many SNP

probes in genotyping arrays are selected from European populations, the marker-based

pairwise distance between two individuals may appear to be larger between unrelated

European samples than between unrelated individuals from other populations. To re-

solve the resulting ascertainment bias, each SNP may be differently weighted when the

IBS similarity matrix is computed. A general framework has ben presented [KZW08]

for computing the similarity matrix with a different weight for each marker. Different

weighting schemes can also be used to account for heterogeneous distribution of effect

size from each marker or each genomic region.

Besides the choice of the kinship matrix, the estimation of variance parameters

is also a crucial part of the EMMAX approach. In our analysis of the NFBC data,

we show that estimating these parameters under the null hypothesis does not lead to

appreciable bias in the association P values. The example of rheumatoid arthritis and

type 1 diabetes in the WTCCC dataset, in contrast, reveals the difficulties encountered

by EMMAX when there are SNPs explaining a large fraction of phenotypic variance.

In such cases, we show that estimating variance parameters conditionally on the SNPs
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with stronger effects alleviates the problems.

Finally, whereas the analysis presented here relies on decomposing the variance

in two terms, a genetic relatedness component and a component representing resid-

ual effects, future studies may need to account for additional variance components to

more precisely model the heterogeneous phenotypic variance. In expression quantita-

tive trait loci mapping, for example, one may want to add additional variance compo-

nents to account for technical bias [KYE08]. When multiple variance components are

involved, one would need to make use of algorithms such as PROC MIXED imple-

mented in SAS, as EMMA is developed for two variance components only; this would

increase the running time of the first step of our procedure. However, because the

same variance components estimated from the null hypothesis would be used across

the genome-wide markers, the the overall computational time should still be accept-

able.
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Genomic control inflation factor

Phenotypes Uncorrected IBD< 0.1 ES100 EMMAX

CRP 1.007 1.007 1.019 0.993

TG 1.023 1.010 1.019 1.002

INS 1.029 1.022 1.013 1.005

DBP 1.031 1.019 1.028 1.007

BMI 1.031 1.024 1.016 0.995

GLU 1.045 1.033 1.030 1.008

HDL 1.052 1.056 1.036 1.004

SBP 1.066 1.056 1.021 1.006

LDL 1.098 1.089 1.040 1.002

HEIGHT 1.187 1.151 1.074 1.003

Table 2.1: Comparison of genomic control inflation factors obtained with different

models; ES100, EIGENSOFT correcting for 100 principal components; IBD < 0.1,

uncorrected analysis after excluding 611 individuals whose PLINKs IBD estimates

with another individual is greater than 0.1; phenotype abbreviations are CRP, C-reac-

tive protein; TG, triglyceride; INS, insulin plasma levels; DBP, diastolic blood pres-

sure; BMI, body mass index; GLU, glucose; HDL, high-density lipoprotein; SBP,

systolic blood pressure; LDL, low density lipoprotein.
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Trait rsID Chr Base Positiona Closest Gene(s) Uncorrected+GC ES100+GC EMMAX+GC

HDL rs3764261 16 55,550,825 CETP 7.0× 10−31 3.8× 10−31 3.7× 10−32

CRP rs2794520 1 15,7945,440 CRP 4.8× 10−23 3.6× 10−23 3.0× 10−23

LDL rs646776 1 109,620,053 CELSR2 5.4× 10−14 7.7× 10−15 3.8× 10−15

CRP rs2650000 12 119,873,345 LEF1 2.1× 10−12 7.0× 10−12 1.9× 10−12

HDL rs1532085 15 56,470,658 LIPC 4.3× 10−12 7.9× 10−11 1.0× 10−11

GLU rs560887 2 169,471,394 G6PC2 1.1× 10−11 4.1× 10−12 3.1× 10−12

LDL rs693 2 21,085,700 APOB 9.6× 10−11 1.5× 10−11 2.8× 10−11

TG rs1260326 2 27,584,444 GCKR 1.9× 10−10 5.9× 10−11 1.8× 10−10

HDL rs255049 16 66,570,972 LCAT 3.9× 10−9 1.2× 10−9 1.4× 10−8

LDL rs11668477 19 11,056,030 LDLR 1.4× 10−8 3.2× 10−8 4.1× 10−9

GLU rs2971671 7 44,177,862 GCK 1.8× 10−8 1.7× 10−9 1.6× 10−8

HDL rs7120118 11 47,242,866 NR1H3b 4.8× 10−8 6 .6 × 10−5 1 .1 × 10−6

TG rs10096633 8 19,875,201 LPL 2.0× 10−8 1.1× 10−8 1.9× 10−8

TG rs673548 2 21,091,049 APOB 8 .0 × 10−8 1 .2 × 10−7 6.4× 10−8

HDL rs1800961 20 42,475,778 HNF4A 1 .5 × 10−7 9 .5 × 10−8 1.8× 10−8

Table 2.2: Fifteen peak associated SNPs with genome-wide significance; these SNPs

had P values below the suggested [DG08] genome-wide significance threshold of

7.2×108 in the uncorrected the 100 principal componentscorrected (ES100) or the EM-

MAX analysis after genomic control (+GC). Traits are HDL, high-density lipoprotein;

CRP, C-reactive protein; LDL, low density lipoprotein; GLU, glucose; TG, triglyc-

eride. rsID, reference SNP ID assigned by dbSNP; Chr, chromosome; boldface indi-

cates the strongest P values across the three methods; italics indicate P values that did

not surpass the significance threshold. a Positions are based on National Center for

Biotechnology Information build 36.1. bNR1H3 is the locus whose association with

HDL that has not yet been replicated by other independent studies.
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Phenotypes Uncorrected ES100 EMMAX

BD 1.105 1.071 0.998

CAD 1.063 1.048 1.006

CD 1.098 1.055 1.000

HT 1.055 1.051 0.997

RA 1.028 1.031 0.965 (0.989a)

T1D 1.043 1.028 0.946 (0.991a)

T2D 1.065 1.042 0.996

Table 2.3: Comparison of genomic control inflation factor obtained with different mod-

els in seven WTCCC phenotypes. ES100, EIGENSOFT correcting for 100 principal

components; BD, bipolar disorder; CAD, coronary artery disease; CD, Crohns dis-

ease; HT, hypertension; RA, rheumatoid arthritis; T1D, type 1 diabetes; T2D, type 2

diabetes. aThe variance component parameters (σ2
a and σ2

e ) are estimated by condi-

tioning on the large-sized SNP effects explaining 1% or more phenotypic variance.
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Phenotype
IBS matrix BN matrix Reference h2

p-value (σ2
a = 0) ĥ2IBS p-value (σ2

a = 0) ĥ2BN Kosrae h2 Sardinia h2

CRP 1.7× 10−2 0.134 2.3× 10−2 0.116 0.245 0.296

TG 2.3× 10−4 0.178 2.4× 10−3 0.152 0.274 0.322

INS 8.3× 10−4 0.205 3.1× 10−3 0.152 N/A 0.260

DBP 4.7× 10−4 0.199 5.6× 10−4 0.167 0.289 0.186

BMI 3.9× 10−6 0.279 1.9× 10−6 0.242 0.473 0.426

GLU 4.2× 10−5 0.229 2.4× 10−5 0.197 0.188 0.362

HDL 5.5× 10−11 0.384 1.0× 10−11 0.324 0.391 0.486

SBP 2.7× 10−8 0.283 2.0× 10−8 0.233 0.243 0.253

LDL 1.4× 10−17 0.452 1.2× 10−18 0.384 0.414 0.425

HEIGHT 2.8× 10−45 0.738 2.5× 10−48 0.625 0.790 0.798

Table 2.4: P-values for test of the null hypothesis σ2
a = 0 for all traits; pseudo-heri-

tability estimates h2a = σ2
a/(σ

2
a+σ2

e), and heritability estimates from Kosrae population

[LMP09] and Sardinia population [PCS06]. A simple IBS matrix and Balding-Nichols

(BN) matrix is used as estimates of relatedness.
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Phenotype Uncorr. vs EMMAX Uncorr. vs ES100 ES100 vs EMMAX Uncorr. λ

CRP 0.891 (0.94) 0.635 (0.78) 0.660 (0.79) 1.007

TG 0.856 (0.92) 0.569 (0.72) 0.612 (0.76) 1.023

INS 0.826 (0.90) 0.535 (0.70) 0.603 (0.75) 1.029

DBP 0.843 (0.91) 0.607 (0.75) 0.646 (0.78) 1.031

BMI 0.790 (0.88) 0.544 (0.70) 0.607 (0.75) 1.031

GLU 0.775 (0.87) 0.528 (0.69) 0.604 (0.75) 1.045

HDL 0.693 (0.82) 0.500 (0.66) 0.576 (0.73) 1.052

SBP 0.684 (0.81) 0.481 (0.65) 0.597 (0.75) 1.066

LDL 0.624 (0.77) 0.474 (0.64) 0.587 (0.74) 1.098

HEIGHT 0.453 (0.62) 0.386 (0.55) 0.497 (0.66) 1.187

Table 2.5: Comparison of top 2,000 hits obtained with uncorrected analysis, EIGEN-

SOFT with 100 PCs (ES100), and EMMAX. The numbers in second to fourth column

represents the proportion of shared SNPs between each pair of analysis, when select-

ing top 2,000 SNPs in each analysis. The values in parentheses are Cohen’s kappa

coefficients as a measure of the agreement between two tests. For clarity we have or-

dered the phenotypes with reference to their genomic control parameters and reported

these as well in the last column.
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Phenotypes Uncorrected EMMAX-IBS EMMAX-BN Concordance

CRP 1.007 0.993 0.992 0.969 (0.98)

TG 1.023 1.002 1.000 0.969 (0.98)

INS 1.029 1.005 1.005 0.951 (0.97)

DBP 1.031 1.007 1.005 0.955 (0.98)

BMI 1.031 0.995 0.992 0.942 (0.97)

GLU 1.045 1.008 1.004 0.946 (0.97)

HDL 1.052 1.004 1.000 0.919 (0.96)

SBP 1.066 1.006 1.001 0.940 (0.97)

LDL 1.098 1.002 0.999 0.915 (0.96)

HEIGHT 1.187 1.003 0.994 0.838 (0.91)

Table 2.6: Comparison of genomic control inflation factors obtained with uncorrected

analysis and EMMAX with IBS matrix and Balding-Nichols (BN) matrix. The “Con-

cordance” column represents the proportion of shared SNP between top 2000 associa-

tions between EMMAX-IBS and EMMAX-BN method. The values in the parentheses

are kappa statistic
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Figure 2.1: Scatter plots of the first two principal components against latitude and

longitude. Only individuals of known ancestry are included in the plot. Latitude and

longitude are defined as the average latitude and longitude of the parents’ birthplaces.

Colors indicate linguistic or geographic subgroups.

41



Figure 2.2: The genomic control parameters for ten traits change with the number of

principal components used for adjustment. Sig PC, significant principal components,

includes the principal components (PC) that have a t-test P value < 0.005 as predic-

tors for each of the phenotypes. LDL, low density lipoprotein; SBP, systolic blood

pressure; HDL, high-density lipoprotein; GLU, glucose; BMI, body mass index; DBP,

diastolic blood pressure; INS, insulin plasma levels; TG, triglyceride; CRP, C-reactive

protein.

42



Figure 2.3: Comparison of P value distributions across different methods with

NFBC66 data. (a) Quantile-quantile plot of the height phenotype, which shows the

largest inflation of test statistics, before application of genomic control. The shad-

owed region represents a conservative 95% confidence interval (CI) computed from

the beta distribution assuming independence markers. ES100 indicates EIGENSOFT

correcting for 100 principal components. (b) Comparison of LDL association P values

between uncorrected and EMMAX analysis after application of genomic control in a

logarithmic scale.
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Figure 2.4: Rank concordance comparison of strongly associated SNPs between differ-

ent methods. The ten NFBC66 phenotypes (abbreviated as in Figure 2.2) are ordered

by their genomic control inflation factors. Rank concordance is presented as CAT plots

[IWS05]. The proportion of SNPs shared between sets of the top k SNPs for different

methods are shown for 10 ≤ k ≤ 5000. Pairs of sets being compared are indicated

in key at bottom; for example, Uncorr-EMMAX, comparison of uncorrected set and

EMMAX set. ES100 indicates EIGENSOFT correcting for 100 principal components.
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Figure 2.5: Distribution of the marker-specific inflation factors from NFBC66 data

sets. (a) Box plots of the marker-specific inflation factors across ten phenotypes, in

addition to the genomic control inflation factor for each phenotype. Abbreviations are

as in Figure 2.2. (b,c) Distributions of P values of the height phenotype association

when the estimated per-marker inflation factors are less than 1.05 (35,988 SNPs; b)

and when they are greater than 1.2 (15,874 SNPs; c).

45



Figure 2.6: Scatter plots of the first 5 principal components for individuals of known

ancestry. The different linguistic/geographic subgroups are color-coded.
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Figure 2.7: QQ-plots on the log10 scale of the association p-values obtained for nine

traits according to three different models for 9 NFBC66 metabolic trais and 7 WTCCC

disease phenotypes. In black, results from the unadjusted analysis; in blue results from

the analysis conducted using 100 PC, and in red results from EMMAX.
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(a) EMMAX vs EMMA (b) EMMAX-IBS vs EMMAX-BN

Figure 2.8: Comparison of p-values obtained running EMMAX using IBS matrix with

the corresponding value obtained using (a) the original EMMA and (b) EMMAX with

Balding-Nichols (BN) matrix for the SNPs whose p-value under EMMAX was smaller

than 7.2× 10−8.
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(a) uncorrected (b) GC corrected (c) EMMAX

(d) ES100 (e) ES100 + GC

Figure 2.9: QQ plots of 100 randomly generated phenotypes under the variance com-

ponent model using a (a) uncorrected analysis, (b) genomic control adjustment, (c)

EMMAX, (d) EIGENSOFT with 100 PCs, and (e) genomic control adjustment after

applying EIGENSOFT with 100 PCs.
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Figure 2.10: Concordance of per-marker inflation factor (A) between two different

control sets (58C and NBS) in WTCCC data set, and (B) between NFBC66 samples

and WTCCC control samples using the 50,298 overlapping markers.
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Figure 2.11: Comparisons (A) between the IBS coefficients and IBD estimates com-

puted by PLINK (B) between the Balding-Nichols (BN) coefficients and IBD estimates

from PLINK, (C) between IBS and BN coefficients when IBD estimates are zero (D)

IBS and BN coefficients when IBD estimates are positive.
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CHAPTER 3

Aggregated association test for rare variants

3.1 Background

Over the past few years, genome-wide association studies (GWAS) have identified

many disease-causing variants [CSS93, BKK94, AHK00]. Most of these studies are

conducted by collecting common variants and perform a series of single marker tests

where each variant is tested individually in order to discover associations. However,

only a small portion of disease heritability is explained by common variants, and

several recent studies consider rare variants that collectively affect diseases [GGS08,

KPS07, CKP04, FWW04, JFO08, BB08, RPF07, BVE08, Con08, XRL08, WMM08].

Since each rare variant is present in only a small number of individuals, single marker

tests have low power to identify these variants involved in disease. Hence, groupwise

association tests that group rare variants in genes have received considerable atten-

tion as methods that increase the power of studies on rare variants, and a number of

methods have been proposed such as the Cohort Allelic Sums Test (CAST) [MT07],

the Combined Multivariate and Collapsing (CMC) method [LL08], a weighted-sum

statistic [MB09] and recently a variable-threshold approach [PKB10].

A groupwise association test is more complex than a single SNP association be-

cause there are many different ways of combining information across multiple variants.

How the information from different variants is combined affects the statistical power

of the association test which also depends on the actual effect sizes of the variants
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on the disease phenotype. The challenge in developing groupwise association testing

methods is that the underlying disease-risk model is not known.

In this chapter, we focus on a disease-risk model that is motivated by filling a blind

spot in traditional GWAS. In this model, all variants including common variants make

an equally small contribution to disease-risk, that is, rarer variants are assumed to have

higher effect sizes than common variants. Since each variant contributes only a small

amount to the total disease-risk, the single marker test is not likely to detect associa-

tions in this disease-risk model, and thus this model describes associations usually not

found in traditional GWAS. This is the same model discussed in [MB09]. Under this

model, a weighted-sum statistic by Madsen and Browning (MB) is shown to be more

powerful than other grouping methods such as CAST and CMC [MB09].

We propose a new method for the groupwise association test called Rare variant

Weighted Aggregate Statistic (RWAS). RWAS computes a weighted sum of differences

between case and control mutation counts where weights are estimated from data to

increase power of studies. The optimal weights that maximize the power can be de-

rived when the effect sizes of variants are known. When the true effect sizes are not

known, RWAS approximates the optimal weights under the assumption that each vari-

ant makes an equally contribution to population disease risk. Simulations show that

RWAS outperforms MB and the approximated weights achieve nearly the same power

as the optimal weights under this assumed disease model. We also show how prior in-

formation on whether or not a variant is likely to be involved in a disease can be incor-

porated into RWAS. We first show through simulations that prior information greatly

influences the statistical power of studies. Then, by using the real mutation screening

data of the susceptibility gene for ataxia telangiectasia along with information of how

likely a variant is deleterious [TOB09], we demonstrate that prior information plays a

key role in this association study and RWAS is able to successfully detect the associ-
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ation in real data. The software package implementing RWAS is publicly available at

http://genetics.cs.ucla.edu/rarevariants.

3.2 Methods

3.2.1 Optimal Weighted Aggregate Statistic (OWAS)

We consider an association study in which multiple variants within a gene affect the

trait. For each variant, a difference in mutation counts between case and control in-

dividuals is computed, and a weighted sum of differences is used as a statistic for the

group. This is in fact equivalent to computing a weighted sum of z-scores of variants

where the z-score of a variant is computed from an allele frequency difference between

cases and controls [Esk08, HKS08, ZPG10].

First, we assume that there are M rare variants in a group given N/2 case and N/2

control individuals. Let pi denote population minor allele frequency (MAF) of variant

i, and let p̂+i and p̂−i denote the observed MAF of case and control individuals in the

sample, respectively. Then, z-score of variant i (or the association statistic at variant

i), denoted as zi, is calculated as

zi =
p̂+i − p̂−i√

2/N
√
p̂±i (1− p̂±i )

(where p̂±i = (p̂+i + p̂−i )/2) (3.1)

z-score approximately follows a normal distribution with variance equal to 1 and with

mean equal to λi
√
N (called the non-centrality parameter or NCP)

zi ∼ N (λi
√
N, 1)

λi
√
N =

p+i − p−i√
2p±i (1− p±i )

√
N (where p±i = (p+i + p−i )/2) (3.2)

where p+i and p−i are the true MAF of case and control individuals, respectively. De-
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noting γi as relative risk of variant i, p+i and p−i are

p+i =
γipi

(γi − 1)pi + 1
(3.3)

p−i = pi (assuming the disease prevalence is very small) (3.4)

Let wi be a weight of variant i. Then, a weighted sum of z-scores (S) and its

distribution are

S =

∑M
i=1wizi√∑M
i=1w

2
i

∼ N

√N∑M
i=1wiλi√∑M
i=1w

2
i

, 1

 (3.5)

The greatest power is achieved when the NCP is maximized, which is equivalent

to maximizing
∑
wiλi∑
w2

i
term. Using the Cauchy-Schwartz inequality, the NCP is max-

imized when wi = λi. Therefore, the optimal weight for variant i is λi, and we call

the weighted association method based on the optimal weights, Optimal Weighted

Aggregate Statistic (OWAS). OWAS is optimal under any disease-risk models, but de-

termining optimal weights requires knowledge of relative risk and population MAF of

variants according to the definitions of λi, p+i , and p−i (Equations 3.2, 4.6, 4.7). We

can estimate the population MAF from observed MAF of case and control individu-

als (see section 3.2.5 for details), but obtaining or estimating relative risk is often not

easy. We note that if the number of cases (N+/2) and controls (N−/2) are unequal,

we replace
√
N above with

√
2N+N−

N++N− and replace p̂±i and p±i in (Equations 3.1 and

3.2) with N+p̂+i +N−p̂−i
N++N− and N+p+i +N−p−i

N++N− , respectively, and above results hold.

3.2.2 Rare variant Weighted Aggregate Statistic (RWAS)

Setting the weights for OWAS requires knowledge of the effect sizes which are un-

known. To set the weights for our method without knowledge of the effect sizes, we

assume a disease-risk model in which all variants have constant population attributable

risk (PAR). In this model, each group of variants has a certain level of the group PAR,

55



and each variant in the group has the same marginal PAR. Let ω denote the marginal

PAR which is the group PAR divided by the number of causal variants in a group.

Given ω and pi of variant i, its relative risk, γi, is

γi =
ω

(1− ω)pi
+ 1 (3.6)

Then, it follows from (Equations 4.6, 4.7),

p+i = ω + pi(1− ω)

p−i = pi (3.7)

The optimal weights (Equation 3.2) can be written as

λi =
ω(1− pi)√
2p±i (1− p±i )

≈ ω

√
1− pi
pi

(assuming p±i ≈ pi) (3.8)

Since ω in (Equation 3.8) is fixed for all variants, we can ignore it and derive an

analytically approximated form of the optimal weights as

wi =

√
1− pi
pi

(3.9)

We call the weighted sum of z-scores whose weights are (Equation 3.9) Rare vari-

ant Weighted Aggregate Statistic (RWAS). The statistic of RWAS, SRWAS , can be

formulated as

SRWAS =

∑
wizi√∑
w2
i

≈

∑ p̂+i −p̂
−
i

p̂±i√
2
N

√∑ 1−p̂±i
p̂±i

∼ N


∑ p+i −p

−
i

p±i√
2
N

√∑ 1−p±i
p±i

, 1

 (
assuming p̂±i ≈ pi

)
(3.10)

We compare SRWAS to the standard normal distribution to obtain a p-value.

3.2.3 Approximation of MB to a sum of z-scores

Our methods (OWAS and RWAS) adopt a weighted sum of z-scores approach, and MB

can also be approximated as a weighted sum of z-scores with weights equal to 1 (or
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unweighted sum of z-scores). MB computes a statistic, denoted as zMB, as follows.

It can be decomposed into a sum of zMBi
over M variants where i corresponds to ith

variant and M is the number of variants.

zMB =
x− µ̂
σ̂

=
M∑
i=1

zMBi
=

M∑
i=1

xi − µ̂i
σ̂i

(3.11)

where for variant i, xi is the sum of ranks or genetics scores of cases, µ̂i and σ̂i are the

average and standard deviation of xi in the null distribution, respectively. We use the

sum of genetic scores of cases as xi since its power is very similar to the power of the

sum of ranks [MB09].

Then, xi, µ̂i and σ̂i can be approximated as (see section 3.2.6 for details)

xi =

√
N

2

p̂+i√
p̂−i (1− p̂−i )

, µ̂i =

√
N

2

pi
pi(1− pi)

, σ̂i =
√

1/2 (3.12)

and the standardized statistic at variant i, zMBi
, can be derived as

zMBi
=
xi − µ̂i
σ̂i

≈

√
n
2

(
p̂+i√

p̂−i (1−p̂−i )
− pi√

pi(1−pi)

)
1/
√

2

≈
√
N

2

p̂+i − p̂−i√
p̂−i (1− p̂−i )

(assuming pi ≈ p̂−i )

Finally, a sum of zMBi
overM variants is equivalent to the original statistic of MB.

zMB =
x− µ̂
σ̂

=
M∑
i=1

zMBi
=

M∑
i=1

xi − µ̂i
σ̂i

=
M∑
i=1

√
N

2

p̂+i − p̂−i√
p̂−i (1− p̂−i )

(3.13)

Note that (Equation 3.13) shows MB is an unweighted sum of z-scores. One difference

between zMBi
in (Equation 3.13) and z-score used in our methods (Equation 3.1) is the

way they estimate the population MAF that appears in the denominator of z-score; MB

estimates it only from control individuals, but we estimate it from all case and control

individuals (see section 3.2.5 for details).
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3.2.4 RWAS with prior information

RWAS can be directly extended to incorporate prior knowledge about the degree that

each variant is believed to be causal. Note that the underlying truth is that each variant

is either causal or not. Thus, let V i be the variable indicating the “causal status”

of variant i, such that V i = 1 if variant i is causal and V i = 0 if not. Let V =

{V 1, ..., V M} denote the causal statuses of all M variants. V can have 2M possible

values. Let vj be the jth value out of 2M possible values. That is, vj = {v1j , ..., vMj } is

an ordered set of 0 and 1 that represents a specific scenario of causal statuses.

Assume that we have prior knowledge that the probability of variant i being causal

is ci. Then, the probability of each scenario vj can be computed as

P (vj) =
M∏
i=1

c
vij
i (1− ci)1−v

i
j . (3.14)

Then, the expected non-centrality parameter of the weighted sum of z-scores statistic

is

E[NCP] =
2M∑
j=1

P (vj)
√
N

∑M
i=1wi(v

i
jλi)√∑M

i=1w
2
i

(3.15)

=

∑M
i=1 ciwiλi√∑M

i=1w
2
i

. (3.16)

The Cauchy-Schwartz inequality shows that this quantity is maximized when wi =

ciλi. Thus, the prior knowledge {ci} can be easily incorporated in RWAS by multiply-

ing the prior probability into each weight.

3.2.5 Estimation of population MAF in OWAS

There can be several ways to estimate population MAF. For example, MB estimates

it from control individuals [MB09]. We choose to estimate population MAF in the
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following way. Denoting pi as population MAF of variant i, we first assume that its

true overall sample frequency is equal to observed overall sample frequency.

p+i + p−i = p̂+i + p̂−i (3.17)

p+i and p−i are defined in terms of pi (Equations 4.6, 4.7), and we can rewrite

(Equation 3.17) as

γipi
(γi − 1)pi + 1

+ pi = 2p̂±i

(
where p̂±i =

p̂+i + p̂−i
2

)
(3.18)

We can compute pi in terms of γi and p̂±i by finding the root of (Equation 3.18).

pi =
b+

√
b2 + 8(γi − 1)p̂±i
2(γi − 1)

where b = 2p̂±i (γi − 1)− (γi + 1) (3.19)

3.2.6 Approximation of xi, µ̂i and σ̂i of MB

In this section, we show that xi, µ̂i and σ̂i of MB can be approximated as (Equation

3.12). First, MB calculates a weight of variant i (ŵi) as

ŵi =
√
N · qi(1− qi) where qi =

mU
i + 1

2nUi + 2
(3.20)

N is the total number of case and control individuals, mU
i is the number of mutations

for variant i in control individuals, and nUi is the number of control individuals.

MB then calculates the genetic score (γj) of each individual j.

γj =
M∑
i=1

Iij
ŵi

where M is the number of variants, and Iij is the number of mutations observed in

individual j at variant i. MB ranks all individuals (both cases and controls) by their

genetic scores and calculates the sum of the ranks of cases as its test statistic (x).

x =
∑
j∈cases

rank(γj)
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Madsen and Browning reports that x can also be computed using the sum of genetic

scores instead of the sum of ranks, and the two methods have very similar power.

Hence, we will compute x as the sum of genetic scores.

x =
∑
j∈cases

γj

First, we observe that the sum of genetic scores of cases is equivalent to the sum of

observed MAF of each variant in cases divided by the weight of the variant. In other

words, we sum the number of mutations per variant instead of the number of mutations

per individual. ∑
j∈cases

γj =
M∑
i=1

N/2 · p̂i+√
Nqi(1− qi)

(3.21)

Assuming qi ≈ p̂i
− since qi is an estimate of MAF of variant i in controls, the

statistic of variant i, xi, in (Equation 3.21) is

xi =

√
N

2

p̂i
+√

p̂i
−(1− p̂i−)

(3.22)

Next, we derive the statistic of the null distribution denoted as x∗i . First, p̂i+ and

p̂i
− have the following distribution under the null distribution.

p̂i
+ ∼ N

(
pi,

pi(1− pi)
N/2

)
(3.23)

p̂i
− ∼ N

(
pi,

pi(1− pi)
N/2

)
(3.24)

By multiplying p̂+i in (Equation 3.23) by
√
N

2
√
p̂i

−(1−p̂i−)
and assuming p̂i

− ≈ pi,

we can derive x∗i that is approximately equivalent to xi in (Equation 3.22). x∗i and its

distribution are then

x∗i =

√
N

2

p̂i
+√

p̂i
−(1− p̂i−)

≈
√
N

2

p̂i
+√

pi(1− pi)
∼ N

(√
N

2

pi
pi(1− pi)

,
1

2

)
(3.25)

Thus, the mean (µ̂i) of x∗i is
√
N
2

pi
pi(1−pi) , the standard deviation (σ̂i) is

√
1/2, and xi is

(Equation 3.22)
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3.2.7 Web Resources

The software package for RWAS is publicly available online at

http://genetics.cs.ucla.edu/rarevariants.

3.3 Results

3.3.1 Power comparison between RWAS and MB

We evaluate the power of our novel method, RWAS, in the constant PAR disease-risk

model where all variants have the same PAR. This was the model used to estimate

the power of MB, and MB was shown to be more powerful than other competing

methods [MB09]. Throughout all experiments, we use the sum of genetic scores of

case individuals as a statistic for MB, rather than using the sum of ranks of cases

suggested by Madsen and Browning. One reason is that both sums yield similar results

[MB09], and another reason is that the sum of genetic scores allows RWAS and MB

to be compared in the same sum of z-scores framework (see Material and Methods

for approximation of MB to a sum of z-scores method). The power of RWAS is also

compared to the power of OWAS that is the optimal weighted sum of z-scores and from

which the weights of RWAS are derived. OWAS uses the effect sizes of variants for its

weights, and hence the power of OWAS can be thought of as the upper bound of power

that can be achieved in the weighted sum of z-scores approach. In this experiment,

OWAS knows the group PAR that generated datasets (see below), computes relative

risk of each variant using (Equation 4.10), and estimates population MAF as described

in Section 3.2.5.

We use the exactly same simulation parameters as in Madsen and Browning to esti-

mate the power of methods. In the simulations, a total of 10,000 datasets are generated,
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each with 1000 case and 1000 control individuals having 100 variants. The power of

a method is estimated as the number of significant datasets among the 10,000 datasets

using a significance threshold of 2.5 × 10−6 based on the Bonferroni correction as-

suming 20,000 genes genomewide. Among 100 variants, 50 variants are disease-risk

contributing variants (D-variants) and 50 variants are disease-risk neutral variants (N-

variants). For each variant, we sample its minor allele frequency (MAF) in controls

using Wright’s formula [Wri31, Ewe04] with the same parameter values as in Madsen

and Browning (see [MB09] for details). According to (Equation 4.10), relative risk of

D-variants is calculated from MAF of variants in controls and the marginal PAR that

is the group PAR divided by the number of D-variants while relative risk of N-variants

is 1. MAF of variants in cases can then be calculated using relative risk and MAF

of variants in controls according to (Equation 4.6). We independently sample muta-

tions of each variant in case and control individuals according to its MAF in cases and

controls, respectively.

The results of power simulations demonstrate that RWAS consistently outperforms

MB when the group PAR varies from 1% to 5% (Figure 3.1). For example, at the group

PAR of 3%, RWAS has 78% power while MB has 40% power. The power simulations

also show that the power of RWAS is very close to the power of OWAS. Although

OWAS has higher power than RWAS at all group PAR levels, the difference in power

between the two methods is small; the power of RWAS is about 2-4% smaller than that

of OWAS. Therefore, the analytical approximation of the optimal weights in RWAS

reduces its power by only a small amount in this disease model, and it can achieve

high power even if it is not given the true effect sizes of variants.
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3.3.2 Type I error rates of RWAS and OWAS

To check whether type I error rates (false positive rates) of RWAS and OWAS are

correctly controlled, we create 100 million datasets without any causal variant. Each

dataset has 1000 cases and 1000 controls with 100 variants, and we measure type I

error rates of RWAS and OWAS on the 100 million null datasets under three different

significance thresholds; 0.05, 0.01, 2.5 × 10−6. The reason why we use a very large

number of datasets is because the significance threshold for power is very low (2.5 ×

10−6). The proportion of significant datasets is an estimate of the type I error rate for

each method.

The type I error rates for RWAS are 0.0503, 0.0089, and 1.2 × 10−7, and those

for OWAS are 0.0502, 0.0091, 1.8× 10−7 for the significance threshold of 0.05, 0.01,

and 2.5 × 10−6, respectively. This indicates that the type I error rates are correctly

controlled for RWAS and OWAS when the significance thresholds are 0.05 and 0.01.

When the significance threshold is 2.5×10−6, RWAS and OWAS both have lower type

I error rates than the expected rate.

3.3.3 Power of RWAS with the different numbers of variants

Since the number of variants in a gene may be more than 100, we evaluate effects

of the number of variants in a gene on the power of groupwise tests. We create five

different datasets with five different numbers of total variants; 100, 200, 300, 400, and

500. In all five datasets, the number of causal variants is 50, and the group PAR is 3%.

The number of case and control individuals is the same as the previous experiment.

Figure 3.2 shows that as the number of total variants in a gene increases, the power

of all methods decreases. For example, when a gene contains 100 variants, RWAS

achieves 78% power while it has 6% power when there are 500 variants in a gene.
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This is because there are more non-causal variants in a gene as the number of variant

increases. A large number of non-causal variants reduce our ability to detect causal

variants and power of the groupwise tests.

3.3.4 Power of RWAS with prior information

Prior information can reduce or remove influence of non-causal variants, and in this

experiment, we observe how prior information influences the power of RWAS. The

prior information we consider is the probability of a variant being causal to a disease,

denoted as ci. We generate datasets with pre-defined true ci values, and we evaluate

how the power of RWAS changes when different prior information is given to RWAS.

We first generate datasets that contain 100 variants split into two groups, each with

50 variants. We set ci of the first group to 0.8, and ci of the second group to 0.2.

Then, five different types of prior information are given to RWAS; 1) “correct ci” that

is equivalent to true ci of datasets, 2) “uniform incorrect ci” in which ci = 1 for all

variants, 3) “three fourths correct ci” that corresponds to 3
4

of true ci of the first and

second groups, 4) “half correct ci” that matches a half of true ci of the first and second

groups, and 5) “very incorrect ci” in which ci of the first and second groups is 0.2 and

0.8, respectively, which is opposite to true ci of datasets. The single marker test and

MB are also tested to compare their power to RWAS.

We follow the same set of experimental framework as the previous experiment in

this power simulation with two changes. The first change is that we have two different

ci values assigned to the two groups of variants as mentioned earlier. For each dataset,

a variant is causal with the probability proportional to its ci. Relative risk of a causal

variant is given by (Equation 4.10) whereas a non-causal variant has relative risk of 1.

The other change is that the same set of control MAF is assigned to the two groups;

MAF of 50 variants in control individuals are sampled using the Wright’s formula
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and assigned to each group. The reason is that we want to observe only the effect of

prior information on the power of studies, but the power is also dependent on MAF of

variants.

Results show that the power of RWAS with “correct ci” is always the highest among

different prior information applied to RWAS (Figure 3.3). By knowing the correct prior

information, the power increases as much as 7%; at the group PAR of 3%, the power of

RWAS with “correct ci” is 84% while the power of RWAS with “uniform incorrect ci”

is 77%. However, if RWAS is given incorrect prior information, it may suffer power

loss as the power of RWAS with “very incorrect ci” is more than 70% lower than the

power of RWAS with “correct ci” at the group PAR of 3% and 4%. This shows that

when prior information is not very accurate, RWAS may achieve higher power by as-

suming that every variant is causal. The results also indicate that as RWAS is given

more correct prior information, its power increases; the power of RWAS with “three

fourths correct ci” is higher than the power of RWAS with “half correct ci.” Results

of the experiment demonstrate that prior information may considerably influence the

power of studies and higher power can be achieved by knowing correct prior informa-

tion.

3.3.5 RWAS with prior information on real mutation screening data

To evaluate RWAS and effects of prior information on real sequencing data, we use

mutation screening data of the susceptibility gene for ataxia telangiectasia [TOB09].

This gene is called ATM, and it is also known as an intermediate-risk gene for breast

cancer. Tavtigian et al. [TOB09] collected data from seven ATM mutation screening

studies in breast cancer cases and controls as well as data from their own mutation

screening, which resulted in collecting 2531 case and 2245 control individuals (called

“bona fide case-control studies”). They further increased the number of cases and
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controls by adding 17 case-only or control-only mutation screening studies, but we

focus on the bona fide case-control studies in our experiment because adding the case-

only and control-only studies does not yield substantial changes in results [TOB09].

Tavtigian et al. discovered 170 rare missense variants in the ATM dataset, and used

the missense analysis programs, Align-GVGD [TDY06] and SIFT [NH03], to find how

likely each variant is deleterious. Align-GVGD categorizes variants into seven grades:

C0 (most likely neutral), C15, C25, C35, C45, C55, and C65 (most likely deleterious).

Since the absolute deleteriousness of grades is not reported, we arbitrarily assign ci of

0.05, 0.2, 0.35, 0.5, 0.65, 0.8, and 0.95 to the 7 grades, respectively. SIFT yields scores

for variants ranging from 1.00 (most likely neutral) to 0.00 (most likely deleterious)

in steps of 0.01. There is a pre-defined threshold (0.05) in SIFT scores such that

variants whose SIFT scores are ≤ 0.05 are considered deleterious while other variants

are considered neutral. Hence, we assigned ci of 1 to variants with SIFT scores≤ 0.05

and ci of 0 to other variants.

We first apply RWAS to the case-control studies without prior information, and

RWAS yields a p-value of 0.3946. The p-value indicates no significant difference in

mutation counts between cases and controls, and Tavtigian et al. also reported that they

did not find a significant association by comparing frequency in cases versus controls

or by using CMC [TOB09]. However, when RWAS is applied with prior information

from Align-GVGD, it yields a p-value of 0.0078, which indicates a significant associ-

ation between rare variants and the disease. The result is consistent with the results of

[TOB09]; a significant p-value was obtained by performing a log-linear trend test with

output of Align-GVGD. Therefore, this suggests that prior information may be useful

in association studies and that RWAS can be applied to detect an association in real

data.

Interestingly, RWAS reports a non-significant p-value of 0.0881 when using SIFT
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scores as prior information while [TOB09] found a significant association with SIFT

scores. It may be because the binary classification of variants according to SIFT scores

is not as informative as output of Align-GVGD in predicting how likely each variant

is causal. In other words, variants that are considered deleterious (SIFT scores ≤

0.05) may be deleterious to different degrees, but SIFT scores do not capture this. The

relative degree of how deleterious a variant is important in RWAS because more dele-

terious variants receive higher weights. Hence, this experiment shows that methods to

determine prior information of variants play a key role in the real data analysis, and

different prior information may yield different results.

3.4 Discussion

In this chapter, we presented Rare variant Weighted Aggregate Statistic (RWAS) to

detect associations with a group of rare variants. We first developed the Optimal

Weighted Aggregate Statistic (OWAS) that maximizes the power of studies under the

weighted sum of z-scores statistic, but we need to know the effect sizes of variants

to use OWAS. We then developed RWAS by analytically approximating the optimal

weights, and it can be applied without the knowledge of effect sizes. The simulations

demonstrate that RWAS outperforms a weighted sum statistic by Madsen and Brown-

ing [MB09] in the same disease-risk model discussed in [MB09]. The simulations

also show that the power of RWAS is very close to the power of OWAS, suggesting

that RWAS achieves nearly optimal power in the disease-risk model we focused on.

We then extended RWAS to incorporate prior information of variants, and we con-

sidered the probability of a variant being causal to a disease as prior information in

this chapter. To determine effects of prior information on association studies, we used

both simulated data and real mutation screening data for the susceptibility gene for

ataxia telangiectasia. The results of simulated data show that power can be increased
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by incorporating correct prior information, and this is confirmed in the real data since

RWAS is able to detect an association in the real data with prior information while

it is not able to do so without the information. Hence, this suggests that it would be

advantageous to incorporate prior information into association studies and RWAS can

be used to find associations in such association studies.

Many studies suggest that rare variants are not in linkage disequilibrium with each

other [LL08, PC02, Pri01]. To compute the p-values, our statistic assumes that these

variants are independent. However, in the case that the rare variants are linked, we can

apply a permutation test to obtain p-values in order to apply the method.

Reference to published article

Jae Hoon Sul, Buhm Han, Dan He, and Eleazar Eskin, “An Optimal Weighted Aggre-

gated Association Test for Identification of Rare Variants Involved in Common Dis-

eases.” Genetics. 188, 181-8, 2011
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Figure 3.1: Power comparison in the constant PAR model. There are 5 group PAR

levels (1%, 2%, 3%, 4%, and 5%), and for each group PAR, 10,000 datasets were

generated. Each dataset contained 1000 case and 1000 control individuals having 100

variants (50 D-variants and 50 N-variants). Four different methods (RWAS, OWAS,

MB, and the single marker test) were tested, and their power was estimated as the

number of significant datasets among the 10,000 datasets using a significance threshold

of 2.5× 10−6.
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Figure 3.2: Power comparison with the different numbers of total variants in a gene.

We simulated 5 different numbers of total variants; 100, 200, 300, 400, and 500. All

simulations had 50 causal variants, the group PAR of 3%, and 1000 case and 1000

control individuals. We created 10,000 datasets for each of 5 different simulations.

The plot shows the power of RWAS, OWAS, MB, and the single marker test.
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Figure 3.3: Power of RWAS with different prior information. For each group PAR,

10,000 datasets were generated, and each dataset contained 1000 case and 1000 control

individuals having 100 variants with pre-defined true ci values. ci of 50 variants was

0.8, and ci of the other 50 variants was 0.2. Five different types of prior information

were given to RWAS; “correct ci” (same ci as true ci of datasets), “uniform incorrect

ci” (ci = 1 for all variants), “three fourths correct ci” (equal to 3
4

of true ci), “half

correct ci” (equal to a half of true ci), and “very incorrect ci” (opposite ci to true ci of

datasets). The single marker test, MB, and RWAS with the five different types of prior

information were tested.
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CHAPTER 4

Likelihood ratio test to increase power of groupwise

association test

4.1 Background

Current genotyping technologies have enabled cost-effective genome-wide association

studies (GWAS) on common variants. Although these studies have found numerous

variants associated with complex diseases [CSS93, BKK94, AHK00], common vari-

ants explain only a small fraction of disease heritability. This has led studies to ex-

plore effects of rare variants, and recent studies report that multiple rare variants affect

several complex diseases [GGS08, KPS07, CKP04, FWW04, JFO08, BB08, RPF07,

BVE08, Con08, XRL08, WMM08]. However, the traditional statistical approach that

tests each variant individually by comparing the frequency of the variant in individ-

uals who have the disease (cases) with the frequency in individuals who do not have

the disease (controls) yields low statistical power when applied to rare variants due to

their low occurrences.

Identifying genes involved in diseases through multiple rare variants is an impor-

tant challenge in genetics today. The main approach currently proposed is to group

variants in genes and detect associations between a disease and these groups. The ra-

tionale behind this approach is that multiple rare variants may affect the function of

a gene. By grouping variants, we may observe a larger difference in mutation counts
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between case and control individuals and hence, power of studies increases. Recently,

several methods have been developed for the groupwise approach such as the Cohort

Allelic Sums Test (CAST) [MT07], the Combined Multivariate and Collapsing (CMC)

method [LL08], a weighted-sum statistic by Madsen and Browning (MB) [MB09],

a variable-threshold approach (VT) [PKB10], and Rare variant Weighted Aggregate

Statistic (RWAS) [SHH11].

In combining information from multiple rare variants, a groupwise association test

faces two major challenges. The first is unknown effect sizes of variants on the disease

phenotype. To address this challenge, MB and RWAS discuss a disease risk model

in which rarer variants are assumed to have higher effect sizes than common vari-

ants [MB09, SHH11]. This model provides a simulation framework that would be

appropriate for testing the groupwise tests on rare variants because it describes asso-

ciations usually not found in traditional GWAS. RWAS is shown to outperform other

grouping methods under this disease risk model [SHH11]. The second challenge is

that only a subset of the rare variants in the gene will have an effect on the disease

and which of these variants are causal is unknown. Including non-causal variants in

a groupwise association test may reduce power because it decreases the relative con-

tribution of the true causal variants to the statistic [SHH11]. RWAS and VT attempt

to overcome this challenge by utilizing prior information of which variants are likely

deleterious, and prior information can be obtained from bioinformatics tools such as

Align-GVGD [TDY06] , SIFT [NH03] and PolyPhen-2 [ASP10]. By incorporating

prior information into the methods, RWAS and VT reported that they achieved higher

power [PKB10, SHH11].

These methods do not achieve the best performance even under the assumptions of

their disease model, as we show below, and we improve on the previous methods by

taking advantage of the following ideas. First, observational data can give us a clue
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to which variants are causal in data because casual variants occur more frequently in

cases than in controls. Hence, a method that infers causal variants from data would

outperform methods that do not, and previous methods fall into the latter category. In

addition, previous methods such as RWAS, MB, and VT compute their statistics using

a linear sum of mutation counts. In these methods, a variant having large discrepancy

in mutation counts between cases and controls has the same effect on a statistic as

the sum of two variants having small discrepancies with half the size of the large

one. However, the large discrepancy should contribute more than the sum of small

discrepancies because a variant that causes the large difference in mutation counts is

more likely to be involved in a disease. To emphasize the large discrepancy, a nonlinear

combination of mutation counts is necessary. Finally, the set of rare variants in the

gene and their distribution among cases and controls can be used to estimate the effect

sizes of the rare variants on the disease. This estimate can then be used to improve the

statistical power of the method.

In this chapter, we present a novel method for the groupwise association test based

on a likelihood ratio test (LRT). LRT computes and compares likelihoods of two mod-

els; the null model that asserts no causal variants in a group and the alternative model

that asserts at least one causal variant. To compute likelihoods of the models, LRT

assumes that some variants are causal and some are not (called “causal statuses of vari-

ants”) and computes the likelihood of the data under each possible causal status. This

allows LRT to compute likelihoods of the null and alternative models, and a statistic

of LRT is a ratio between likelihoods of the two models.

LRT takes advantage of both prior information and data to compute likelihoods

of underlying models, and hence it uses more information than previous methods to

identify a true model that generated data. Simulations show that LRT is more powerful

than previous methods such as RWAS and VT using the same set of prior information.
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We also show by using real mutation screening data of the susceptibility gene for ataxia

telangiectasia that LRT is able to detect an association previously reported by [TOB09]

and [SHH11].

Another improvement of LRT is that it computes its statistic using a nonlinear

combination of mutation counts as opposed to a linear sum of counts in the previous

methods. Simulations show that this difference creates different decision boundaries

(nonlinear versus linear decision boundaries) that determine whether a group of vari-

ants is associated with a disease. Moreover, we demonstrate that the nonlinear decision

boundary allows LRT to detect more associations than the linear boundary.

Unfortunately, to compute the LRT statistic directly, we must consider a number of

possible models exponential in the number of rare variants in the gene. In addition, we

must perform this computation once for each permutation and we must perform mil-

lions of permutations to guarantee that we control false positives when trying to obtain

genome-wide significance. We address these computational challenges by decom-

posing the computation of LRT and developing an efficient permutation test. Unlike

the standard approach to compute the LRT statistic which requires exponential time

complexity, we make a few assumptions and derive a method for computing the LRT

statistic whose time complexity is linear. For the permutation test, we further decom-

pose LRT and take advantage of the distribution of allele frequency. These techniques

allow us to compute a statistic of each permutation efficiently, and hence we can per-

form a large number of permutations to obtain genome-wide significance. We provide

the software package for LRT at http://genetics.cs.ucla.edu/rarevariants.
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4.2 Methods

4.2.1 Likelihood Ratio Test

We consider likelihoods of two models under LRT; the likelihood of the null model

(L0) and the likelihood of the alternative model (L1). The null model assumes that

there is no variant causal to a disease while the alternative model assumes there is at

least one causal variant. To compute the likelihood of each model, let D+ and D−

denote a set of haplotypes in case and control individuals, respectively. We assume

there are M variants in a group, and let V i be the indicator variable for the “causal

status” of variant i; V i = 1 if variant i is causal, and V i = 0 if not causal. Let

V = {V 1, ..., V M} represent the causal statuses of M variants, and there exist 2M

possible values for V . Among them, let vj = {v1j , ..., vMj } be jth value, consisting of

0 and 1 that represent one specific scenario of causal statuses [SHH11]. We use ci to

denote the probability of variant i being causal to a disease. Then, assuming that the

causal statuses are independent between variants, we can compute the prior probability

of each scenario vj as

P (vj) =
M∏
i=1

c
vij
i (1− ci)1−v

i
j . (4.1)

We define L(D+, D−|vj) as the likelihood of observing case and control haplo-

types given jth scenario. Then, L0 and L1 can be defined as

L0 = L(D+, D−|v0)P (v0) (4.2)

L1 =
2M−1∑
j=1

L(D+, D−|vj)P (vj) (4.3)

where v0 is a scenario where vi0 = 0 for all variants; no causal variants. In section

4.2.6 we describe how we can compute L(D+, D−|vj). The computation is based on

the no linkage disequilibrium (LD) assumption, which is reasonable on rare variants,

because very low or no LD is expected between rare variants [LL08, PC02, Pri01].
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The statistic of LRT is a ratio between L1 and L0, L1/L0, and we perform a per-

mutation test to compute a p-value of the statistic.

4.2.2 Decomposition of LRT to increase computational efficiency

We decompose L0 and L1 in (Equations 4.2, 4.3) such that we compute likelihoods of

variants instead of likelihoods of haplotypes to reduce the computational complexity.

To compute L1 in (Equation 4.3), we need to compute likelihoods of 2M scenarios of

causal statuses, which is computationally expensive if there are many rare variants in

a group. To decompose likelihoods of haplotypes, we need to make one assumption,

and it is low disease prevalence.

Assume there areN/2 case andN/2 control individuals. LetHk = {H1
k , H

2
k , . . . , H

M
k }

denote kth haplotype, where Hk
i ∈ {0, 1}. H i

k = 1 if ith variant in kth haplotype is

mutated, and H i
k = 0 if not. Let pi denote population minor allele frequency (MAF)

of variant i, and p+i and p−i represent the true MAF of case and control individuals,

respectively. We denote relative risk of variant i by γi. Then, L0 and L1 of (Equations

4.2, 4.3) can be decomposed into (see section 4.2.7 for the derivation)

L0 =
M∏
i=1

(1− ci)
∏

Hk∈D+

pi
Hi

k(1− pi)1−H
i
k

∏
Hk∈D−

pi
Hi

k(1− pi)1−H
i
k

 (4.4)

L0 + L1 =
M∏
i=1

{
(1− ci)

∏
Hk∈D+

pi
Hi

k(1− pi)1−H
i
k

∏
Hk∈D−

pi
Hi

k(1− pi)1−H
i
k

+ci
∏

Hk∈D+

p+i
Hi

k(1− p+i )1−H
i
k

∏
Hk∈D−

pi
Hi

k(1− pi)1−H
i
k

}
(4.5)

where p+i and p−i are

p+i =
γipi

(γi − 1)pi + 1
(4.6)

p−i = pi (assuming the disease prevalence is very small) (4.7)
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We estimate the population MAF of a variant (pi) using an observed overall sample

frequency.

pi =
p̂+i + p̂−i

2

where p̂+i and p̂−i represent observed case and control MAF, respectively.

This decomposition reduces the time complexity of computing L1 from exponen-

tial to linear, substantially increasing the computational efficiency.

4.2.3 Efficient permutation test for LRT

We propose a permutation test that is substantially more efficient than a naive per-

mutation test that permutes case and control statuses in each permutation. The naive

permutation test is computationally expensive because every haplotype of case and

control individuals needs to be examined in each permutation, and hence it requires

more computation as the number of individuals increases. Moreover, to compute a

p-value at a genome-wide level, more than 10 million permutations are necessary as-

suming a significance threshold of 2.5×10−6 (computed from the overall false positive

rate of 0.05 and the Bonferroni correction with 20,000 genes genome-wide). It is of-

ten computationally impractical to perform this large number of permutations with the

naive permutation test. Hence, we develop a permutation test that does not permute

case and control statuses, and this makes the time complexity independent of the num-

ber of individuals and allows the permutation test to be capable of performing more

than 10 million permutations.

First, we reformulate L0 and L1 (Equations 4.4, 4.5) such that they are composed

of terms that do not change and terms that change per each permutation (see section
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4.2.8 for the derivation).

L0 =
M∏
i=1

Xi (4.8)

L0 + L1 =
M∏
i=1

{
Xi +KiY

Np̂+i
i

}
(4.9)

where

Xi = (1− ci)p2Npii (1− pi)2N−2Npi

Ki = ci(1− p+i )N(1− pi)N
(

pi
1− pi

)2Npi

Yi =

(
p+i

1− p+i
· 1− pi

pi

)
In (Equations 4.8 and 4.9), it is only a p̂+i term that changes when the dataset is

permuted because pi and p+i are invariant per permutation, meaning Xi, Ki, and Yi are

constant. Np̂+i follows the hypergeometric distribution with the mean equal toNpi and

the variance equal to N
2
pi(1 − pi) under permutations. Hence, we sample Np̂+i from

the hypergeometric distribution, and since this sampling strategy does not permute and

examine haplotypes of individuals, it is more efficient than the naive permutation test

when studies have a large number of individuals.

To speed up sampling from the hypergeometric distribution, we pre-compute hy-

pergeometric distributions of all rare variants (e.g. variants whose MAF are less than

10%) before performing the permutation test. Computing the hypergeometric distri-

bution requires several factorial operations, which is computationally expensive. The

pre-computation of distributions allows the permutation test to avoid having the ex-

pensive operations repeatedly per permutation, and the number of pre-computed dis-

tributions is limited due to the small range of MAF. For common variants, we sample

Np̂+i from the normal distribution, which approximately follows the hypergeometric

distribution when p̂+i is not close to 0 or 1.
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We find that our permutation test is efficient enough to calculate a p-value of the

LRT statistic at a genome-wide level. For example, using a dataset that contains 1000

cases and 1000 controls with 100 variants, 10 million permutations take about 10 CPU

minutes using one core of a Quad-Core AMD 2.3 GHz Opteron Processor. Note that

the time complexity of our method is O(N + kMP ) where N is the total number of

individuals, M is the number of variants, P is the number of permutations, and k is the

number of iterations in the local search algorithm discussed below (see “Estimating

PAR of a group of variants using LRT” section for more details). We find that k is very

small in permutations and MP � N for a large number of permutations (e.g. 100

millions). Thus, the time complexity of our method becomes approximately O(MP ),

and this shows that the amount of computation our method needs mostly depends on

the number of variants and the number of permutations.

We note that our permutation test can also be applied to previous grouping methods

such as RWAS [SHH11]. RWAS assumes that its statistic (a weighted sum of z-scores

of variants) approximately follows the normal distribution, and the p-value is obtained

accordingly. Since the permutation test does not make any assumptions on the distri-

bution of a statistic, it may provide a more accurate estimate of a p-value and improve

the power of previous methods.

4.2.4 Power Simulation Framework

The effect sizes and the causal statuses of variants are two major factors that influence

the power of the groupwise association test. To simulate these two factors, we adopt the

same simulation framework as one discussed in Sul et al. and Madsen and Browning

[MB09, SHH11]. In this framework, population attributable risk (PAR) defines the

effect sizes of variants, and we assign the predefined group PAR to a group of variants.

The group PAR divided by the number of causal variants is the marginal PAR, denoted
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as ω, and every variant has the same ω.

The effect size of a variant also depends on its population MAF in this simulation

framework. We assign each variant population MAF (pi) sampled from Wright’s for-

mula [Wri31, Ewe04], and we use the same set of parameter values for the formula

as discussed in Sul et al. and Madsen and Browning (see [MB09, SHH11] for de-

tails). Using ω and population MAF, we can compute relative risk of variant i (γi) as

following.

γi =
ω

(1− ω)pi
+ 1 (4.10)

(Equation 4.10) shows that rarer variants have the higher effect sizes. Given relative

risk and population MAF of a variant, we compute the true case and control MAF of

the variant according to (Equations 4.6 and 4.7). We then use the true case and control

MAF to sample mutations in case and control individuals, respectively.

To simulate the causal status of a variant, we assign each variant the probability

of being causal to a disease. Let ci denote this probability for variant i, and in each

dataset, a variant is causal with the probability ci, and not causal with the probability

1 − ci. Relative risk of a causal variant is defined in (Equation 4.10) while that of

non-causal variant is 1.

Given all parameters of variants, we generate 1,000 datasets, and each dataset has

1,000 case and 1,000 control individuals with 100 variants. Since we are interested in

comparing power of the groupwise tests, we only include datasets that have at least

two causal variants. The number of significant datasets among the 1,000 datasets is

used as an estimate of power with the significance threshold of 2.5× 10−6.
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4.2.5 Estimating PAR of a group of variants using LRT

We need a few model parameters to compute the LRT statistic, and we use data, prior

information, and the LRT statistic itself to estimate the parameters. More specifically,

we need to know relative risk of variant i, γi, to compute p+i in (Equation 4.6). Ac-

cording to (Equation 4.10), γi depends on population MAF (pi) and the marginal PAR

(ω) which is the group PAR divided by the number of causal variants. We can estimate

pi from observational data, and we use prior information (ci) of variants to compute

the expected number of causal variants, which we use as an estimate of the number of

causal variants.

To estimate the group PAR, we use the LRT statistic because we are likely to ob-

serve the greatest statistic when the statistic is computed using the group PAR that

generated observational data. We apply a local search algorithm to find the value of

PAR that maximizes the LRT statistic; we compute the statistic assuming a very small

PAR value (0.1%), and iteratively compute statistics using incremental values of PAR

(0.2%, 0.3%, etc.) until we observe a decrease in the LRT statistic. After we find the

maximum LRT statistic, we perform the permutation test with the same local search

algorithm to find the significance of the statistic.

4.2.6 Computation of L(D+, D−|vj) in LRT

We show how the likelihood of haplotypes under certain causal statuses of variants,

L(D+, D−|vj), can be computed. LetHk denote kth haplotype, andHk = {H1
k , H

2
k , . . . , H

M
k }.

H i
k = 1 if ith variant in kth haplotype is mutated, and H i

k = 0 otherwise. Let pi de-

note population minor allele frequency (MAF) of ith variant, and we can compute the

probability of a haplotype Hk under the assumption of no linkage disequilibrium as

P (Hk) =
M∏
i=1

p
Hi

k
i (1− pi)1−H

i
k (4.11)
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Then, we define the likelihood of haplotypes as

L(D+, D−|vj) =
∏

Hk∈D+

P (Hk|+, vj)
∏

Hk∈D−

P (Hk|−, vj) (4.12)

where + and− denote case and control statuses. In order to compute P (Hk|+/−, vj),

we first denote F as disease prevalence and γHk
vj

as the relative risk of kth haplotype

under vj . We define γHk
vj

as

γHk
vj

=
M∏
i=1

γ
vijH

i
k

i

Let H0 denote the haplotype with no variants, and using Bayes’ theorem and indepen-

dence between Hk and vj , and between disease status (+ and −) and vj , we can define

the P (Hk|+ /−, vj) as

P (Hk|+, vj) =
P (Hk,+|vj)

P (+)
=
P (+|Hk, vj)P (Hk)

F

=
γHk
vj
P (+|H0, vj)P (Hk)

F
(4.13)

P (Hk|−, vj) =
P (Hk,−|vj)

P (−)
=

(1− P (+|Hk, vj))P (Hk)

1− F
(4.14)

P (+|H0, vj), or the probability of having a disease given no variants in the haplo-

type under jth causal statuses, can be computed as

2M−1∑
k=0

γHk
vj
P (+|H0, vj)P (Hk) = F

P (+|H0, vj) =
F∑2M−1

k=0 γHk
vj P (Hk)

4.2.7 Decomposition of likelihoods of haplotypes into likelihoods of variants in

LRT

First, we consider two variants case. We have 4 possible causal statuses, denoted as

v00, v01, v10, v11 and 4 possible haplotypes, denoted as H00, H01, H10, H11. Let p1 and
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p2 denote population MAF of two variants and p+1 and p+2 are MAF of case individuals

at two variants. The original LRT statistic based on (Equations 4.2 and 4.3) compute

the following likelihoods

L0 = (1− c1)(1− c2)
∏

Hk∈D+

P (Hk|+, v00)
∏

Hk∈D−

P (Hk|−, v00)

L0 + L1 = (1− c1)(1− c2)
∏

Hk∈D+

P (Hk|+, v00)
∏

Hk∈D−

P (Hk|−, v00)

+ (1− c1)c2
∏

Hk∈D+

P (Hk|+, v01)
∏

Hk∈D−

P (Hk|−, v01)

+ c1(1− c2)
∏

Hk∈D+

P (Hk|+, v10)
∏

Hk∈D−

P (Hk|−, v10)

+ c1c2
∏

Hk∈D+

P (Hk|+, v11)
∏

Hk∈D−

P (Hk|−, v11) (4.15)

Our first assumption for decomposition is that F or disease prevalence is very

small. Then, we can decompose P (Hk|−, vj) for all causal statuses j, as

P (Hk|−, vj) = p
H1

k
1 (1− p1)1−H

1
k × pH

2
k

2 (1− p2)1−H
2
k = P (Hk|+, v00) (4.16)

Then, we decompose P (Hk|+, vj) for different vj , and first, let’s consider v11

where two variants are both causal. We make another assumption here, which is the

independence between rare variants; there is no linkage disequilibrium (LD) [LL08,

PC02, Pri01]. If variants are independent, P (H00|+, v11) can be formulated as

P (H00|+, v11) =
P (H00)

P (H00) + P (H10)γ1 + P (H01)γ2 + P (H11)γ1γ2

=
(1− p1)(1− p2)

(1− p1)(1− p2) + p1(1− p2)γ1 + (1− p1)p2γ2 + p1p2γ1γ2

=
(1− p1)× (1− p2)

((1− p1) + p1γ1)× ((1− p2) + p2γ2)

= (1− p+1 )(1− p+2 )

The last derivation comes from (Equation 4.6) where p+i = piγi
(1−pi)+piγi . Similarly, we
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can define the probabilities of other haplotypes (H01, H10, H11) as

P (H01|+, v11) = (1− p+1 )p+2

P (H10|+, v11) = p+1 (1− p+2 )

P (H11|+, v11) = p+1 p
+
2

Combining these probabilities, we have the following decomposition of P (Hk|+, v11).

P (Hk|+, v11) = p+1
H1

k(1− p+1 )1−H
1
k × p+2

H2
k(1− p+2 )1−H

2
k (4.17)

Using the similar derivation, decomposition of P (Hk|+, v01) and P (Hk|+, v10) is

P (Hk|+, v01) = p1
H1

k(1− p1)1−H
1
k × p+2

H2
k(1− p+2 )1−H

2
k (4.18)

P (Hk|+, v10) = p+1
H1

k(1− p+1 )1−H
1
k × p2H

2
k(1− p2)1−H

2
k (4.19)

By the 4 decompositions (Equations 4.16, 4.17, 4.18, and 4.19), we can finally
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decompose the likelihoods of haplotypes (Equation 4.15) as

L0 =(1− c1)(1− c2)
∏

Hk∈D+

p
H1

k
1 (1− p1)1−H

1
kp

H2
k

2 (1− p2)1−H
2
k

∏
Hk∈D−

p
H1

k
1 (1− p1)1−H

1
kp

H2
k

2 (1− p2)1−H
2
k

L0 + L1 =(1− c1)(1− c2)
∏

Hk∈D+

p
H1

k
1 (1− p1)1−H

1
kp

H2
k

2 (1− p2)1−H
2
k

∏
Hk∈D−

p
H1

k
1 (1− p1)1−H

1
kp

H2
k

2 (1− p2)1−H
2
k

+(1− c1)c2
∏

Hk∈D+

p1
H1

k(1− p1)1−H
1
kp+2

H2
k(1− p+2 )1−H

2
k

∏
Hk∈D−

p
H1

k
1 (1− p1)1−H

1
kp

H2
k

2 (1− p2)1−H
2
k

+c1(1− c2)
∏

Hk∈D+

p+1
H1

k(1− p+1 )1−H
1
kp2

H2
k(1− p2)1−H

2
k

∏
Hk∈D−
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If we generalize the above equation to M variants, we have the likelihood of M vari-
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ants as in (Equations 4.4 and 4.5)

4.2.8 Reformulation of L0 and L1 in LRT for an efficient permutation test

First, computation of L0 (Equation 4.4) can be reformulated as
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Similarly, we can reformulate L1 as
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Using the fact that Np̂+i +Np̂−i = 2Npi under permutations,
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4.3 Results

4.3.1 Type I error rate of LRT

We examine the type I error rate of LRT by applying it to “null” datasets that contain no

causal variants. We measure the type I error rates under three significance thresholds;

0.05, 0.01, and 2.5×10−6 (the significance threshold for the power simulation). A large

number of null datasets are necessary to accurately estimate the type I error rate under

the lowest significance threshold (2.5 × 10−6). Thus, we create 10 million datasets,

and each dataset contains 1000 case and 1000 control individuals with 100 variants.

We estimate the type I error rate as the proportion of significant datasets among the 10

million datasets.

To efficiently measure the type I error rates of LRT, we use the following approach.

We first test LRT on all 10 million datasets with 100,000 permutations. This small

number of permutations makes it possible to test LRT on all null datasets and allows

us to estimate the type I error rates under the 0.05 and 0.01 significance thresholds. As

for the lowest significance threshold, we need to test LRT with a very large number

of permutations (e.g. 100 million) to obtain a genome-wide level p-value. To reduce

the amount of computation, we exclude datasets whose p-values cannot be lower than

2.5 × 10−6 with 100 million permutations. More specifically, to obtain a p-value less

than 2.5 × 10−6, the number of significant permutations (permutations whose LRT

statistics are greater than the observed LRT statistic) must be less than 250 with 100

million permutations. We exclude datasets already having more than 250 significant

permutations after the 100,000 permutations. We then apply the adaptive permuta-

tion test on the remaining datasets; we stop the permutation test when the number of

significant permutations is greater than 250. The proportion of datasets whose permu-

tation tests do not stop until 100 million permutations is the type I error rate under the
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2.5× 10−6 threshold.

We find that the type I error rates of LRT are 0.0500946, 0.0100042, and 2.6 ×

10−6 for the significance thresholds of 0.05, 0.01, and 2.5 × 10−6, respectively. This

shows that the type I error rates are well controlled for LRT under the three different

thresholds.

4.3.2 Power comparison between LRT and previous grouping methods

We compare power between LRT and previous methods using two simulations. We

design these simulations to observe how LRT’s implicit inference of which variants

are causal affects the power compared to methods which do not make this kind of

inference. In the first simulation, we generate datasets in which all variants have true

ci = 0.1. This means that only a subset of variants is causal, and causal statuses of

variants vary per datasets. In the second simulation, all 100 variants in datasets are

causal; true ci of all variants is 1.

We test four different methods in this experiment; LRT, Optimal Weighted Ag-

gregate Statistic (OWAS), MB, and VT. OWAS computes a difference in mutation

counts between case and control individuals for each variant, or z-score of a variant,

and assigns weights to z-scores according to the non-centrality parameters of z-scores

[SHH11]. Sul et al. reported that OWAS achieves slightly higher power than RWAS

[SHH11]. Thus, we test OWAS instead of their proposed method, RWAS, to compare

power between a weighted sum of z-scores approach and the LRT approach. Since

OWAS needs to know the effect sizes of variants, we give OWAS the true group PAR

that generated data. OWAS divides the true group PAR by the expected number of

causal variants to compute the marginal PAR (ω) and then computes relative risk of

variants (Equation 4.10). We also apply our permutation test for LRT (see Material

and Methods) to OWAS to estimate its p-value more accurately. To test VT, we use an
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R package available online [PKB10]. LRT, OWAS, and VT are given prior informa-

tion that is equivalent to true ci of datasets, and we perform 10 million permutations to

estimate p-values of their statistics.

Results of the two simulations show that LRT outperforms the previous groupwise

tests in the first simulation, and it has almost the same power as OWAS in the second

simulation. In the first simulation, LRT has higher power than other tests at all group

PAR values (Figure 4.1A); at the group PAR of 5%, LRT achieves 94.5% power while

OWAS and VT achieve 53.7% and 83.6% power, respectively. This shows that data

may provide useful information about causal statuses of variants, and a method that

takes advantage of data achieves higher power than those that do not. When prior

information, however, can alone identify which variants are causal as in the second

simulation, LRT and OWAS have almost the identical power (Figure 4.1B). This is

because both methods know which variants are causal from prior information. Hence,

this experiment demonstrates that LRT is generally a more powerful approach than the

weighted sum of z-scores approach because it achieves higher power in studies where

prior information cannot specify which variants are causal.

4.3.3 Comparison of decision boundaries between LRT and the weighted sum

of z-scores

We show decision boundaries of LRT and the weighted sum of z-scores method to

visualize the way each method combines information from multiple variants and to

determine how decision boundaries affect power of studies. A decision boundary de-

termines whether a group of variants is statistically associated with a disease; a statistic

for the group is significant if it is above the boundary while it is not significant if it is

below the boundary. Methods that combine information linearly has a linear decision

boundary, and those methods include RWAS and MB that compute a statistic based
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on a linear sum of mutation counts or z-scores. LRT, on the other hand, has a nonlin-

ear decision boundary since its statistic is computed using a nonlinear combination of

mutation counts.

For this experiment, we perform two simulations similar to ones in the previous

experiment with a fewer number of variants. In each simulation, we generate 10,000

datasets containing 500 case and 500 control individuals with only two variants. Pop-

ulation MAF of both variants is 1%, and the true case MAF is calculated assuming

the group PAR of 2%. Both variants have true ci = 0.5 in the first simulation while

they have true ci = 1 in the second simulation, which is similar to ci of the two sim-

ulations in the previous experiment. We perform the single marker test to compute

z-score of each variant in each dataset, meaning that we have two statistics per dataset.

These statistics are represented in a two-dimensional graph where each dimension cor-

responds to z-score of each variant. We then test LRT and OWAS on each dataset to

determine whether their statistics on a group of the two variants are significant using

the significance threshold of 0.05.

Figure 4.2 shows results of the two simulations; Figures 4.2A and 4.2B are results

of testing LRT and OWAS, respectively, on the first simulation (ci = 0.5), and Figures

4.2C and 4.2D are results on the second simulation (ci = 1). In each figure, a point

represents one of the 10,000 datasets, and its x and y axes correspond to z-scores of

the first and second variants, respectively. The red points are datasets whose LRT or

OWAS statistics on a group of variants are significant, and the blue points are non-

significant statistics.

We find that LRT achieves higher power by using the nonlinear decision bound-

ary as there are more number of red points in Figure 4.2A (LRT) than Figure 4.2B

(OWAS). A curved line separates significant and non-significant associations, which

indicates the nonlinear decision boundary of LRT (Figure 4.2A). On the other hand, a
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straight line or a linear decision boundary segregates the statistics of OWAS (Figure

4.2B). The nonlinear decision boundary allows LRT to emphasize causal variants more

strongly than non-casual variants while OWAS considers both casual and non-casual

variants to be equally important.

When all variants in datasets are causal, however, they all should be emphasized

equally, and hence a linear decision boundary would best detect associations. Hence,

the decision boundary of LRT becomes linear in the second simulation (Figure 4.2C)

since LRT knows every variant is causal and equally important. The decision boundary

of OWAS is also linear in this simulation (Figure 4.2D), and this explains why LRT and

OWAS have the same power in the second simulation of the previous experiment. This

experiment shows that because the decision boundary of LRT can become both linear

and nonlinear depending on the causal statuses of variants, LRT is more powerful than

previous methods that have a fixed decision boundary.

4.3.4 LRT on real mutation screening data of ATM

We apply LRT to real mutation screening data of the susceptibility gene for ataxia

telangiectasia [TOB09]. This gene, called ATM, is also an intermediate-risk suscep-

tibility gene for breast cancer. Tavtigian et al. conducted mutation screening studies

and collected data from 987 breast cancer cases and 1021 controls. Tavtigian et al. in-

creased the number of cases and controls to 2531 and 2245, respectively, by collecting

data from seven published ATM case-control mutation screening studies. This dataset

is called “bona fide case-control studies,” and 170 rare missense variants are present in

this dataset. Sul et al. also analyzed the dataset with RWAS [SHH11].

To obtain prior information of variants in the dataset, Tavtigian el al. used two

missense analysis programs, Align-GVGD [TDY06] and SIFT [NH03]. A difference

between the two programs is that while SIFT classifies a variant as either deleterious
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(SIFT scores≤ 0.05) or neutral (SIFT scores> 0.05), Align-GVGD classifies a variant

into seven grades from C0 (most likely neutral) to C65 (most likely deleterious). To

convert the seven grades of Align-GVGD into ci values, we arbitrarily assign ci values

from 0.05 to 0.95 in increments of 0.15 to the seven grades. As for converting SIFT

scores into ci values, we assign ci value of 1 to variants whose SIFT scores are ≤ 0.05

and ci of 0 to other variants. This is the same conversion used in [SHH11].

When LRT uses prior information from Align-GVGD, it yields a p-value of 0.0058,

which indicates a significant association between the group of rare variants and the

disease. This result is consistent with the findings of [TOB09] and [SHH11]; Tavtigian

et al. and Sul et al. both obtained significant p-values when they used outputs of Align-

GVGD as prior information. The result shows that we can apply LRT to real data to

discover an association.

LRT yields a non-significant p-value of 0.39341 when it does not use prior infor-

mation, and this is also consistent with results of [TOB09] and [SHH11]; Tavtigian

et al. and Sul et al. reported non-significant p-values when they analyzed the data

without prior information. When SIFT scores are used as prior information, LRT

similarly reports a non-significant p-value of 0.08384, and Sul et al. also obtained a

non-significant p-value [SHH11]. However, the analysis of Tavtigian et al. with SIFT

scores showed a significant association [TOB09]. According to [SHH11], the reason

for this difference may be that LRT and RWAS need to know the relative degree of

how deleterious a variant is to better detect an association. However, it may be diffi-

cult to know this relative deleteriousness of variants with SIFT scores because variants

are either deleterious or neutral. Thus, this experiment shows that more informative

prior information such as the seven grades of Align-GVGD may yield better results

with LRT.

93



4.4 Discussion

We developed a likelihood ratio test (LRT) to increase power of association studies

on a group of rare variants. The power of statistical methods that group rare vari-

ants depends on which rare variants to group or to exclude from the group because

including non-causal variants in the group decreases power [SHH11]. Although prior

information of variants from bioinformatics tools provides information of how likely

each variant is functional or deleterious, determining whether a variant is causal or not

only from prior information is often infeasible. LRT takes advantage of data to iden-

tify causal variants, and when it is not possible to identify causal variants from prior

information, we showed that LRT outperforms previous methods.

We then showed decision boundaries of LRT and one of previous grouping meth-

ods, Optimal Weighted Aggregate Statistic (OWAS). The two methods have the same

linear decision boundary when datasets contain only causal variants, and thus they

achieve the same power. When only a subset of them is causal, OWAS still has a lin-

ear decision boundary since its statistic is computed as a linear sum of differences in

mutation counts. However, the decision boundary of LRT becomes nonlinear in this

case because LRT places more emphasis on a variant that causes a large difference

in mutation counts between cases and controls than a variant that causes a small dif-

ference. We showed by simulations that the nonlinear decision boundary detects more

associations than the linear decision boundary. Hence, this suggests that LRT is a more

powerful approach in finding associations with a group of rare variants because it is

capable of changing its decision boundary depending on causal statuses of variants to

better detect associations.

To evaluate LRT on real data, we used mutation screening data of the ATM gene

[TOB09]. Tavtigian et al. and Sul et al. both found the significant association in the

data [TOB09, SHH11], and we showed that LRT also detected the association using
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the output of Align-GVGD as prior information of variants. This shows that LRT can

be applied to detect an association in real association studies.

One of the two assumptions that we made to efficiently compute the LRT statis-

tic and its p-value is the independence between variants. Several studies suggest that

there would be very low linkage disequilibrium between rare variants due to their low

occurrences [LL08, PC02, Pri01]. However, if non-negligible LD is expected between

variants, especially when common variants are in linkage disequilibrium in the group,

we can change our permutation test as follows to take into account LD and to correctly

control the false positive rate. Instead of separately sampling Np̂+i of each common

variant from the normal distribution, we sample Np̂+i of all common variants from the

multivariate normal distribution (MVN). This approach is similar to the approach of

Han et al who used the MVN framework to correct for multiple testing on correlated

markers [HKE09a]. The covariance matrix of the MVN we create consists of corre-

lations (r) between common variants, and hence Np̂+i sampled from this MVN takes

into account LD between variants. For rare variants, we use our proposed method that

samples Np̂+i of each rare variant from the hypergeometric distribution because LD

between rare variants is expected to be very low.

The other assumption of our method is the low disease prevalence, and this as-

sumption does not influence the false positive rate of our method while it may affect

the power. The false positive rate of LRT is controlled even though the disease we con-

sider is highly prevalent because we perform the permutation test. Therefore, LRT can

still be applied to association studies involving diseases with high prevalence while its

power may not be as high as the power it achieves on diseases with low prevalence.
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Figure 4.1: Power comparison among four different groupwise association tests on

datasets where ci = 0.1 for all variants (A) and ci = 1 (B) over different group PAR

values
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Figure 4.2: Plots showing decision boundaries of LRT and OWAS on datasets with two

variants whose ci = 0.5 (A and B) and ci = 1 (C and D). X-axis and Y-axis correspond

to z-scores of two variants, and red points are significant statistics according to LRT or

OWAS while blue points are non-significant.
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CHAPTER 5

Combining mixed model and meta-analysis to detect

eQTLs from multiple tissues

5.1 Background

Advances in genotyping and gene expression technologies have enabled researchers

to study associations between genetic variants and gene expression levels. These

studies often treat expression levels as quantitative traits and apply statistical tests

to identify genomic locations known as expression Quantitative Trait Loci (eQTLs)

that segregate the traits. Genome-wide maps of eQTLs for several organisms includ-

ing budding yeast [BYC02, BK05], Arabidopsis [KFT07], mouse [CLS05, BWD05]

and human [CSE05, SNF07] have been successfully generated. Furthermore, recent

technological developments and cost decreases in microarrays allow studies to collect

expression data in more than one tissue in human [CSE05, ETZ08, SBB07] and mouse

[CLS05, BWD05]. A collection of expression data from multiple tissues enables stud-

ies to explore the tissue-specific nature of eQTLs as well as their global effects on

different types of tissues.

Multiple tissue datasets can potentially allow studies to more effectively identify

eQTLs by combining information from multiple tissues. Due to a limited sample size,

a standard single tissue eQTL method or “tissue-by-tissue” approach that examines

each tissue individually may not detect an eQTL in any one tissue, or it may overesti-
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mate the proportion of tissue specific eQTLs [FWD12]. However, if a genetic variant

is associated with the expression of a gene in more than one tissue, we can aggregate

information from multiple tissues to increase statistical power. This idea is similar to

the idea of meta-analysis in genome-wide association studies (GWAS) that combines

results of several studies on the same phenotype. In our case, each tissue is considered

as a separate “study” in the meta-analysis.

One key difficulty in combining results from multiple tissues is that it is not known

in which tissues a genetic variant has an effect. For example, a variant may influence

gene expression in all tissues, may have different effects on different tissues, or may

have an effect in some tissues but may not have any effect in other tissues. This phe-

nomenon, different effect sizes among tissues, is called heterogeneity. Meta-analysis

methods have different assumptions on the distribution of effect sizes, and to better

detect eQTLs, studies will perform best if they apply a meta-analysis method whose

assumptions are consistent with the actual effect sizes of eQTLs in multiple tissues.

For instance, if an eQTL has an effect in all tissues, studies would perform best if they

utilize the fixed-effects model (FE) [BFJ08, COC54, MH59] that assumes no hetero-

geneity. On the other hand, to effectively detect an eQTL whose effects on gene ex-

pression differ across tissues, studies will perform best if they apply the random-effects

model (RE) [DL86, IPE07a, IPE07b, EMI07, HE11] that considers heterogeneity.

Another challenge in applying meta-analysis to multi-tissue datasets is that studies

often collect multiple tissues from the same individuals, which may cause the expres-

sion between tissues of the same individual to be correlated. This correlation may

cause false positives for standard meta-analysis methods which assume a disjoint set

of individuals in each study.

In this chapter, we present a novel approach called “Meta-Tissue” that identifies

eQTLs from multiple tissues by utilizing meta-analysis. The critical advance of our
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methodology is that we extend meta-analysis to a mixed model framework. We apply

the mixed model to account for the correlation of expression between tissues, and

perform meta-analysis to combine results from multiple tissues. Since we do not know

in advance the distribution of effect sizes for eQTLs among different tissues, we utilize

both the FE and RE models to identify as many eQTLs as possible, and for RE, we

use a recently developed random-effects model [HE11] that achieves higher statistical

power than the traditional random-effects model. We first show by simulations that

Meta-Tissue is more powerful than the tissue-by-tissue approach in detecting eQTLs

when eQTLs have effects in multiple tissues, while controlling for the false positive

rate correctly.

We then apply Meta-Tissue to a mouse expression dataset. This dataset is ideal for

evaluating methods for discovering eQTLs for several reasons. The data are generated

through a cross which limits the genetic diversity in the dataset, and all variants have

similar frequencies which eliminate effects of allele frequency on power. In addition,

the dataset contains gene expression from many different tissues and different numbers

of individuals for the tissues, allowing us to compare results between different scenar-

ios. We analyze four tissues from 50 samples per each tissue and ten tissues from 22

samples. We apply Meta-Tissue to both datasets and demonstrate that Meta-Tissue

detects many eQTLs that are undetected by the tissue-by-tissue method.

In addition to accurately detecting eQTLs from multiple tissues, our method can

also predict whether an eQTL affects or does not affect expression in a specific tis-

sue. Predicting the existence or absence of an effect is a very difficult problem in

meta-analysis, and it is known that making predictions based on p-values is not ef-

fective [HE12]. One of the reasons is that a non-significant p-value is not neces-

sarily evidence of an absence of an effect since the study may be underpowered.

Our method instead computes the posterior probability of the presence or absence
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of an effect for each study building on recent work in interpretation of meta-analysis

[HE12]. Applying the framework to the four and ten tissue datasets, we identify more

eQTLs that are predicted to have effects in all tissues compared to the p-value based

approach, which are interesting potential candidates with possible global regulatory

mechanisms. Meta-Tissue is publicly available at http://genetics.cs.ucla.

edu/metatissue/.

5.2 Methods

5.2.1 Mouse Strains

F1N2 mice from a C57BL6/N x 129/OlaHsd cross were produced as follows. Male

ES cell chimeric founders (E14 ES line [HHH87]) were crossed to C57BL6/N females

(Harlan Laboratories). Male agouti offspring were backcrossed to C57BL6/N females,

and F1N1 offspring were intercrossed to produce F1N2 animals, Figure 5.1. All an-

imals were maintained in ventilated microisolator caging (Allentown), fed a standard

lab chow diet (Harlan Teklad) and provided water ad libidem. F1N2 animals were

group housed with littermates until 9 weeks of age. Mice selected for tissue harvest

were singly housed for one additional week, to minimize socialization effects. Only

males were used, to avoid estrus related effects on gene expression. While the produc-

tion crosses segregated various gene targeted alleles, all mice selected for this study

carried only wild type genomes and did not carry any engineered genomic alterations

such as gene knockouts.

5.2.2 Gene Expression

Animals were sacrificed by cervical dislocation and immediately dissected. A set of

thirty tissues were collected from each animal in a prescribed order, beginning with the
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pancreas. Each tissue was briefly rinsed in PBS and deposited in RNAlater (Ambion),

held at room temperature to allow diffusion of RNAlater into the tissue, and then stored

at -86C.

Tissue homogenization, total RNA isolation, cDNA production, in vitro transcrip-

tion and fluorescent labeling were performed as per Affymetrix gene chip recom-

mended protocols. The hybridization mixes were analyzed using Affymetrix U74Av2

expression microarrays, washed and scanned using Affymetrix instrumentation and

protocols.

We consider the 10588 probes for which we have annotations. For each tissue type,

we filter out array outliers which show an average correlation of < 0.98 with respect

to all other arrays.

The mice were genotyped at 140 SNPs that are polymorphic between 129S1/SvImJ

and C57BL/6J from the JAX SNP Genotyping Panel [PDC04]. We use 135 out of the

140 SNPs that are polymorphic in all tissues for our analysis.

5.2.3 Normalization and selection of individuals

In our analysis, we consider the gene expression levels of G = 10588 probes collected

in 4 tissues (liver, spleen, cortex and heart) over N = 50 individuals. To be consis-

tent with the different tissue datasets we analyze, we randomly chose 50 individuals

from those datasets that have more than 50 individuals. We first used RMA to perform

background adjustment on the raw expressions and then quantile normalization to nor-

malize the adjusted expressions. For 10 tissues, we collect the same number of gene

expression levels over N = 22 individuals.
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5.2.4 Power simulation framework

Our power simulation assumes that we collect four tissues from 100 individuals, and

considers four scenarios where an eQTL has an effect in (1) one tissue, (2) in two tis-

sues, (3) in three tissues, and (4) in all four tissues. To generate the gene expression

level of individuals that considers the repeated measurements from the same individu-

als, we first sample gene expression from the multivariate normal distribution:

ye = e (5.1)

where ye is a vector of size 400 corresponding to gene expression of 100 individuals

in 4 tissues, and e ∼ N (0, σ2
vD + σ2

eI) where D is a 400 by 400 matrix representing

correlation between individuals across the tissues. More specifically, Dij = 1 if i and

j are the same individual between two tissues, and Dij = 0 otherwise. I is an identity

matrix with size of 400. σ2
v and σ2

e are coefficients of the two variance components,

and we use the real mouse dataset to obtain realistic values of the two coefficients. We

estimate σ2
v and σ2

e for every pair between a gene expression and a SNP, and find that

on average, σ2
v = 0.0988 and σ2

e = 0.9039. We use these values for our simulation.

After sampling ye, we add a SNP effect to ye for tissues in which an effect exists

using the following equation:

yt = xβt + yet

where yt is gene expression of 100 individuals in tissue t (t ∈ {1, 2, 3, 4}), yet is ye

on tissue t (size of 100), and x is SNP information of 100 individuals. βt = 0 if an

eQTL does not have an effect in tissue t, and βt > 0 if an eQTL has an effect. Since

the goal is to compare the relative power between methods, we vary the effect size

(βt) depending on the scenario to avoid too high or too low power. Specifically, we set

βt = 1.5, 1.175, 1.0, 0.75 for the scenarios (1), (2), (3), (4), respectively.
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5.2.5 Linear model for Tissue-by-Tissue approach

We assume an additive linear model to represent the relationship between the expres-

sion of one gene and one SNP. We can write that relationship in the following way for

an arbitrary gene g and SNP j at tissue t:

ygt = 1αt + xjβt + e, (5.2)

where y is a size N vector denoting gene expression levels of N individuals, xj is a

size N vector denoting SNP, 1 is a vector of ones, and e ∼ N(0, σ2I). To assess the

significance of an association between a SNP and a gene, we perform a standard F-test

for the null hypothesis βt = 0 and also obtain an estimate of βt using the lm function

in R. In the tissue-by-tissue approach, if any single tissue turns out to be significant

(βt 6= 0), the pair of SNP and gene expression are reported as a significant eQTL. TBT

can also find tissues in which an eQTL exists by examining which βt is non-zero.

5.2.6 Meta-Tissue - Linear mixed model

We use a linear mixed model to take into account the fact that eQTL studies col-

lect multiple tissues from the same individuals. This is called a “repeated measures

design,” and the mixed model is often used to model the correlation induced by the re-

peated measurements such as in longitudinal data. Let T be the number of tissues, and

for simplicity, we assume there are N individuals for each tissue, but individuals col-

lected in one tissue do not necessarily completely overlap with those in another tissue;

it is possible that some individuals may provide all tissues while others may provide a

subset. We also assume that we have SNP information for all individuals. We apply

the following linear mixed model to assess the statistical significance between gene
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expression g and SNP j:

Yg = 1α+ Xjβ + u + e, (5.3)

Here is a description of each variable in above equation. Let NT = N × T .

– Y is an NT × 1 matrix denoting expression levels of N individuals in T tissues.

In other words, the firstN rows are expression ofN individuals in the first tissue,

the next N are expression in the second tissue, and so on. Expression values of

each tissue are normalized to N (0, 1).

– 1 is an NT × T matrix denoting the intercepts for T tissues. The first column

of 1 denotes the intercept for the first tissue; the first N rows are ones, and the

next NT −N are zeros. In the second column that denotes the intercept for the

second tissue, the first N rows are zeros, the next N rows are ones, and the next

NT − 2T rows are zeros.

– α is a T × 1 matrix denoting coefficients of intercepts.

– Xj is an NT × T matrix denoting SNP for T tissues. This is similar to the 1

matrix, and we replace ones in the 1 matrix with SNP information. For example,

in the first column, the first N rows are SNP information of N individuals in the

first tissue, and the next NT −N rows are zeros.

– β is a T × 1 matrix denoting coefficients of SNP effects in T tissues.

– u is the random effect of the mixed model due to the repeated measurements of

individuals, and u ∼ N (0, σ2
vD) where D is an NT ×NT matrix representing

how individuals are shared across the tissues (discussed in the Power simulation

framework section). e represents random errors and e ∼ N (0, σ2
eI) where I is

an identity matrix. To efficiently estimate the two variance components (σ2
v and

σ2
e ), we use the efficient mixed-model association (EMMA) package [KZW08].
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To estimate β and its covariance, we apply the generalized least squares. Let Σ =

σ̂2
vD + σ̂2

eI. Then, the estimated β is

β̂ =
(
X′jΣ

−1Xj

)−1
X′jΣ

−1Ym (5.4)

5.2.7 Meta-Tissue - Meta-analysis

Given the estimate β̂ = (β̂1, ..., β̂T ), we combine information from multiple tissues by

applying meta-analysis to β̂. If the effect of eQTL is the same for all tissues, applying

fixed effects model (FE) meta-analysis will be a powerful approach. If the effects of

eQTL differs by tissues, applying random effects model (RE) meta-analysis will be a

powerful approach [HE11].

5.2.7.1 Fixed effects model

Fixed effects model (FE) is a meta-analysis method that assumes the effect size of a

variant is fixed across datasets [COC54, MH59], and its statistic is computed based on

the inverse-variance-weighted effect size [Fle93]. Let B1, . . . , BT and V1, . . . , VT be

the estimates of effect-size and the standard error of Bi, respectively, in T tissues. Let

µ be the unknown true effect size. The null hypothesis of FE is µ = 0; in other words,

effect size in all tissues is zero. A statistic of FE (SFE) and its distribution under the

null hypothesis are

SFE =

∑T
i=1 V

−1
i Bi√∑T

i=1 V
−1
i

∼ N (0, 1) (5.5)

A p-value of SFE is obtained from the standard normal distribution.
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5.2.7.2 Random effects model

Our Meta-Tissue method leverages new random effects model (RE) [HE11] to detect

eQTLs from multiple tissues while taking into account heterogeneity of effect sizes

in different tissues. The assumption of the random effects model is that the effect

size of a variant is different among datasets and follows a probability distribution with

mean µ and variance τ 2. The null hypothesis of the random effects model is equivalent

to that of the fixed effects model; that is, µ = 0. The traditional random effects

model, however, assumes a conservative null hypothesis model. The new random

effects model corrects this conservative null hypothesis model and outperforms the

traditional random effects model. More specifically, a statistic of RE (SRE) is defined

as

SRE =
∑

log
(

Vi
Vi + τ̂ 2

)
+
∑ B2

i

Vi
−
∑ (Bi − µ̂)2

Vi + τ̂ 2
(5.6)

where µ̂ and τ̂ 2 are estimated mean and variance of the effect size, and the maximum

likelihood estimates of the two parameters are calculated iteratively as following

µ̂(n+1) =

∑(
Vi + τ̂ 2(n)

)−1
Bi∑(

Vi + τ̂ 2(n)

)−1 τ̂ 2(n+1) =

∑ (Bi−µ̂(n+1))
2
−Vi(

Vi+τ̂2(n)

)2∑(
Vi + τ̂ 2(n)

)−2
The initial value of τ̂ 2 is estimated using approaches in the traditional random effects

model [DL86, HT02, HT96]. We obtain a p-value of SRE from p-value tables that are

constructed from numerous null statistics.

5.2.7.3 Accounting for covariance of effect size estimates

Since we use linear mixed model to account for the fact that multi-tissue eQTL studies

often collect multiple tissues from the same individuals, our estimates of effect size,

β̂ = (β̂1, ..., β̂T ) in Equation (5.4) can become correlated. The covariance structure is
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estimated using the standard formula of the generalized least squares,

var(β̂) =
(
X′jΣ

−1Xj

)−1 (5.7)

It is important that the meta-analysis methods account for this covariance structure of

effect size estimates.

To take into account the covariance structure in meta-analysis, we use an extension

[HSE13] of the Lin and Sullivan approach [LS09] . Given β̂ and their covariance

Ω = var(β̂), the optimal fixed effects model meta-analysis statistic is

SLin =
eTΩ−1β̂

eTΩ−1e

where e is the vector of ones (e = (1, ..., 1)). The variance of the statistic is given

var(SLin) =
1

eTΩ−1e

Note that if β̂ is independent (Ω is a diagonal matrix), SLin and var(SLin) are equivalent

to the inverse-variance weighted effect size estimate (the numerator of equation (5.5))

and its variance.

It can be shown that this approach is equivalent to building a new “un-correlated”

variance of β̂,

varnew(β̂) = Diag(Ω−1e)−1

and then giving β̂ and varnew(β̂) as input to the traditional meta-analysis approaches

assuming independent estimates [HSE13]. This “un-correlating” idea allows us flex-

ibility to use the correlated estimates in any meta-analysis framework requiring in-

dependent estimates. We use β̂ and its “un-correlated” variance for the fixed effects

model (which gives equivalent results to the Lin and Sullivan approach [LS09]), ran-

dom effects model, heterogeneity estimation (Q and I2), and the m-value estimation

[HE12].
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5.2.7.4 Predicting effects of eQTLs in multiple tissues

To predict whether an eQTL has effects in a specific tissue, Meta-Tissue computes a

statistic called the “m-value” proposed by Han and Eskin [HE12] that specifies the

posterior probability that an effect exists in a tissue. First, we denote B as a vector of

Bi; B = {B1, B2, . . . , BT}. Let Ri be a random variable whose value is 1 if dataset

i has an effect and 0 otherwise. We also denote R as a vector of Ri, and since each

Ri has two values, R has 2T possible values. Let rj be one of those 2T values, and

let U = {r1, . . . , r2T } denote a vector of rj . To estimate the m-value mi, we need to

compute the probability, P (Ri = 1|B), which is the probability of dataset i having

effects given the observed effect sizes. We can compute this probability using the

Bayes’ theorem

mi = P (Ri = 1|B) =

∑
r∈Ui

P (B|R = r)P (R = r)∑
r∈U P (B|R = r)P (R = r)

where Ui is a set of rj in which ith value is 1. The equation shows that we need

to compute P (B|R = r) and P (R = r) terms for every r to compute mi. We can

compute P (R = r) as

P (R = r) =
Beta(|r|+ γ, T − |r|+ δ)

Beta(γ, δ)

where |r| denotes the number of 1’s in r and Beta denotes the beta function. γ and δ

are set to one [HE12]. The probability of B given r, P (B|R = r), is computed as

P (B|R = r) = D̄ ·N(B̄; 0, V̄ + σ2)
∏
i∈q0

N(Bi; 0, Vi)

where

B̄ =

∑
i∈q1 WiBi∑
i∈q1 Wi

and V̄ =
1∑

i∈q1 Wi

N(B; a, b) denotes the probability density function of the normal distribution with

mean equal to a and variance equal to b, and q0 and q1 denote the indices of 0 and 1
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in r, respectively. Wi = V −1i is the inverse variance, and N(0, σ2) is the prior for the

effect size; σ = 0.2 when an effect is small while σ = 0.4 when an effect is large for

binary traits [SB09, MHM07]. For quantitative traits, there is no general guidelines

for the normally distributed priors, so we choose to use the default value σ = 0.2. D̄

is a scaling factor defined as

D̄ =
1

(
√

2π)T−1

√∏
iWi∑
iWi

· exp

{
−1

2

(∑
i

WiB
2
i −

(
∑

iWiBi)
2∑

iWi

)}
More detailed derivations of P (B|R = r) and P (R = r) terms are discussed in Han

and Eskin [HE12].

5.2.8 Practical issues in combining mixed model and meta-analysis

There are subtle issues in our framework combining mixed model and meta-analysis.

First, the effect size estimates from linear model or mixed model are typically t-

distributed, while most of meta-analysis methods assume normally distributed effect

sizes. Second, our approach simultaneously considers all tissues using Equation (5.3),

but the error model is slightly different from the tissue-by-tissue approach in Equation

(5.2). In the tissue-by-tissue approach, the error e ∼ N(0, σ2I) is fit in each tissue

separately, while in our new approach, the error is fit in all tissues together, which

is often less powerful than the former. We correct for these subtle differences using

simple heuristics (see following sections).

5.2.8.1 t-distributed effect size estimates

There are subtle issues in our framework combining mixed model and meta-analysis.

First, the effect size estimates from linear model or mixed model are typically t-

distributed, while most of meta-analysis methods assume normally distributed effect

sizes. Let β̂ and var(β̂) be the effect size estimate and the variance estimate from
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a linear model. Assume that under the null, β̂√
var(β̂)

will approximately follow t-

distribution with k degree of freedom. The p-value is calculated

pt = 2

1− Φt(k)

 |β̂|√
var(β̂)


where Φt(k) is the cummulative density function of the t-distribution with k degree of

freedom. If we directly use β̂ and var(β̂) in the meta-analysis approach assuming nor-

mally distributed effect size, false positive rate will increase. This issue is particularly

important in model organisms where the sample size is moderate.

To correct for this, we use simple heuristic replacing
√

var(β̂) with

|β̂|
|Φ−1(pt/2)|

where Φ−1 is the inverse of the cummulative density function of the standard normal

distribution. That is, we increase the variance of β̂ according to the difference between

the t-distribution and the normal distribution to prevent an excessive false positive rate

in the meta-analysis.

5.2.8.2 Differences in error models

Another issue is that our approach simultaneously considers all tissues using Equation

(3), but the error model is slightly different from the tissue-by-tissue approach in Equa-

tion (2). In the tissue-by-tissue approach, the error e ∼ N(0, σ2I) is fit in each tissue

separately, while in our new approach, the error is fit in all tissues together. Certainly,

the tissue-by-tissue model is more desirable because we cannot always expect that the

true variance of error term (σ2) to be the same across tissues. In other words, in our

new framework, we are imposing an unrealistic assumption that the error variance is

the same for all tissues, or constant error variance assumption (CEVA). We find that
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our approach is often less powerful when the truth deviates from CEVA. To compen-

sate for the effect of this assumption, we apply the following idea. Before using our

mixed model in Equation (3), we standardize the gene expressions in each tissue to

follow N (0, 1). Note that this does not completely solve the problem because gene

expression values include not only the error term but also the genetic effects.

To further correct for the effect of our assumption, we use the following heuris-

tic. We first run tissue-by-tissue approach to obtain the effect size estimate β̂TBT

and its standard error STDTBT . Second, we run our mixed model in Equation (3)

assuming that σ2
v = 0. That is, we intentionally ignore the correlations of multiple

tissue expressions from the same individuals. Under this simplified model, the esti-

mate β̂COMB turns out to be exactly the same as β̂TBT . Let STDCOMB be the standard

error of β̂COMB under this model. Although the effect size estimates are the same

(β̂TBT = β̂COMB ), their standard errors are different in two models because their error

models are different. Therefore, the ratio between the two standard errors can be a

measure of the effect of CEVA.

Finally, we run our standard mixed model by estimating σ2
v and σ2

e using the

EMMA package. Let β̂MIX and STDMIX be the effect size estimate and its standard

error under this model. Then we heuristically obtain a new standard error

STDNEW = STDMIX ·
STDTBT

STDCOMB

That is, we correct for the effect of CEVA using the ratio between STDTBT and

STDCOMB . What we use in the subsequent meta-analysis are β̂MIX and STDNEW .

We find that this simple heuristic effectively corrects for the effect of CEVA in many

cases.
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5.3 Results

5.3.1 Meta-Tissue

The main idea of Meta-Tissue is that it combines the effect size estimates from mul-

tiple tissues using a “meta-analysis” approach. Meta-analysis techniques are widely

applied to combine the results of GWAS studies. In our case, we consider each tis-

sues as a “study.” This has the advantage of increasing the statistical power to detect

eQTLs shared across tissues. There are several challenges corresponding to the in-

herent differences between combining GWAS studies and expression quantitative trait

loci studies in multiple tissues. The first challenge is that we expect that there may

be differences in effect sizes between tissues. For this reason, we utilize both the

random-effects model which allows Meta-Tissue to detect eQTLs when heterogeneity

is present, and the fixed-effects model when it is not. A second challenge is that in

many multi-tissue eQTL study designs, multiple tissues are collected from the same

individuals which induce correlation between measurements of expression levels in

different tissues. However, meta-analysis methods assume that studies are indepen-

dent and may be susceptible to false positives. To overcome this challenge, we utilize

the linear mixed model to correct our effect size estimates before performing the meta-

analysis.

We assume that multi-tissue eQTL studies collect expression values of G genes

from N individuals in T tissues. However, those N individuals are not necessarily the

same for all T tissues; some individuals may provide a subset of tissues. The studies

also collect genotype information of M SNPs from the individuals. To determine

eQTLs in a specific tissue, or pairs of SNP and gene that are significantly correlated,

eQTL studies often use the following linear model.

ygt = 1αt + xjβt + e,
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where ygt is gene expression g of individuals in tissue t, xj is information on SNP j,

and 1 is a vector of ones. βt is the effect size of SNP j on gene g in tissue t, and if it

is not zero, we claim the pair of SNP j and gene g as an eQTL. The Tissue-By-Tissue

(TBT) approach computes βt for every tissue (t ∈ {1 . . . T}), and determines whether

at least one βt is not zero.

To increase the statistical power to detect eQTLs, Meta-Tissue utilizes meta-analysis

that combines βt from T tissues. A naive approach to apply meta-analysis to multi-

tissue eQTL datasets is directly using βt computed from the linear model for TBT.

This approach, however, violates the main assumption of meta-analysis that βt is in-

dependent for T tissues. Because multiple tissues are often collected from the same

individuals, there exists correlation between gene expression values across different

tissues, and this leads to correlated βt.

To apply meta-analysis to correlated βt, Meta-Tissue uses a linear mixed model to

explicitly capture correlation between βt:

Yg = 1α+ Xjβ + u + e,

where Yg and Xj contain gene expression and SNP information in all T tissues, and

Figure 5.2 shows how they are encoded using a simple example. u is the random effect

of a mixed model due to the fact that multiple tissues are collected from the same in-

dividuals. u follows the multivariate normal distribution whose covariance matrix (D

matrix in Figure 5.2) represents sharing of individuals in multiple tissues. Meta-Tissue

applies the generalized least squares to estimate β and its covariance or correlation

between βt. Meta-Tissue “un-correlates” βt using the covariance it estimated and use

the “un-correlated” βt for meta-analysis (see the Materials and Methods section for

more details).

There is a fundamental difference between Meta-Tissue and the TBT approach.

The statistical test in Meta-Tissue tests whether or not a gene is involved in an eQTL
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in any of the tissues. In other words, the null hypothesis of Meta-Tissue assumes

that no effect is present in any of the tissues for a specific gene. A rejection of this

null hypothesis is effectively predicting the presence of an effect in at least one of

the tissues. However, the tissue-by-tissue approach tests whether or not an eQTL is

present in each tissue. Hence, the null hypothesis of TBT assumes that no effect is

present in a specific tissue. This means that Meta-Tissue performs one test per gene

and TBT performs one test per gene in each tissue. In our comparisons of Meta-Tissue

and TBT, we adjust the significant thresholds so that the overall false positive rate of

implicating any tissue of a gene in an eQTL is constant for both methods.

Once we identify a significant association using Meta-Tissue, this means that at

least one of the tissues contains an eQTL. In order to identify which subset of the

tissues contain an eQTL, we utilize a recently developed meta-analysis interpretation

framework which computes an m-value statistic for each tissue [HE12]. The m-value

estimates the posterior probability that an effect is present in a study included in a

meta-analysis. Utilizing the m-values, we can predict tissues in which an effect is

present.

5.3.2 Power comparison by simulation

We first simulate gene expression data to compare the power between the traditional

Tissue-By-Tissue approach (TBT), Meta-Tissue FE, and Meta-Tissue RE. We create

a dataset that has 100 individuals with one SNP and one gene expression level simu-

lating one eQTL. We set the minor allele frequency to 30%. We simulate four tissues

and consider four scenarios where a SNP has the same effect in (1) a single tissue, (2)

in two tissues, (3) in three tissues, and (4) in all four tissues. The first three scenarios

correspond to eQTLs with heterogeneity while eQTLs have no heterogeneity in the

last scenario. We check I2 statistics [HT02] of eQTLs that measure the magnitude of
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heterogeneity in each scenario and verify that eQTLs have high levels of heterogeneity

in the first three scenarios, but very low levels in the last scenario (Figure 5.3). We as-

sume that each individual provides four tissues, and hence this simulation corresponds

to a repeated measures design. We use the mixed model discussed in the Materials

and Methods section to generate the gene expression levels of individuals while tak-

ing into account the repeated measures design. We generate 1,000 datasets (each a

potential eQTL) and the power is estimated as a proportion of eQTLs detected at a sig-

nificance threshold of 5 × 10−8 for meta-analysis methods. We choose this threshold

because the number of tests we perform in mouse datasets is on the order of one mil-

lion (135 SNPs × 10,588 genes). The significance threshold adjusted for one million

tests as in typical GWAS is 5 × 10−8. For TBT, we apply a significance threshold of

1.25 × 10−8(5 × 10−8/4) such that the overall false positive rate of TBT is the same

as that for Meta-Tissue as discussed in the previous section.

To apply the proposed methods to the simulations, we use the following approach.

For TBT, we perform a standard F-test using a linear model to obtain a p-value for each

pair of a SNP and a gene expression level in each tissue (see Materials and Methods).

The tissue-by-tissue approach declares a SNP-gene expression pair as an eQTL if the

p-value for the association statistic is below the threshold for any one of the tissues. For

Meta-Tissue, we first perform generalized least squares (GLS) to correct for the fact

that individuals are shared among tissues. Meta-Tissue then combines information

from multiple tissues to obtain either fixed effect or random effect meta-analysis p-

values as described in the Materials and Methods section. A SNP-expression pair is

considered as an eQTL if its meta-analysis p-value is below the significance threshold.

As a separate simulation, we verify that both of our implementations (Meta-Tissue FE

and RE) control the false positive rates (see section 5.3.3). This simulation also shows

that utilizing the mixed model is critical for controlling false positives when expression

levels from multiple tissues are collected from the same individual.
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Figure 5.4 shows that Meta-Tissue methods are more powerful than TBT when

effects exist in multiple tissues; Meta-Tissue RE is the most powerful when an eQTL

has effects in two or three tissues, and Meta-Tissue FE outperforms TBT and Meta-

Tissue RE when the effects exist in all tissues. The TBT approach has higher power

than Meta-Tissue methods when the effects exist in a single tissue. These results show

that TBT is an ideal approach to detect an eQTL that is specific to a certain tissue while

Meta-Tissue approaches are ideal for detecting an eQTL that has effects in more than

one tissue. As the number of tissues with effects increases, the power of Meta-Tissue

methods increases while that of TBT decreases. These results suggest an integrated

approach in eQTL studies to apply TBT for detecting tissue-specific eQTLs and Meta-

Tissue methods for detecting eQTLs shared between tissues.

5.3.3 False positive rates of meta analysis

To measure the false positive rate of our proposed method, we simulate a multiple

tissue dataset where there is no eQTL; a SNP has no effect. We consider 10,000

gene expression levels and 100 SNPs simulating a million pairs of gene and SNP. The

number of tissues is four, and we use SNP data from real four tissue dataset from mouse

where we have 50 individuals per each tissue. In this dataset, 34% of individuals are

shared between two tissues on average, as discussed in the Results section. To generate

gene expression for individuals, we use Equation (1) where σv = σe = 0.5. D matrix

is the same as D matrix used in the four tissues analysis. We use mvtnorm package

in R to generate gene expression from the multivariate normal distribution.

Table 5.1 shows that Meta-Tissue that uses the linear mixed model to account for

the correlation in gene expression between tissues has correct false positive rates. We

use the significance threshold of 0.05, and Meta-Tissue FE and RE have false positive

rates of 0.533 and 0.0417, respectively. We also measure the false positive rate when
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meta-analysis methods do not use the linear mixed model, but the linear model that

assumes all tissues are independent. Table 5.1 shows that meta-analysis methods have

inflation of false positives in this case; Meta-Tissue FE and RE have false positive

rates of 0.11 and 0.097. This shows that meta-analysis methods need to consider that

individuals are shared across the tissues when combining results from multiple tissues.

Methods Linear mixed model Linear model

Meta-Tissue FE 0.053323 0.10992

Meta-Tissue RE 0.041781 0.0972

Table 5.1: False positive rates of Meta-Tissue FE and RE using the linear mixed model

and the linear model.

5.3.4 Simulation of heterogeneity in multiple tissues using mouse data

To verify the results of the previous power simulation in real multiple tissue data,

we simulate heterogeneity using a liver tissue expression from mouse. This dataset

contains 108 samples, 135 SNPs and 10,588 probe expression levels. We detect 389

eQTLs in this single tissue dataset using the standard linear model with a p-value

threshold of 5× 10−8, which corresponds to the false discovery rate (FDR) of 0.017%

level. We consider these detected associations as the gold standard for measuring

accuracy of methods in this simulation. We then split the 108 samples into three groups

of 36 samples to simulate three tissues, and this means that eQTLs have effects in all

three tissues. In our simulations, we expect to find fewer eQTLs because each of our

“tissues” only has 36 samples compared to the original 108 samples. We then consider

three scenarios similar to scenarios in the previous power simulation; (1) eQTLs have

effects only in the first tissue by permuting expression of the second and third tissues,

(2) eQTLs have effects only in the first and second tissues by permuting expression of
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the third tissue, and (3) eQTLs have effects in all three tissues without any permutation.

Permuting the expression of a specific tissue removes effects of eQTLs from the tissue,

and hence allows simulation of heterogeneity. We apply Meta-Tissue FE, Meta-Tissue

RE, and TBT to this multiple tissue dataset and measure how many eQTLs out of the

original 389 eQTLs each method can recover using the same threshold (5×10−8/3 for

TBT). Because the number of eQTLs methods recover can change depending on how

we split the 108 samples, we perform ten iterations of the experiment where we divide

individuals differently in each iteration, and average the results.

The result of this simulation shows that Meta-Tissue methods recover the most

eQTLs when eQTLs have effects in more than one tissue (Figure 5.5). When effects

exist in two out of three tissues, Meta-Tissue RE recovers the most eQTLs; it recovers

144 eQTLs out of the 389 eQTLs on average, and this is 27% and 133% more than

the number of eQTLs Meta-Tissue FE and TBT recover, respectively. When eQTLs

have effects in all tissues, Meta-Tissue FE recovers the most eQTLs, and when effects

exist in a single tissue, TBT does. This result is consistent with the previous power

simulation in which Meta-Tissue methods were more powerful than TBT when eQTLs

have effects in multiple tissues.

5.3.5 Detecting eQTLs in multiple tissue mouse data

We apply Meta-Tissue to detect eQTLs in multiple tissues from mouse. Our data

consists of two sets; one with four tissues (cortex, heart, liver, spleen), and the other

with ten tissues (bone marrow, hippocampus, kidney, pancreas, stomach, white fat, and

the four tissues). The four tissue dataset has 50 samples per each tissue while the ten

tissue dataset has 22 samples per tissue. In both datasets, not all individuals provided

all different types of tissues; on average, 34% of individuals are shared between two

tissues in the four tissue dataset while 11% of individuals are shared in the ten tissues
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dataset. The number of SNPs (135 SNPs) and the number of probes (10,588) are the

same as those of the liver tissue.

Figures 5.6A (four tissues) and 5.6B (ten tissues) show the number of eQTLs de-

tected by Meta-Tissue RE, Meta-Tissue FE, and TBT using a threshold of 5 × 10−8

(5×10−8/the number of tissues for TBT). The number substantially increases by using

Meta-Tissue RE or FE, showing up to two fold and twelve fold increases compared

to TBT in the four and ten tissue datasets, respectively. These results indicate that

methods that combine results of multiple tissues outperform a method that uses results

of each tissue separately as all meta-analysis methods detect more eQTLs than TBT.

Moreover, these results suggest a possibility that there exist a considerable number of

eQTLs with different effect sizes across tissues as Meta-Tissue RE consistently iden-

tifies more eQTLs than Meta-Tissue FE. In addition to the number of eQTLs (SNP-

expression pairs), we also analyze the number of eSNPs (unique SNPs influencing

gene expression) and eProbes (unique probes for gene expression). Similar to the re-

sults of the number of eQTLs, Meta-Tissue detects more eSNPs and eProbes than TBT

(Figure 5.7).

Another important implication comes from comparing the two datasets. TBT finds

substantially fewer number of eQTLs in the ten tissue dataset than in the four tissue

dataset. This is possibly because the sample size of each tissue is decreased from 50

to 22. On the other hands, the meta-analytic methods find more eQTLs. One possible

reason is that the total sample size is slightly increased from 200 to 220. Therefore,

the results demonstrate that by using information from multiple tissues and leveraging

meta-analysis methods, we may be able to detect eQTLs even if the sample size for

each tissue is small.

In addition to the number of eQTLs that different methods detect, we also analyze

the overlap of eQTLs using Venn diagrams (Figures 5.6C and 5.6D). The Venn dia-
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grams show the number of eQTLs detected only by each of the three methods, by both

TBT and each of Meta-Tissue methods, by both Meta-Tissue methods, and by all three

methods. In the four tissue dataset, the three methods detect 493 unique eQTLs overall,

and a majority of eQTLs (95.1% of total eQTL) are detected by either of Meta-Tissue

methods. There are, however, 24 eQTLs (4.9% of total eQTLs) that only TBT detects,

and they are likely to be tissue-specific eQTLs. In the ten tissue dataset, almost all

eQTLs (99.3% of total eQTLs) are detected by Meta-Tissue RE or FE, and there are

4 eQTLs (0.7% of total eQTLs) detected only by TBT, which may be due to the low

statistical power due to the limited number of samples.

Instead of the common genome-wide significance threshold (e.g. 5 × 10−8) to

identify eQTLs, an alternative approach is to use the false discovery rate (FDR) ap-

proach, and we use the QVALUE package in R [Sto02] to compute a q-value for each

SNP-expression pair. We consider only cis-eQTLs for the FDR approach; we consider

an eQTL as cis if a SNP is on the same chromosome as the probe for gene expres-

sion. While typical eQTL studies consider 1 Mb as a distance between a SNP and

a probe for cis-eQTLs, we consider a much longer distance due to a small number

of genotyped SNPs (135 SNPs). Figures 5.8A and 5.8B show the number of eQTLs

detected by Meta-Tissue methods and TBT using FDR of 0.05 level in four and ten

tissues, respectively, and Figures 5.8C and 5.8D are Venn digrams showing the over-

lap of eQTLs. The results using the FDR approach are consistent with those using the

common genome-wide significance threshold; Meta-Tissue RE detects most eQTLs

among the three methods, and a majority of eQTLs (86% and 93% of total eQTLs for

four and ten tissues) are detected either by Meta-Tissue RE or FE.
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5.3.6 Measuring heterogeneity in mouse data

The number of eQTLs detected only by TBT or by RE in Figures 5.6 and 5.8 indicates

that there can be several eQTLs with different effect sizes in different tissues. To

measure the magnitude of heterogeneity of eQTLs, we use the Cochran’s Q statistic

[DL86] and the I2 statistic [HT02]. We make a plot whose x-axis is the I2 statistic and

whose y-axis is the log of p-value of Cochran’s Q statistic, and a histogram showing

the distribution of I2 statistics. Figures 5.9, 5.10, and 5.11 show the heterogeneity of

eQTLs detected by TBT, FE, and RE, respectively, in the four tissues of mouse data.

These plots show that the eQTLs detected by RE show higher level of heterogeneity

than the eQTLs detected by FE, as expected. Given the p-value threshold of 0.05/k

where k is the number of eQTLs detected, 65, 17, and 53 eQTLs show statistically

significant heterogeneity in TBT, Meta-Tissue FE, and Meta-Tissue RE, respectively,

using the p-value of Cochran’s Q statistic.

5.3.7 Predicting the presence of effects in multiple tissue data

Our Meta-Tissue approach not only detects more eQTLs from multiple tissues but also

provides an interpretation framework that predicts whether an eQTL has effects in a

specific tissue. Meta-Tissue computes a statistic called m-value [HE12], and it is the

posterior probability that an effect exists in a specific tissue. If the m-value is greater

than a threshold t, we predict that an effect exists, and if it is less than 1− t, we predict

that an effect does not exist. Another approach to predict an effect is to use a p-value.

In this approach, an effect exists if a p-value is less than a significance threshold and

does not exist otherwise.

We first apply this prediction framework to the 3-way split liver tissue dataset that

we previously generated. Recall that the liver tissue has 389 eQTLs, and we simulated
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three tissues from it and three scenarios in which we varied heterogeneity of eQTLs.

For this simulation, we consider only the scenario where eQTLs have effects in the

first two tissues out of three since this corresponds to heterogeneity in which the num-

ber of eQTLs that TBT and Meta-Tissue recover is relatively large. We measure how

accurately Meta-Tissue and the p-value approach predict the presence and absence of

effects of the 389 eQTLs in the three tissues. More specifically, Meta-Tissue makes

a correct prediction if m-values are greater than 0.9 in the first two tissues and the m-

value is less than 0.1 in the third tissue (t = 0.9). We consider an m-value prediction

to be ambiguous if any of the three tissues has the m-value between 0.1 and 0.9. If the

prediction is not either correct or ambiguous, it is considered as an incorrect predic-

tion. For the p-value approach, p-values of the first two tissues need to be less than the

significance threshold (5 × 10−8/3) and p-value of the third tissue needs to be greater

than the threshold for a correct prediction. Otherwise, the prediction is an incorrect

prediction since the p-value approach does not have the notion of the ambiguous pre-

diction. In the original 3-way split liver tissue experiment, we had ten simulations

which differed in how the individuals were divided. Over the ten simulations, Meta-

Tissue and TBT recovered 146 eQTLs out of total 389 eQTLs on average (Figure 5.5).

Since we use m-values for the interpretation purpose (not for detecting eQTLs), we

apply m-values to only those 146 eQTLs. We also predict effects of the 146 eQTLs

using the p-value approach.

Meta-Tissue makes the correct prediction for 35% (51/146) of the eQTLs and pre-

dicts the ambiguous prediction for 56% (82/146). The p-value approach only makes

the correct prediction for 11% (16/146) of the eQTLs. The number of correct predic-

tions of Meta-Tissue is more than three times greater. In addition, given the advantage

of the fact that Meta-Tissue can make ambiguous predictions, the number of incor-

rect predictions for Meta-Tissue (13/146) is ten times fewer than that for the p-value

approach (130/146). The results demonstrate that by combining the meta-analysis
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method and the interpretation framework, we may predict effects of eQTLs more ac-

curately than the approach utilizing p-values.

We then apply our interpretation framework to the four and ten multiple tissue

datasets from mouse to predict effects of eQTLs that were discovered using Meta-

Tissue and TBT (493 and 568 eQTLs in four and ten tissue datasets, respectively).

We calculate the m-value for each eQTL per each tissue and make a prediction that

the eQTL affects expression in that tissue if the m-value is greater than 0.9. We also

compare our approach to the p-value approach as in the previous simulation using the

same threshold (5× 10−8/the number of tissues).

First, we apply the two approaches to the four tissue dataset, and Table 5.2 lists

the number of eQTLs predicted to have effects across various combinations of tissues

(e.g. eQTLs affecting expression in heart/liver, heart/cortex, heart/liver/cortex). The

results show that Meta-Tissue consistently categorizes more eQTLs having effects in

multiple tissues than the p-value approach. Among those eQTLs, ones that influence

expression levels in all tissues are particularly interesting because they may provide

insights into the global regulatory mechanisms of eQTLs. Meta-Tissue predicts 283

such eQTLs while the p-value approach predicts 15 eQTLs. The small number of

predictions in p-value approach is expected because even if the effect exists in all T

tissues, given power p of tissue-by-tissue approach, we can predict the global effect

only with probability pT .

We next predict effects of eQTLs in the ten tissue dataset, and for this dataset,

we would expect to detect a fewer number of eQTLs having effects across all tissues

since it becomes less likely that all p-values or m-values pass the threshold as we try

to detect effects in more tissues. Table 5.3 shows the number of eQTLs predicted to

affect expression across different numbers of tissues considered (e.g. eQTLs having

effects across any two tissues, any three tissues). Similar to the results of the four

125



tissue dataset, Meta-Tissue predicts more eQTLs with effects in several tissues than

the p-value approach. Unlike the four tissues, we detect a fewer number of eQTLs

having effects in all ten tissues; 134 and zero such eQTLs by Meta-Tissue and the

p-value approach, respectively. The results indicate the intrinsic difficulty in detecting

eQTLs influencing expression across many different tissues.

Tissues Meta-Tissue p-values

Cortex/Heart 7 6

Cortex/Liver 1 2

Cortex/Spleen 4 2

Heart/Liver 7 3

Heart/Spleen 7 4

Liver/Spleen 10 2

Cortex/Heart/Liver 28 7

Cortex/Heart/Spleen 49 1

Cortex/Liver/Spleen 17 0

Heart/Liver/Spleen 24 2

All four tissues 283 15

Table 5.2: The number of eQTLs predicted to have effects by Meta-Tissue and the

p-value approach across various combinations of the four tissues. Meta-Tissue uses

m-value statistics to predict effects; if m-value is greater than 0.9, the effect exists.

The p-value approach uses p-values to make predictions; the effect exists if p-value is

less than the significance threshold (5× 10−8/the number of tissues).

126



Meta-Tissue p-values

2 tissues 12 10

3 tissues 7 0

4 tissues 20 4

5 tissues 33 0

6 tissues 36 1

7 tissues 88 0

8 tissues 99 0

9 tissues 124 0

10 tissues 134 0

Table 5.3: The number of eQTLs predicted to have effects by Meta-Tissue and the p–

value approach across different numbers of tissues considered in the ten tissue dataset

(eQTLs having effects across any two tissues, any three tissues, etc.).

5.4 Discussion

We presented a statistically powerful approach to detect eQTLs from multiple tissues.

Our approach, Meta-Tissue, takes advantage of two meta-analysis methods that differ

in their assumptions on effects of eQTLs in different tissues. The first method assumes

that effects exist in all tissues with the same magnitude, and this assumption allows us

to detect eQTLs shared across all tissues. The second method assumes that effect sizes

of variants are different among studies. By assuming the heterogeneity, we may be able

to accurately describe the nature of eQTLs whose patterns of genetic regulation differ

across tissues. Meta-analysis methods, however, assume that studies are independent,

and this assumption is unlikely to be true in multi-tissue dataset since studies collect
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multiple tissues from the same individuals. This may cause correlation in expression

between tissues, and to correct for the correlation, we utilized a mixed model that

enables the meta-analysis method to achieve correct false positive rates.

To measure the performance of Meta-Tissue, we first showed by simulations that

our methods are generally more powerful than a naive approach that looks at results of

each tissue individually. Next, by using data from mouse liver tissue, we simulated the

heterogeneity in effect sizes across a subset of tissues as well as in all tissues. Meta-

Tissue methods were shown to recover more original eQTLs from multiple tissues

than the naive tissue-by-tissue approach when effects exist in multiple tissues. We

then observed that Meta-Tissue detects many eQTLs that the naive approach does not

detect in four and ten tissue datasets from mouse. However, we note that there are a few

tissue-specific eQTLs that only the naive approach detects, and hence we recommend

that eQTL studies also apply the naive approach in addition to Meta-Tissue.

In addition to detecting more eQTLs, Meta-Tissue can also accurately predict

whether an effect exists in a specific tissue. Meta-Tissue calculates the posterior prob-

ability that an eQTL has an effect in a certain tissue, and we demonstrated that this

probability is more effective in predicting the effect than a p-value is by using the

same liver tissue simulation. We then predicted effects of eQTLs that we found in

the four and ten tissue datasets and showed our method predicts more eQTLs having

effects in multiple tissues than the p-value approach.

Our approach is fundamentally different from previous approaches that also at-

tempt to detect eQTLs from multiple tissues, and to the best of our knowledge, Meta-

Tissue is the first method to apply both a mixed model and meta-analysis methods

to eQTL mapping. A traditional approach to detect associations from repeated mea-

surements from same individuals such as multiple tissue data is MANOVA. However,

MANOVA is not directly applicable to our multiple tissue data because not all samples
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provided all different types of tissues, and hence our data are not completely “repeated

measurements.” Meta-Tissue is more general than MANOVA since Meta-Tissue can

be applied to both “repeated measures design” in which individuals are shared across

all tissues and to a scenario in which only a subset of individuals are shared. Another

advantage of our method is that Meta-Tissue can take into account population structure

by adding an additional variance component term in our mixed model. This may be

important to multiple tissue datasets in which individuals are sampled from different

populations, which may cause inflation of false positives.

Meta-Tissue leverages the recently developed random effects model [HE11] that

achieves higher power than the traditional random effects model [DL86, IPE07a, IPE07b,

EMI07]. Han and Eskin showed that the traditional random effects model never achieves

higher power than the fixed effects model due to its conservative null hypothesis. We

apply the traditional RE to our power simulation (Figure 5.12), the heterogeneity ex-

periment with the liver tissue (Figure 5.13), and the four and ten tissue datasets of

mouse data (Figure 5.14), and we observe the same phenomenon; the traditional RE is

always less powerful than FE and the recently developed RE.

There are a few other methods that attempt to detect eQTLs from the multiple

tissue data such as Sparse Bayesian Multiple Regression and the GFlasso approach

proposed by Petretto et al. [PBL10] and Kim et al. [KX09] However, a key difference

between these methods and Meta-Tissue is that they attempt to detect multiple variants

(“multi-locus”) associated with multiple traits while our method focuses on an associ-

ation of a single variant. Another difference and one main advantage of Meta-Tissue is

that since it is a meta-analysis method, studies can combine results of many published

eQTL analyses without actual data assuming that those analyses are independent; only

results of an eQTL analysis such as effect size estimates are needed when the analy-

ses are independent. Meta-Tissue has another advantage that it is simpler and more
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computationally efficient than other methods that involve computationally challenging

algorithms such as Bayesian variable selection and regularized linear regression in-

cluding Lasso. While we applied Meta-Tissue to the multi-tissue dataset with a small

number of genotyped SNPs and samples (135 SNPs and about a total of 200 sam-

ples across tissues), our algorithm and software are efficient enough to be applied to

larger eQTL studies where there are hundreds of individuals genotyped at hundreds of

thousands SNPs.

Reference to published article

Jae Hoon Sul*, Buhm Han*, Chun Ye*, Ted Choi, and Eleazar Eskin, “Effectively

identifying eQTLs from multiple tissues by combining mixed model and meta-analytic

approaches.” PLoS Genetics. 9, e1003491, 2013.
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Figure 5.1: The mice were generated by creating a chimera with heterozygous 129/Sv

cells in a C56Bl/6J blastocyst. The chimera was crossed with a wildtype C56Bl/6J to

obtain heterozygous KOs and homozygous WTs. The heterozygous KOs were back-

crossed to wildtype C56Bl/6J to obtain animals that are 75% C56Bl/6J. The male and

female heterozygous KOs are intercrossed and only the resulting wildtype males are

used in this study. The complicated structure of the cross is due to the fact that the

knockouts were designed to be used subsequently for other studies.
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Figure 5.2: A simple example showing how gene expression and SNP in multi-tissue

eQTL studies are encoded in the mixed model of Meta-Tissue. This example has five

samples (S1, S2, S3, S4, and S5) in three tissues (T1, T2, and T3). The leftmost table

shows which tissues are collected from each sample; yij means gene expression of

jth sample in ith tissue, and NA means the tissue is not collected. In this example,

each tissue has gene expression measured in three samples. Yg is a vector containing

expression of samples in all tissues; there are a total of 9 gene expression values. In the

Xj matrix, xi denotes genotype of ith sample. The β matrix contains three intercepts

(αt) and three βt for the three tissues. u is the random effect of the mixed model, and

u ∼ N (0, σ2
vD). D is 9 × 9 matrix whose entry at ith row and jth column is 1 if the

ith and jth entries of Yg are collected from the same individual, and 0 otherwise.
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Figure 5.3: Histograms showing the distribution of I2 statistics in the power simula-

tion. There are four scenarios in the power simulation where an eQTL has an effect 1)

in one tissue, 2) in two tissues, 3) in three tissues, and 4) in all four tissues. There are

1,000 eQTLs in each scenario, and the histograms show the distribution of I2 statistics

of the 1,000 eQTLs.
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Figure 5.4: Power comparison between the tissue-by-tissue approach, Meta-Tissue

fixed effects model (FE), and Meta-Tissue random effects model (RE) using simulated

data. X-axis indicates the number of tissues having effects out of four tissues, and

Y-axis is the power.
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Figure 5.5: The average number of eQTLs that the tissue-by-tissue approach,

Meta-Tissue FE, and Meta-Tissue RE recover from three tissues generated from the

liver tissue. The liver tissue has 108 samples from which we simulate three tissues of

36 samples. X-axis indicates the number of tissues having effects out of three tissues.

The original liver tissue has 389 eQTLs.
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Figure 5.6: The number of eQTLs detected by the tissue-by-tissue approach (TBT),

Meta-Tissue FE, and Meta-Tissue RE in A) four and B) ten tissues of mouse, and the

overlap of eQTLs detected by the three methods in C) four and D) ten tissues. The

datasets consist of the gene expression levels from 50 individuals (four tissues) and 22

individuals (ten tissues). We apply a p-value threshold of 5×10−8 for Meta-Tissue and

a threshold of 5× 10−8/the number of tissues for tissue-by-tissue. The Venn diagrams

(C and D) show the number of eQTLs detected by either TBT, FE, or RE, by TBT and

either of FE and RE, by FE and RE, and by all three methods.
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Figure 5.7: The number of eSNPs and eProbes detected by the tissue-by-tissue (TBT)

approach, Meta-Tissue FE, and Meta-Tissue RE in A) four tissues and B) ten tissues

of mouse. We apply a p-value threshold of 5 × 10−8 for Meta-Tissue and a threshold

of 5× 10−8/the number of tissues for TBT.
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Figure 5.8: The number of eQTLs detected by the tissue-by-tissue approach (TBT),

Meta-Tissue FE, and Meta-Tissue RE in A) four and B) ten tissues of mouse using

FDR of 5%, and the overlap of eQTLs detected by the three methods in C) four and

D) ten tissues. We consider only cis-eQTLs for the FDR approach, and a pair of

SNP-probe for gene expression are considered cis if a SNP and a probe are on the

same chromosome.
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Figure 5.9: A plot showing heterogeneity of eQTLs detected by the tissue-by-tissue

approach. X-axis of the top plot indicates I2 statistic and Y-axis indicates log of p–

value of Cochrans Q statistic. The vertical dashed line is drawn at I2 = 50%, and the

horizontal dash line is drawn at p-value = 0.05/the number of eQTLs detected. The

bottom histogram shows the distribution of I2 statistic.
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Figure 5.10: A plot showing heterogeneity of eQTLs detected by Meta-Tissue FE.

X-axis of the top plot indicates I2 statistic and Y-axis indicates log of p-value of

Cochrans Q statistic. The vertical dashed line is drawn at I2 = 50%, and the hori-

zontal dash line is drawn at p-value = 0.05/the number of eQTLs detected. The bottom

histogram shows the distribution of I2 statistic.
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Figure 5.11: A plot showing heterogeneity of eQTLs detected by Meta-Tissue RE.

X-axis of the top plot indicates I2 statistic and Y-axis indicates log of p-value of

Cochrans Q statistic. The vertical dashed line is drawn at I2 = 50%, and the hori-

zontal dash line is drawn at p-value = 0.05/the number of eQTLs detected. The bottom

histogram shows the distribution of I2 statistic.
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Figure 5.12: Power comparison between the tissue-by-tissue approach, Meta-Tissue

fixed effects model (FE), Meta-Tissue random effects model (RE), and Meta-Tissue

traditional random effects model using simulated data. X-axis indicates the number of

tissues having effects out of four tissues, and Y-axis is the power.
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Figure 5.13: The average number of eQTLs that the tissue-by-tissue approach,

Meta-Tissue FE, Meta-Tissue RE, and Meta-Tissue traditional RE recover from three

tissues generated from the liver tissue. Effects of eQTLs exist in only two tissues. The

original liver tissue has 389 eQTLs.
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Figure 5.14: The number of eQTLs detected by the tissue-by-tissue approach,

Meta-Tissue FE, Meta-Tissue RE, and Meta-Tissue traditional RE in A) four tissues

and in B) ten tissues of mouse.
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CHAPTER 6

Conclusions

Designing efficient and statistically powerful approaches has become very important

in the field of genetics as the vast amount of data are generated to uncover genetic basis

of complex traits and diseases. As the sequencing costs decrease at a rate that exceeds

Moore’s law, studies will soon be able to sequence thousands or tens of thousands

individuals to identify genetic variants associated with diseases. This means that tra-

ditional approaches in genetics that were designed for hundreds of markers collected

in less than a hundred individuals need to be re-developed so that they are efficient

enough for ever-growing data. Also, current research in statistics and biostatistics has

improved the accuracy or power of statistical approaches significantly, and these new

techniques need to be fully utilized in the genetics studies.

The first problem I tackled in my thesis was to develop a statistical approach that

efficiently corrects for population structure. Before this research, the linear mixed

model had been mostly applied to datasets in which at most hundreds of individuals

were collected, and it was not possible to apply it to human GWASs that usually col-

lect thousands of individuals. My approach was one of the first work that enabled

GWASs to adopt the mixed model. Several other mixed model approaches have been

proposed after our method was published to either further improve the speed or the

power of mixed model [LLK12, ZS12]. This shows that our work was a pioneer that

opened many research opportunities for other researchers. There are several unan-

swered questions regarding the mixed model such as finding an optimal set of SNPs to
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create a kinship matrix and controlling population structure on a set of SNPs that have

very different minor allele frequency between populations. Hence, I believe that there

still exist several research opportunities that will improve the mixed model in GWASs.

Next, I worked on developing both efficient and powerful approaches to detect as-

sociations of rare variants. I proposed two different methods, RWAS and LRT, and

while LRT is generally more powerful, RWAS is easier to understand and more effi-

cient. Numerous statistical methods have been developed to identify a group of rare

variants involved in a disease even after our papers were published. However, to the

best of my knowledge, none of them attempts to identify causal variants explicitly and

uses this information in the association. Finding causal variants and utilizing this infor-

mation is critical in detecting associations of rare variants since including non-causal

variants reduces the power of studies significantly as shown in Chapter 3. Therefore, I

believe that LRT that attempts to detect causal variants from both data and prior infor-

mation is still more powerful or comparable to current methods, and will be useful in

finding the role of rare variants in diseases.

Lastly, I developed a statistical framework that combines the mixed model and

meta-analysis to better identify eQTLs from multiple tissues. One of the main chal-

lenges in this project was to apply meta-analysis to a set of correlated studies or tissues.

Most meta-analysis methods assume that studies are independent, and this is true for

GWASs since it is highly unlikely that same individuals are collected in more than one

GWAS. However, eQTL studies usually collect multiple tissues from the same indi-

viduals, which causes effects of a genetic variant in multiple tissues to be correlated

and violates the independence assumption. To overcome this challenge, I utilized the

mixed model to obtain correlation of effect sizes in multiple tissues and incorporated

this correlation into meta-analysis. I showed that this approach correctly controls false

positives and achieves higher power than a traditional eQTL method that examines
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each tissue individually. This approach is one of the first work that combines informa-

tion from multiple tissues to better identify eQTLs, and I believe that many multiple

tissue eQTL studies will utilize my approach.

In addition to problems that I focused on my thesis, there are many other problems

in genetics that require efficient algorithms such as imputation [HFS12], sequence read

mapping [LTP09], genotype discover/calling [MHB10], and multiple testing correc-

tion [HKE09b]. There are several efficient methods proposed for each of this problem,

and active research is in progress. I believe that more efficient and powerful approaches

will be necessary in future to utilize the tremendous amount of genetics data, and the

work I have presented in this thesis will be useful for other researchers to develop such

approaches.
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