Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Advanced characterization and modeling of next generation lithium ion electrodes and interfaces

Abstract

Lithium ion batteries have proven to be a paradigm shifting technology, enabling high energy density storage to power the handheld device and electric automotive revolutions. However relatively slow progress toward increased energy and power density has been made since the inception of the first functional lithium ion battery. Materials under consideration for next generation lithium ion batteries include anionic-redox-active cathodes, solid state electrolytes, and lithium metal anodes. Li-rich cathodes harness anionic redox, showing increased first charge capacity well beyond the redox capacity of traditional transition metal oxides, though suffer from severe capacity and voltage fade after the first cycle. This is in part attributed to oxygen evolution, driving surface reconstruction. Solid-state electrolytes (SSEs) offer the potential for safer devices, serving as physical barriers for dendrite penetration, while hoping to enable the lithium metal anode. The lithium metal naturally exhibits the highest volumetric energy density of all anode materials.

Here, we employ simulation and advanced characterization methodologies to understand the fundamental properties of a variety of next generation lithium ion battery materials and devices leading to their successes or failures. Using density functional theory, the effect of cationic substitution on the propensity for oxygen evolution was explored. Improvement in Li-rich cathode performance is predicted and demonstrated through doping of 4d transition metal Mo. Next, lithium phosphorus oxynitride (LiPON), an SSE utilized in thin film batteries, was explored. LiPON has proven stable cycling against lithium metal anodes, though its stability is poorly understood. RF sputtered thin films of LiPON are examined via spectroscopic computational methods and nuclear magnetic resonance to reveal its atomic structure, ultimately responsible for its success as a thin film solid electrolyte. A new perspective on LiPON is presented, emphasizing its glassy nature and lack of long-range connectivity. Progress toward in situ methodologies for solid-state interfaces is described, and a protocol for FIB-produced nanobatteries is developed. Cryogenic methodologies are applied to a PEO/NCA composite electrode. Cryogenic focused ion beam was shown to preserve polymer structure and morphology, enabling accurate morphological quantification and preserving the crystallinity, as observed via TEM. Last, development of in situ solid-state interface characterization is discussed.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View