- Main
Preparation and Synergy of Supported Ru0 and Pd0 for Rapid Chlorate Reduction at pH 7
Published Web Location
https://doi.org/10.1021/acs.est.3c00415Abstract
Chlorate (ClO3-) is a common water pollutant due to its gigantic scale of production, wide applications in agriculture and industry, and formation as a toxic byproduct in various water treatment processes. This work reports on the facile preparation, mechanistic elucidation, and kinetic evaluation of a bimetallic catalyst for highly active ClO3- reduction into Cl-. Under 1 atm H2 and 20 °C, PdII and RuIII were sequentially adsorbed and reduced on a powdered activated carbon support, affording Ru0-Pd0/C from scratch within only 20 min. The Pd0 particles significantly accelerated the reductive immobilization of RuIII as >55% dispersed Ru0 outside Pd0. At pH 7, Ru-Pd/C shows a substantially higher activity of ClO3- reduction (initial turnover frequency >13.9 min-1 on Ru0; rate constant at 4050 L h-1 gmetal-1) than reported catalysts (e.g., Rh/C, Ir/C, Mo-Pd/C) and the monometallic Ru/C. In particular, Ru-Pd/C accomplished the reduction of concentrated 100 mM ClO3- (turnover number > 11,970), whereas Ru/C was quickly deactivated. In the bimetallic synergy, Ru0 rapidly reduces ClO3- while Pd0 scavenges the Ru-passivating ClO2- and restores Ru0. This work demonstrates a simple and effective design for heterogeneous catalysts tailored for emerging water treatment needs.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-