Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Simulations of Subnanometer Scale Image Contrast in Atomic Force Microscopy of Self-Assembled Monolayers in Water.

Abstract

Achieving high-resolution images using dynamic atomic force microscopy (AFM) requires understanding how chemical and structural features of the surface affect image contrast. This understanding is particularly challenging when imaging samples in water. An initial step is to determine how well-characterized surface features interact with the AFM tip in wet environments. Here, we use molecular dynamics simulations of a model AFM tip apex oscillating in water above self-assembled monolayers (SAMs) with different chain lengths and functional groups. The amplitude response of the tip is characterized across a range of vertical distances and amplitude set points. Then relative image contrast is quantified as the difference of the amplitude response of the tip when it is positioned directly above a SAM functional group vs positioned between two functional groups. Differences in contrast between SAMs with different lengths and functional groups are explained in terms of the vertical deflection of the SAMs due to interactions with the tip and water during dynamic imaging. The knowledge gained from simulations of these simple model systems may ultimately be used to guide selection of imaging parameters for more complex surfaces.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View