Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Suppression of electron spin decoherence of the diamond NV center by a transverse magnetic field

Abstract

We demonstrate that the spin decoherence of nitrogen vacancy (NV) centers in diamond can be suppressed by a transverse magnetic field if the electron spin bath is the primary decoherence source. The NV spin coherence, created in "a decoherence-free subspace," is protected by the transverse component of the zero-field splitting, increasing the spin-coherence time about twofold. The decoherence due to the electron spin bath is also suppressed at magnetic fields stronger than ∼25 G when applied parallel to the NV symmetry axis. Our method can be used to extend the spin-coherence time of similar spin systems for applications in quantum computing, field sensing, and other metrologies. © 2013 American Physical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View