Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Bivariate microarray analysis: statistical interpretation of two-channel functional genomics data

Abstract

Conventional statistical methods for interpreting microarray data require large numbers of replicates in order to provide sufficient levels of sensitivity. We recently described a method for identifying differentially-expressed genes in one-channel microarray data 1. Based on the idea that the variance structure of microarray data can itself be a reliable measure of noise, this method allows statistically sound interpretation of as few as two replicates per treatment condition. Unlike the one-channel array, the two-channel platform simultaneously compares gene expression in two RNA samples. This leads to covariation of the measured signals. Hence, by accounting for covariation in the variance model, we can significantly increase the power of the statistical test. We believe that this approach has the potential to overcome limitations of existing methods. We present here a novel approach for the analysis of microarray data that involves modeling the variance structure of paired expression data in the context of a Bayesian framework. We also describe a novel statistical test that can be used to identify differentially-expressed genes. This method, bivariate microarray analysis (BMA), demonstrates dramatically improved sensitivity over existing approaches. We show that with only two array replicates, it is possible to detect gene expression changes that are at best detected with six array replicates by other methods. Further, we show that combining results from BMA with Gene Ontology annotation yields biologically significant results in a ligand-treated macrophage cell system.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View