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ABSTRACT:

The research summarized in this report involves three interrelated analyses. First, we construct a

theoretical nonpoint source (NPS) pollution control model and derive the optimal budget tradeoff

between direct treatment of polluting sources versus data collection, which facilitates

information acquisition and learning about the relative pollution loading among the sources.

Second, we develop a sequential entropy filter to statistically update estimated NPS pollution

loading parameters, as new data becomes available. We apply the entropy method to stream

flow and ambient sediment loading data for Redwood Creek, which flows into and through

Redwood National Park. Third, the theoretical and methodological results are incorporated into

a sediment control model for Redwood Creek. We simulate the sediment control management

program to provide policy analysis by comparing a uniform treatment policy where no data is

collected against high and low-intensity data collection policies, The simulation results indicate

that the high and low-intensity data collection policies can reduces uncertainty, increasing

treatment effectiveness, so that sediment related damages are lower than damages under the

uniform treatment policy.

Key words: Nonpoint Source Pollution, Optimal Monitoring, Water Quality Management,

Maximum Entropy, Dynamic Modeling
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PROBLEM AND RESEARCH OBJECTIVES

Since the passage of the Clean Water Act in 1972, most pollution control measures have

focused on the problem of reducing point source (PS) pollution. However, water resources in the

United States are predominantly polluted by nonpoint sources (NPS) which are more difficult to

measure (EPA 1995). For this reason, we choose to study NPS pollution control to better

understand the economic underpinnings and the statistical nature of the problem.

Nonpoint source (NPS) pollution control is primarily an information, or conversely, an

uncertainty problem, and as such, modeling NPS pollution control requires that the role of

information and learning be explicitly specified and addressed in the model. In general,

pollution control problems can be characterized by the degree of uncertainty or incomplete

information about the location of polluting sources and the magnitude of their contribution. If

there were complete certainty or perfect information on the location and magnitude of pollution

for each source, then the problem would be a "pure" point source (PS) problem. If, however, the

manager does not know the location of the sources (i.e., fully ignorant of the source locations),

then the problem would be a "pure" NPS problem.'

These two extreme certainty scenarios mark the ends of a spectrum that defines all

pollution problems by the degree of uncertainty about the location and pollution generation for

each source rather than the vague classification of either PS or NPS. Note that the extreme NPS

problem is not susceptible to policy controls because the location of the pollution sources needs

to be known to implement treatment policies. That is, implementation of pollution control

policies requires that the location of the sources is known with a high degree of confidence, or

1. If the manager cannot identify the sources, then it follows that she cannot know the magnitude of
pollution generated by each source either. Even if she knows the location, due to the effects of a mix of
random events, she may not be able to identify the contribution to the total pollution from each source.



information can easily be acquired about the identity of the sources so that treatment efforts can

be undertaken.

Another complication to NPS control is the budgetary restrictions that often limit the

extent ofNPS pollution control. These financial limitations have implications for pollution

control in general and particularly in the United States, where the federal government spends $3

billion annually to control NPS water pollution, yet reports that the public control of NPS

pollution was limited by a lack of financial resources (GAO 1999). The United States

government is perhaps the largest controller ofNPS pollution and the largest contributor ofNPS

pollution, contributing nearly half of all the NPS pollution in the 11 western states (Arizona,

California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and

Wyoming) (GAO 1999).

As an application of the theoretical and methodological aspects described above, the

current sediment control program for Redwood Creek, which flows into and through Redwood

National Park located in Orick, California, is considered. If perfect information were available

on the location and sediment loading contribution of the pollution sources, park managers could

allocate the entire sediment control budget to treatment effort. However, with incomplete

information, the management of sediment loading requires an explicit or implicit allocation of

sediment control resources between information acquisition and treatment. We focus on the

tradeoffbetween information acquisition and treatment by explicitly modeling information

acquisition and learning within a pollution control model. This pollution control model extends

the model in Farzin and Kaplan (1999) to a dynamic problem.

The analysis ofNPS pollution control is further complicated by the statistical nature of

NPS pollution data. In any given period there are more polluting sources than observations (i.e.,
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an undersized samplej.? This statistical problem, sometimes referred to as an ill-posed data

problem, makes traditional statistical approaches inappropriate and requires that a new approach

be employed. In the empirical application to follow we adopt a sequential entropy filter (SEF)

approach, which generates parameter estimates from ill-posed data and updates the estimates, as

new data becomes available (Kaplan and Howitt 2000).

In the analysis two data collection regimes are constructed to facilitate the estimation of

the unobservable sediment loading parameters. These estimates are then incorporated into the

sediment control model. We simulate the model to derive optimal policy decisions regarding

treatment and information acquisition strategies and provide a comparison of the current

treatment policy with two alternative site-specific NPS pollution treatment policies. This

comparison allows us to test the hypotheses that a flexible treatment strategy, which allows for

site specific treatment effort, will lower sediment related damages if the manager can acquire

information and shift resources toward dirtier pollution sources. The results drawn from this

analysis can, in general, shed light on the role of information and budgetary constraints on the

efficient management of pollution problems.

CASE STUDY

Redwood National Park was established in 1968 to preserve the coastal redwood

(Sequoia sempervirens) forest ecosystem. The Tall Trees Grove, which includes several of the

world's tallest trees, is located in the Park adjacent to Redwood Creek. Erosion from upstream

2. One could wait for a sufficiently long time series to be collected, thereby avoiding the ill-posed
estimation problem. However, interim damage will occur and may result in irreversible losses, such as
the destruction of critical habitat for endangered or protected resources. The information contained in the
data may be incorporated as it is collected so that the manager can take action now and reduce the interim
damage rather than wait until enough data is collected and face the risk of incurring irreversible losses.
Farzin (1996) shows, theoretically, the importance of controlling interim damages.
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logging activity and the associated road network increased sediment delivery to streams,

resulting in destabilized stream channels, dramatic geomorphic changes, and the subsequent loss

of aquatic and riparian habitat. Most importantly, the Tall Trees Grove was subject to increased

flooding, bank erosion and an elevated water table (Spreiter et al. 1995).

To protect the grove, the United States Congress expanding the park in 1978 to include

36,000 additional acres upslope of the original Redwood Creek corridor. In 1981, Congress

directed the United States National Park Service (DOl) to minimize erosion from past land uses,

re-establishing native patterns of vegetation, and protecting aquatic and riparian resources within

tributaries and along the main stem of Redwood Creek (Spreiter et al. 1995). The primary focus

of erosion control would be to prevent or reduce erosion from logging roads within the Park

(DOl 1981).3

To date nearly 100 road rehabilitation projects have been completed within the Park

boundary. We collected data on treatment levels and costs, and data collection costs from

unpublished project reports for the period spanning 1981 to 1988. This time period provides the

most complete data set. Daily stream flow and ambient sediment load measures were obtained

from United States Geological Survey (USGS) gaging stations located along Redwood Creek

(See Figure 1). The Park arranged with the USGS to collect daily sediment load measures only

at the Orick and Blue Lake gaging stations. The difference between the upstream and

downstream sediment measures constitutes the total sediment entering Redwood Creek between

Blue Lake and Orick. Daily stream flow, however, is measured at all seven gaging stations. In

total, there are 1755 daily observations of stream flow and sediment loading spanning nine rain

3. Managers in the park identified the road network from past logging activity as the most probable
sediment contributors to Redwood Creek. Logging roads are generally considered the principal
contributor to sediment loading in logged forests (Mount 1995; GAO 1999; EPA 1999).
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seasons. The data from the gaging stations delineates six catchment regions as polluting sources

(see Table 1).
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Figure 1. A Simple Representation of Redwood Creek

Table 1. List Of Catchment Regions and Respective Area"
Variable Catchment Region Area (sq. mi.)

s1 Coyote Creek 7.78

s2 Upper Redwood Creek 65.4

s3

s4

s5

s6

Lacks Creek

Panther Creek

Lost Man Creek

Lower Redwood Creek

16.9

6.07

3.46

115.8

4. The Upper Redwood Creek region consists of Redwood Cre~k above Panther Creek and below Blue
Lake accounting for Lacks Creek. The Lower Redwood Creek region is downstream of Panther Creek
accounting for Coyote Creek and Lost Man Creek.
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METHODOLOGY

In this section we describe the methods used to in the research. The analysis starts with

the construction of a theoretical NPS pollution control model, depicting the behavior of a budget-

constrained manager who minimizes the pollution-related damage. Next, the SEF, which

accommodates ill-posed data, is developed and applied to stream flow and ambient sediment

loading data for Redwood Creek. Finally, the theoretical and methodological results are

incorporated into a sediment control model for Redwood National Park. Here we examine the

efficiency of a uniform pollution control policy versus a differentiated policies designed to

capture the differences among the polluting sources. Sensitivity analysis is conducted with

respect to the level and type of data collection to determine changes in the optimal treatment and

data collection strategies.

A NONPOINT SOURCE POLLUTION MODEL

In the sediment control model, we assume the manager knows the location and size of the

sources but there is uncertainty (incomplete information) about the generation of pollution from

each source. The pollution control manager decides how to optimally allocate a limited budget

between treatment effort and information acquisition. Treatment directly reduces the pollution

generation. However, the manager can improve the treatment effectiveness by acquiring

information that reduces the pollution generation uncertainty. If information is sequentially

acquired (i.e., learning), then the degree of uncertainty declines with each sequential update. In

some situations, a NPS problem may evolve to a PS one given that sufficient information is

acquired.
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We extend the control model in Farzin and Kaplan (2000) to a dynamic problem and

incorporate information entropy as a measure of the pollution generation uncertainty. This new

model generalizes the problem to capture any pollution type. In the model, information about

the pollution generation is acquired through a single channel, namely data collection. In the

context of sediment loading, data collection is often limited to stream flow for some sources and

an aggregate sediment load measure for the waterway. If there is significant variability in and

between the stream flow from the sediment loading sources, then changes in stream flow can be

compared with changes in aggregate sediment load to estimate the unobservable pollution

generated by each source (Kaplan 1999).

To construct the model let the states be pp , the probabilities on the sediment loading

states, and si (t) , the sediment loading states, where i denotes the state and n denotes the source.

We set i= 2 to simplify the presentation and write the probabilities as pf and p~ = 1- pr '
which allows us to reduce the number of state equations from n *i to n. The controls are aCt)

and Rn (t), the data collection intensity and level of treatment effort at each of the n source,

respectively. The sediment loading uncertainty about the known sources at a given time is

measured with the normalized information entropy metric over all sediment loading distributions

or formally

J(p) = -(1/ MaxEnt)2..2.. p? InpF '
n i

(1)

where MaxEnt is the maximum entropy associated with the uniform distribution over the p's.

The state equations for the probabilities are

pr (t) = s" (pr (I), aU)), Vn (2)
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The sediment loading state equations are

(3)

To reduce the number of state equations, we sum the n sediment loading state equations over i

and obtain

s? (t) + s~ (t):::: _bn Rn [sf (t) + s~ (t)],Vn (4)

With the post-data probabilities and post-treatment sediment loading states we can construct the

expected sediment loading from each source

(5)

We can interpret g " as the change in E(sn) given the information acquired through data

collection and _bn as the marginal decline in E(sn) given treatment effort.

In every time period the public manager is constrained by a budget B(t), which is

allocated between aCt) and R(t):::: (R 1(t), R 2 (t),···, R N (t». We simplify the cost functions to

focus our attention on the tradeoff between information acquisition and treatment effort. We

assume costs are linear in data collection and treatment levels and treatment costs are identical

across sites. Thus, the budget constraint is

B(t) = c IRn (t) + a(t)m
n

(6)

where c is the per unit treatment cost and m is the per unit data collection cost.

The optimal control problem for minimizing the damages from expected sediment loading at

known sites that yields the optimal intensity of data collection and the optimal levels of treatment

effort is
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Min
a(t),R(t)

IX,;

Je-rt ED[S(t),P(t),a(t),R(t)]dt
o

(7)

subject to

j;~ (t) = g n(p~ (t), aCt»~,\In, P~ (t) = p[:o' 'in, P~ (t) = 1-P~o ' 'in

(7a)

s~(t) + s~(t) = _bn Rn (sf + s~),'in, si (t) == sF0' Vi, Vn, lim si (t) = st, Vi, 'in, (7b)
, t~1X,;

E(sn(t»= Lsict)pi(t), (7c)

B(t) == CLRn (t) + ma(t).
n

(7d)

The expected damage function EDO is assumed to be twice continuously differentiable and

convex in sediment loading. To solve this optimal control problem, we first construct the

Hamiltonian,

H == e -rt ED(S(t), pet), aCt), R(t»

+ I A,;gn (pf (t), a(t» - LA,~bn Rn (t)[sf (t) + s~ (t)]'
(8)

n n

where A,; and A,~ are the costate variables for the probabilities and sediment loading states at

the n sources, respectively, Now we form the Lagrangian to incorporate the budget constraint,

such that

n
(9)

9



The necessary conditions to maximize the Lagrangian are

(lOa)

(lOb)

(lOc)

(lOd)

P~ (t) = s" (pC (t),a(t», Vn, pC (t)::: pCO' Vn, P~ (t) = 1- pf 0' Vn,, , (lOe)

lim pf (t) = pf 'Vn, lim P~ (t) = 1- pC, 'in,
t~oo t~oo

(lOf)

lim s? (t) =:sp ,Vi, Vn,
t~OC)

(lOg)

B(t)=CLRfl(t)+a(t)m, u z», (lOh)
n

The solution to these first order conditions defines the optimal levels of treatment and data

collection through time.

THE ENTROPY FORMALISM

The use of information entropy in economic theory and econometric application is a

recent phenomenon. Shannon (1948) first introduced the concept of information entropy as a

measure of uncertainty. Khinchin (1957) formalized the mathematical foundations for the
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information-theoretic approach to uncertainty. The basic idea underlying the entropy approach is

that the entropy of the uniform distribution (i.e., where any realization is as likely as another) is

the maximum or upper bound on the information entropy metric. This represents complete

uncertainty for a given random parameter and the case where there is no information except the

upper and lower bounds of the uniform distribution. Conversely, a spiked distribution (i.e., only

one realization can occur) has an entropy of zero. This lower bound corresponds to the case of

certainty or complete information. Thus, normalizing the entropy measure by the maximum

entropy bounds the uncertainty between zero and one and provides a bounded ordinal ranking of

uncertainty. We can, in principle, model the entire spectrum of possible pollution control

problems by incorporating this interpretation of information entropy into the management model.

There is a second application of the information entropy as well. That is, the estimation

of parameter distributions. The entropy criterion selects the least informati ve distribution that is

consistent with the data. Jaynes (1957) shows that this criterion maximizes the multiplicity. In

this context, the selected distribution is the one that can be realized in the greatest number of

ways, and consistent with what is known. The particular problem we face is estimating

sediment-loading parameters for more sources than there are total ambient sediment measures.

This is similar to the problem of reconstructing images from sparse data where maximum

entropy methods have been used (Skilling 1989; Gull and Daniell 1978; and Gull and Skilling

1984).

There are two main advantages in using the entropy approach over least squares or

maximum likelihood estimation that make it ideal for estimating NPS pollution parameters,

where the underlying distributions for the natural system is unknown and the pollution

generation is from diffuse sources. First, the error distribution does not have to be specified in
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the entropy approach. It is, however, estimated from the data. Second, given that there are more

pollution source parameters to estimate than observations, the problem of inverting the matrix of

explanatory variables is avoided with the entropy approach. This frees the researcher to make

inferences about the model parameters without the degree of freedom restrictions that is

necessary to employ least squares or maximum likelihood estimation.

In addition, to empirically incorporate learning (Bayesian updating), the SEF can be

employed to update parameter distributions as new data become available (Kaplan and Howitt

2000). Formal modeling of Bayesian learning by integrating over joint density functions is often

very cumbersome (Fahrmeir 1992). Fortunately, The SEF is equivalent to Bayes' theorem

(Kaplan and Howitt 2000; Zellner 1988; Golan, Judge and Miller 1996). Given that the SEF is

easier to empirically model and has desirable consistency properties, we employ it in estimating

the unknown sediment loading parameters.

Previous empirical application of the entropy metric in state space modeling, which is

used to derive the sequential entropy filter approach, has been limited. Golan, Judge and Karp

(1996), in the context of a dynamic discrete time model, present the generalized maximum

entropy (GME) approach for reconstructing unobservable state space parameters. Similarly,

Fernandez (1997) reconstructs the state and observation parameters for a dynamic wastewater

treatment plant model using a GME approach. Neither of these studies considers the sequential

updating potential of the cross entropy approach in dynamic models.

THE SEQUENTIAL ENTROPY FILTER

In the empirical estimation a single ambient sediment measure is disaggregated among

the six catchment regions and then sequentially updated, as new data becomes available (i.e.,

12



with each observation). The random state equation parameters are also estimated and

sequentially updated. Two estimation scenarios are considered. In the first case, defined as high

intensity data collection, we use the dis aggregated stream flow data. In the second case, defined

as low intensity data collection, the stream flow data for the lower reach of the creek (i.e.,

downstream from the Redwood Creek at Panther Creek gaging station) are combined into one

stream flow measure, and the stream flow data for the upper reach of the creek are combined into

a separate single measure. We then use the relative area of each catchment region to reapportion

the stream flow data to each region. These different data collection scenarios provide estimates

of the sediment loading distributions, which are used later in the simulated sediment control

model.

Let the empirical state and observation equations be defined as

E(sn (t + 1»:::: (gn (a(t + 1» - f3n (a(t + l»Rn (t) )e(sn (t» + v" (t),Vn (11)

where vJl and wn are random errors which are also estimated. Equation (11) is a simplified

combination of equations (2) and (3) with an additive error term. We derive equation (12) by

adding an error term to the log transformation on a known hydrological relationship between

stream flow and sediment loading (Singh and Krstanovic 1987), which is

Q(t) == I s" (t) == L qn (t) =L (jlwn (t»E(S" «» . (13)
n n n
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Q is the ambient sediment load measure, qn (t) is the actual unobservable sediment generated

from the nth source, qn (t) is the expected sediment generated from the nth source, and

jlwn (t) is the known stream flow from the nth source.>

To estimate probability distributions for the random model parameters, the following

reparameterization from parameter space to probability space is necessary,

wn (t) =L z~'w p~'w (t), Vn, and vn (t) =LZ~'v p?'V (t), Vn ,
i

(14)

where sj(t),zl,g ,z;Z,b ,z;Z'w, and z?,V, are support values for the respective distributions that

represent the constraints on the probability space, The probability distributions sum to unity;

L p?'W (t) = 1,Vn and I p?'V (t) = 1; 'in
i

(15)

In each time period t, the entropy specification of the objective function is

(16)

subject to equations (II) - (15), where fir == pf (t -1), Vn, fir == fJr (t - 1),Vn, and

rt == r? (t -1), Vn are the prior probabilities.v

5, The identity on the left-hand side of equation (14) formalizes the case that the observable ambient load
is equivalent to the sum of sediment from each source and to the sum of expected sediment from each

14



We assume the initial prior probabilities p, jJ , and r , are uniformly distributed. In other

words, any state or value is as likely as any other and thus the probabilities will be equal to i:
where L i is the total number of support values'? For tractability, and to confer with the earlier

theoretical discussion, the number of support values is limited to two. The support values for s n

and zn,b range from 0.0 to 2.0. This implies that rainfall has a non-negative impact on sediment

loading and treatment has a non-positive impact on sediment loading. Further, the upper bounds

on snare set to contain estimates derived for other river systems as reported in Singh and

Krstanovic (1987). The estimation will inform us as to which catchment region deviates from

the original uniform prior distribution. The values for zn,g range from 0.0 to 2.0 as well. This

range allows the information effect ( g n) to increase or decrease the expected sediment loading

but does not allow the loading to decrease with increases in rainfall. The values for z w, and z v,

range from -50.0 to 50.0, and from -10.0 to 10.0 respectively. These ranges are set well beyond

the plausible values for the estimated parameter. After estimating posterior distributions from

the first observation, all subsequent prior probabilities are the previous period estimated posterior

probabilities.

SIMULATION ANALYSIS

The control model defined in equation (7) was calibrated with the estimation results

reported above and additional data provided by the Redwood National Park staff. The cost

source.
6. We drop the argument t from the objective function for convenience.
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function coefficient was estimated with least squares using a linear specification without an

intercept term such that the value of the estimated cost coefficient is 2178.1 with a t-statistic of

13.683 and a R2=0.34. The damage function was estimated based upon the assumption that the

sediment related damage is greater than or equal to the resources spent on sediment control. The

estimated damage function in dollars is

In(Damage) ;;;;-7.253+ 1.674 lrusediment), R2=0.84
(-2.839) (8.054)

where sediment is measured in cumulative average daily tons per rain season and the t-statistic

are reported below the estimated parameters. The data collection cost under the varying

intensities are m(low intensity) = $41,154 and m(high intensity) = $93,712, and the annual

budget is B = $200,000.

The policy analysis involves simulating the model under three scenarios. First, a uniform

treatment policy is simulated, where all catchment regions are assumed to load sediment in

proportion to their relative area. This first scenario coincides with best management practices

mentioned earlier in the paper. Second, two scenarios depicting low and high intensity data

collection are simulated, where the manager incorporates the information acquired through data

collection to reallocate resources from relative cleaner regions to relatively dirtier regions.

PRINCIP AL FINDINGS AND SIGNIFICANCE

THEORETICAL MODEL

The control problem does not allow us to solve for an analytical solution; however, we can still

deri ve some qualitative properties from the necessary conditions. First, equations (lOa) and

7. Although the managers have knowledge to differentiate the sources, the uniform distribution is chosen
to reflect the knowledge prior to the enactment of the sediment control program.
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(lOb) provide the optimal conditions for choosing data collection intensities and treatment effort.

These optimal conditions tell the familiar story of selecting inputs so that the expected present

value of marginal benefits from employing an input equals it's marginal cost. Farzin and Kaplan

(2000) noted that information acquisition is a collective good and thus equation (lOa) equates the

expected marginal reductions in sediment loading over all sources with the marginal opportunity

cost of acquiring information. There is another interesting result obtained from (lOa) and (1Ob)

as well. We solve (1Oa) and (lOb) for the shadow value on the budget constraint (/J ) and then

substituting for Ji yields

(17)

Equation (17) shows that the optimal allocation of data collection and treatment effort over time

will equate the ratio of expected present value of marginal benefits to marginal cost over all

inputs. Thus, the manager will equate the adjusted marginal benefits obtained from a collective

good (data collection) with the adjusted marginal benefits from the treatment effort (site-specific

good).

ESTIMATION RESULTS

The estimation results for the sequential entropy filter appear in Figures 2, 3 and 4.

Figure 2 illustrates the information acquired under the two data collection intensities. It appears

that more information is acquired (uncertainty is reduced) in the high-intensity policy than in the

low-intensity policy. Over the time horizon, roughly twenty-five to thirty percent of the

17



uncertainty associated with the pollution generation is reduced when data is collected and

information is acquired.

Figures 3 and 4 illustrate the entropy estimates for the sediment loading parameter for

each of the six catchment regions. The H and L listed in the parentheses represents the high and

low-intensity data collection, respectively. The estimation results appear rather similar for high

and low intensity data collection. We can infer from these results that the larger catchment

regions (s2, s3 and s6) contribute less sediment per square mile than the smaller regions (sl, s4

and s5) given the relatively smaller estimated sediment loading parameter for the larger regions.

We also see from Figure 5 and 6 that estimate for s6 is much more responsive to learning than

the other estimates as indicated by the volatility of the g parameters in both the high and low-

intensity data collection scenarios. This may be attributable to the fact that treatment only occurs

in this region and the influence of treatment on region s6 may be captured by the g parameter.

This might follow from the estimated b parameter, which remains at the initial prior distribution

(with an expected value of 0.001) throughout the sequential estimation, implying that any

changes in s6 due to treatment may be picked up in the g parameter.

0.9
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0.8
High Intensity

0.7
Rain Days
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Figure 6. Estimated g Parameters under High Intensity Data Collection.

SIMULATION RESULTS

The results from the policy simulations are shown in Figure 7. We see that the manager

improves the treatment effectiveness and lowers damages in all rain seasons when the high and

low-intensity data collection policies are chosen. Interestingly, the low-intensity data collection
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policy is the optimal strategy for minimizing sediment related damages. This suggests that the

cost of data collection adversely influences the high-intensity data collection strategy so that

resources are limited and the cheaper, low-intensity data collection leaves more resources to

treatment and thus lower damages. The optimal treatment effort under the high and low-

intensity data collection is listed in Table 2. The optimal treatment effort under the EMP policy

is on average 19.9 for Region s2 and 71. 92 for Region s6. It is clear that the gain in information

and thus treatment effectiveness under the high and low-intensity data collection policy translates

into lower sediment related damage, although less budgetary resources are available for

treatment given the data collection expense.
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Figure 7. Estimated Damages under Three Policy Scenarios: (N) no data collection; (H)
High Intensity Data Collection; and (L) Low Intensity Data Collection.
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Table 2. Optimal Treatment under (H) High and (L) Low Intensity Data Collection.
Rain High Intensity Data Collection Low Intensity Data Collection

Season s1(H) s2(H) s3(H) s4(H) s5(H) s6(H) s1(L) s2(L) s3(L) s4(L) s5(L) s6(L)

1 23.1 25.7 42.5 15.3 15.2

2 11.3 18.1 19.4 9.1 30.0 11.4 22.4

3 15.9 17.7 15.2 32.2 5.0 4.8 30.9

4 29.6 19.2 35.8 37.1

5 3.7 13.9 22.9 8.3 18.4 9.7 21.9 13.8 9.1

6 25.9 10.3 12.6 13.2 16.7 14.4 14.9 13.8

7 8.0 8.5 12.9 9.9 9.5 25.1 24.4 23.4

8 9.8 17.7 3.0 18.3 22.1 18.2 32.6

9 40.7 0.8 7.3 28.2 1.1 37.4 6.2

DISCUSSION

This research examines the role of information in the control of nonpoint source (NPS)

pollution. The theoretical model and empirical method developed in the analysis brings to light

the importance of information acquisition in controlling NPS pollution and in statistically

estimating pollution loading parameters from NPS pollution data. In addition, the empirical

policy analysis allows us to show the usefulness of information acquisition for an actual NPS

problem in reducing uncertainty and in producing lower damages than would otherwise occur.

The theoretical analysis, which incorporated both information acquisition and a fiscal

constraint, highlights the trade off between treatment effort and treatment effectiveness. We

explicitly consider the opportunity cost of acquiring information, in the case of reduced treatment

effort due to exogenous budget restrictions. We analyze the problem within a budget constrained

management framework to focus attention on a more practical setting for studying NPS pollution

control. The results show how the manager can exploit the heterogeneity of the sites to reduce
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expected damages with lower treatment expenditures. With sufficient information, the NPS

pollution manager can move away from uniform treatment policies, such as best management

practices, and focus on policies that exploit the heterogeneity of the landscape and of the

pollution generation across sources. Furthermore, ifit is economically feasible for the manager

to acquire the information on NPS generation (i.e., reduce the pollution generation uncertainty),

the problem evolves towards one with point source characteristics.

Information acquisition also defines the methodological component of the research. The

use of the entropy formalism, which is the basis for information-theoretic econometrics, allows

us to draw inferences from undersized samples where other techniques cannot yield estimates

without restrictive assumptions. The restrictive assumptions necessary to employ least squares

or maximum likelihood approaches induce potential biases in these approaches when confronted

with small or undersized samples. We present the entropy approach for optimally updating

parameter estimates when the data comes from an undersized sample. Furthermore, we argue

that the entropy model has several advantages for estimating parameters from undersized

samples or when the error distributions are unknown. For instance, when the data is not

gaussian, the entropy specification provides a unique solution, whereas the TGME and KF are no

longer applicable. In addition, the entropy specification can be used to solve well or ill-posed

data processes. When the data are ill-posed, this specification for estimating optimal information

acquisition imposes less restrictive, and more realistic, assumptions than that of the TGME

approach. Finally, the entropy model is computationally simple and provides a method for

readily calculating empirical Bayesian estimates.

In the empirical application, the sequential entropy filter is adapted to the case of

sediment loading in Redwood Creek, which flows into and through Redwood National Park. We
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employ the theoretical and methodological methods presented above to conduct empirical

Bayesian analysis. The results indicated that greater intensity of data collection produces greater

reductions in uncertainty. In other words, the problem evolves more quickly towards a point

source problem as the intensity of data collection increases. This is a result that depends on the

particular case being analyzed. It should be made clear that some NPS problems may never

evolve to PS ones.

In addition, we present a simulated policy analysis, where three policy options were

considered. First, a uniform treatment policy is considered. Under this policy no data is

collected and all catchment regions are assumed to produce the same sediment per square mile.

This policy is analogous to the best management practices policy currently promoted. The other

policies considered in the analysis included a high and a low-intensity data collection policy,

where the manager collects data at varying intensities in order to improve the treatment

effectiveness and thus reduce sediment loading within the creek. The simulation results show

that when low-intensity information is acquired, the manager can more efficiently allocate

limited resources and lower the sediment loading, which threatens salmon habitat and the Tall

Trees Grove. This empirical analysis also indicated that when the high and low-intensity

information was acquired, and uncertainty reduced, it was advantageous to move away from a

uniform best management strategy to a heterogeneous policy, which exploits the differences

among the polluting sites.
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