- Main
Chapter 6 Block Liposomes Vesicles of Charged Lipids with Distinctly Shaped Nanoscale Sphere-, Pear-, Tube-, or Rod-Segments
Abstract
We describe the preparation and characterization of block liposomes, a new class of liquid (chain-melted) vesicles, from mixtures of the highly charged (+16 e) multivalent cationic lipid MVLBG2 and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). Block liposomes (BLs) consist of distinct spherical, tubular vesicles, and cylindrical micelles that remain connected, forming a single liposome. This is in contrast to typical liposome systems, where distinctly shaped liposomes are macroscopically separated. In a narrow composition range (8-10 mol% MVLBG2), an abundance of micrometer-scale BLs (typically sphere-tube-sphere triblocks) is observed. Cryo-TEM reveals that BLs are also present at the nanometer scale, where the blocks consist of distinctly shaped nanoscale spheres, pears, tubes, or rods. Pear-tube diblock and pear-tube-pear triblock liposomes contain nanotubes with inner lumen diameter 10-50 nm. In addition, sphere-rod diblock liposomes are present, containing rigid micellar nanorods approximately 4 nm in diameter and several microm in length. Block liposomes may find a range of applications in chemical and nucleic acid delivery and as building blocks in the design of templates for hierarchical structures.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-