Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Global Phosphoproteomic Analysis Reveals Significant Metabolic Reprogramming in the Termination of Liver Regeneration in Mice

Abstract

Phosphorylation is crucial in regulating various biological processes. However, comprehensive phosphoproteomic profiling in the termination of liver regeneration (LR) is still missing. Here, we used Tandem Mass Tag (TMT) labeling coupled with phosphopeptide enrichment and two-dimensional (2D) liquid chromatography-mass spectrometry (LC-MS)/MS analysis to establish a global phosphoproteomic map in the liver of mice at day 5 after partial hepatectomy (PH). Altogether, 9731 phosphosites from 3443 proteins were identified and 7802 phosphosites from 2980 proteins were quantified. Motif analysis of the identified phosphosites revealed a diverse array of consensus sequences, suggesting that multiple kinase families including ERK/MAPK, PKA/PKC, CaMK-II, CKII, and CDK may be involved in the termination of LR. Functional clustering analysis of proteins with dysregulated phosphosites showed that they mainly participate in metabolic pathways, DNA replication, and tight junction. More importantly, the deletion of PP2Acα in the liver remarkably changes the overall phosphorylation profile, indicating its critical role in regulating the termination of LR. Finally, several differentially phosphorylated sites were validated by co-immunoprecipitation and Western blot. Taken together, our data unravel the first comprehensive phosphoproteomic map in the termination of LR in mice, which greatly expands our knowledge in the complicated regulation of this process and provides new directions for the treatment of liver cancer using liver resection.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View