Skip to main content
eScholarship
Open Access Publications from the University of California

System simulation from operational data

  • Author(s): WASICek, A
  • Lee, EA
  • Kim, H
  • Greenberg, L
  • Iwai, A
  • Akkaya, I
  • et al.

Published Web Location

http://dl.acm.org/authorize?N00079
No data is associated with this publication.
Abstract

© 2015 ACM. System simulation is a valuable tool to unveil inefficiencies and to test new strategies when implementing and revising systems. Often, simulations are parameterized using offline data and heuristic knowledge. Operational data, i.e., data gained through experimentation and observation, can greatly improve the fidelity between the actual system and the simulation. In a traffic scenario, for example, different road conditions or vehicle types can impact the outcome of the simulation and have to be considered during the modeling stage. This paper proposes using machine learning techniques to generate high fidelity simulation models. A traffic simulation case study exemplifies this approach by generating a model for the SUMO traffic simulator from vehicular telemetry data.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item