Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Electron-hole hybridization in bilayer graphene.


Band structure determines the motion of electrons in a solid, giving rise to exotic phenomena when properly engineered. Drawing an analogy between electrons and photons, artificially designed optical lattices indicate the possibility of a similar band modulation effect in graphene systems. Yet due to the fermionic nature of electrons, modulated electronic systems promise far richer categories of behaviors than those found in optical lattices. Here, we uncovered a strong modulation of electronic states in bilayer graphene subject to periodic potentials. We observed for the first time the hybridization of electron and hole sub-bands, resulting in local band gaps at both primary and secondary charge neutrality points. Such hybridization leads to the formation of flat bands, enabling the study of correlated effects in graphene systems. This work may provide a novel way to manipulate electronic states in layered systems, which is important to both fundamental research and application.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View