Skip to main content
eScholarship
Open Access Publications from the University of California

Rearing Light Intensity Affects Inner Retinal Pathology in a Mouse Model of X-Linked Retinoschisis but Does Not Alter Gene Therapy Outcome.

  • Author(s): Marangoni, Dario
  • Yong, Zeng
  • Kjellström, Sten
  • Vijayasarathy, Camasamudram
  • A Sieving, Paul
  • Bush, Ronald A
  • et al.
Abstract

To test the effects of rearing light intensity on retinal function and morphology in the retinoschisis knockout (Rs1-KO) mouse model of X-linked retinoschisis, and whether it affects functional outcome of RS1 gene replacement.Seventy-six Rs1-KO mice were reared in either cyclic low light (LL, 20 lux) or moderate light (ML, 300 lux) and analyzed at 1 and 4 months. Retinal function was assessed by electroretinogram and cavity size by optical coherence tomography. Expression of inward-rectifier K+ channel (Kir4.1), water channel aquaporin-4 (AQP4), and glial fibrillary acidic protein (GFAP) were analyzed by Western blotting. In a separate study, Rs1-KO mice reared in LL (n = 29) or ML (n = 27) received a unilateral intravitreal injection of scAAV8-hRs-IRBP at 21 days, and functional outcome was evaluated at 4 months by electroretinogram.At 1 month, no functional or structural differences were found between LL- or ML-reared Rs1-KO mice. At 4 months, ML-reared Rs1-KO mice showed significant reduction of b-wave amplitude and b-/a-wave ratio with no changes in a-wave, and a significant increase in cavity size, compared to LL-reared animals. Moderate light rearing increased Kir4.1 expression in Rs1-KO mice by 4 months, but not AQP4 and GFAP levels. Administration of scAAV8-hRS1-IRBP to Rs1-KO mice showed similar improvement of inner retinal ERG function independent of LL or ML rearing.Rearing light conditions affect the development of retinal cavities and post-photoreceptor function in Rs1-KO mice. However, the effect of rearing light intensity does not interact with the efficacy of RS1 gene replacement in Rs1-KO mice.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View