Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Ultrastructure of commissural neurons of the hilar region in the hippocampal dentate gyrus

Abstract

Previous studies have described the polymorph neurons in the hilus of the dentate gyrus at the light microscopic level and have indicated that many of those neurons are the cells of origin for both ipsilateral associational and commissural projections to the dentate gyrus. Because previous studies have not described the ultrastructural characteristics of the hilar neurons, we identified these features of the commissural neurons in the hilus. The method of retrograde transport of horseradish peroxidase (HRP) was utilized with a silver staining technique for HRP intensification. Two populations of labeled commissural neurons were observed in electron microscopic preparations of the contralateral hilus. One type consisted of cells with somata that exhibited round or oval nuclei with no intranuclear inclusions and formed symmetric axosomatic synapses. The main dendrites of those neurons were thick and tapering. In contrast, the other type of labeled neuronal soma had infolded nuclei containing intranuclear rods or sheets, displayed both symmetric and asymmetric axosomatic synapses, and had dendrites that were less thick and generally aspinous. In those same preparations, labeled commissural axon terminals formed synapses with dendrites and dendritic spines in the hilus and molecular layer and with somata in the granule cell layer. From the results of this study it appears that there are two distinct populations of commissural hilar neurons: one type resembles the morphology of the spiny CA3 pyramidal neuron, a type of excitatory projection cell, and the other type is similar to the dentate gyrus basket cell, a local circuit neuron associated with GABAergic inhibition. This latter cell type provides further support for the notion that some commissural neurons are inhibitory.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View