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Kreutz-Delgado, Miroslav Krstić, and Sonia Mart́ınez. Not only were they willing to

support me as a committee member but also they taught me many wonderful things in

their classes. I especially thank professor Gill for helping my research as if I was his

student [Professor Gill, I had some hard time to understand your British English accent

for a while. But I have to tell you that I was fascinated by your accent and I wish I

could adapt your accent.].

I would like to thank professor Bitmead’s group members. Along with my

advisor, Jun was also the key person to propel my research. A lot of discussions with

him triggered many great ideas to solve problems. Sangho and Jisang gave me a lot of

advice, helped me in many ways, and shared wonderful time with me. My office mates,

Chengjin and Andrew, were wonderful and my time in the office was not boring because

of them. I would like to thank David for his unconditional help to accelerate my research

as well as his great thoughts for the problems we faced.

I am very lucky since I had many great friends who have shared the sweets and

bitters with me: Antonio, Charles, Jeff, Joe, Matt, and Sierra. My homework sets would

have been terrible without the unforgettable time we spent together in the conference

room (EBU1-1603). Also I thank them for teaching me ’REAL’ English language.

Finally, I express my special love and thanks to my parents and my sister,

Sunmo, who have supported me no matter what I decided to do and sacrificed many

things for me in the far east, Seoul, Korea.

xi



Chapter 2 includes the reprint of the following papers:

Keunmo Kang, Robert R. Bitmead - Contraction based Model Predictive Control, Inter-

national Workshop on Assessment and Future Directions of Nonlinear Model Predictive

Control, Pavia, Italy, Sep., 2008.

Keunmo Kang, Robert R. Bitmead - Contraction based Receding Horizon Control, sub-

mitted to Automatica, Mar., 2008.

Keunmo Kang, Robert R. Bitmead - Online Reference Computation for Feasible Model

Predictive Control, 46th IEEE Conference on Decision and Control, New Orleans, USA,

Dec., 2007.

Chapter 3 includes the reprints of the following papers:

Keunmo Kang, David D. Zhang, Robert R. Bitmead - Disturbance Rejection Control

in Coordinated Systems, 17th IFAC World Congress, Seoul, Korea, Jul., 2008.

Keunmo Kang, Jun Yan, Robert R. Bitmead - Cross-Estimator Design for Coordinated

Systems; Constraints, Covariance, and Communication Resource Assignment, Automat-

ica, Vol. 44 , May., 2008, pp 1394–1401.

Keunmo Kang, Jun Yan, Robert R. Bitmead -Communication Resources for Distur-

bance Rejection in Coordinated Vehicle Control, 45th IEEE Conference on Decision and

Control, San Diego, USA, Dec., 2006.

Robert R. Bitmead, Jun Yan, Keunmo Kang - Constrained Control and Communica-

tion Resource Assignment in Coordinated Systems, International Control Conference,

Glasgow, Scotland, Aug., 2006.

xii



Chapter 4 includes the reprint of the following papers:

Keunmo Kang, David D. Zhang, Robert R. Bitmead - Disturbance Rejection Control

in Coordinated Systems, 17th IFAC World Congress, Seoul, Korea, Jul., 2008.

Keunmo Kang, Jun Yan, Robert R. Bitmead - Cross-Estimator Design for Coordinated

Systems; Constraints, Covariance, and Communication Resource Assignment, Automat-

ica, Vol. 44 , May., 2008, pp 1394–1401.

Robert R. Bitmead, Jun Yan, Keunmo Kang - Constrained Control and Communica-

tion Resource Assignment in Coordinated Systems, International Control Conference,

Glasgow, Scotland, Aug., 2006.

Keunmo Kang, Jun Yan, Robert R. Bitmead - Communication Design for Coordinated

Control with a Non-Standard Information Structure, 44th IEEE Conference on Decision

and Control, Seville, Spain, Dec., 2005.

Jun Yan, Keunmo Kang, Robert R. Bitmead - State Estimation in Coordinated Con-

trol with a Non-Standard Information Architecture, 16th IFAC World Congress, Prague,

Czech Republic, Jul., 2005.

Chapter 5 includes the reprints of the following paper:

Keunmo Kang, David D. Zhang, Robert R. Bitmead - Disturbance Rejection Control

in Coordinated Systems, 17th IFAC World Congress, Seoul, Korea, Jul., 2008.

The dissertation author was the primary author or co-author in these publications and

professor Bitmead directed and supervised the research.

xiii



VITA

2003 B.S. in Mechanical Engineering
Sungkyunkwan University, Suwon, Korea

2004 Intern Engineer,
Samsung Electronics Corporation
Suwon, Korea

2005 M.S. in Engineering Sciences (Mechanical Engineering)
University of California, San Diego, USA

2007 C. Phil. in Engineering Sciences (Mechanical Engineering)
University of California, San Diego, USA

2007 Intern Engineer,
General Atomics
San Diego, CA, USA

2005–2008 Research Assistant,
University of California, San Diego, USA

2008 Ph.D. in Engineering Sciences (Mechanical Engineering)
University of California, San Diego, USA

xiv



PUBLICATIONS

Journal Papers

1. Keunmo Kang, Robert R. Bitmead
Contraction Based Receding Horizon Control
Automatica, submitted, Mar. 2008.

2. Keunmo Kang, Jun Yan, Robert R. Bitmead
Cross-Estimator Design for Coordinated Sytems; Constraints, Covariance, and
Communication Resource Assignment
Automatica, Vol. 44, May, 2008, pp. 1394–1401.

Conference Papers

1. Bogdan Borowy, Keunmo Kang
Modeling of the General Atomics Maglev: System Identification Approach,
20th International Conference on Magnetically Levitated Systems and Linear
Drives, San Diego, CA, USA, Dec., 2008.

2. Keunmo Kang, Robert R. Bitmead
Contraction Based Model Predictive Control,
International Workshop on Assessment and Future Directions of Nonlinear Model
Predictive Control, Pavia, Italy, Sep., 2008.

3. Keunmo Kang, David D. Zhang, Robert R. Bitmead
Disturbance Rejection Control in Coordinated Systems,
17th IFAC World Congress,
Seoul, Korea, Jul., 2008.

4. Keunmo Kang, Robert R. Bitmead
Online Reference Computation for Feasible Model Predictive Control,
46th IEEE Conference on Decision and Control,
New Orleans, LA, USA, Dec., 2007.

5. Keunmo Kang, Jun Yan, Robert R. Bitmead
Communication Resources for Disturbance Rejection in Coordinated
Vehicle Control, 45th IEEE Conference on Decision and Control,
San Diego, CA, USA, Dec., 2006.

6. Robert R. Bitmead, Jun Yan, Keunmo Kang
Constrained Control and Communication Resource Assignment
in Coordinated Systems, International Control Conference,
Glasgow, Scotland, Aug., 2006.

7. Keunmo Kang, Jun Yan, Robert R. Bitmead
Communication Design for Coordinated Control with a Non-Standard
Information Structure, 44th IEEE Conference on Decision and Control,
Seville, Spain, Dec., 2005.

xv



8. Jun Yan, Keunmo Kang, Robert R. Bitmead
State Estimation in Coordinated Control with a Non-Standard
Information Architecture, 16th IFAC World Congress,
Prague, Czech Republic, Jul., 2005.

xvi



FIELDS OF STUDY

Major Field: Engineering (Mechanical Engineering)

Studies in Control and Estimation.
Professors Robert R. Bitmead, Raymond de Callafon, Kenneth Kreutz-Delgado,
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ABSTRACT OF THE DISSERTATION

Information in Coordinated System Control

by

Keunmo Kang

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2008

Professor Robert R. Bitmead, Chairperson

In this thesis, two subjects are considered: new techniques to improve stabilizing per-

formance and feasibility in model predictive control and disturbance rejection control in

coordinated systems.

Model predictive control is powerful when a system has constraints. However,

by nature, feasibility and stabilizing property of model predictive control can be lost

without proper treatments. A new idea is studied for the case that a system is not

well stabilized by classical model predictive control since the origin is not reachable

from initial states in a limited horizon. We handle this matter by using a time-varying

contractive terminal state equality constraint in model predictive control. The core

condition to execute our idea is a structural property of the system such as contractibility

or a known control lyapunov function. In addition, algorithmic approaches to guarantee

feasible model predictive control are developed with several state constraint structures.

Assuming that the model predictive control problem at current time is feasible, we want

to know the set of terminal states or new references such that the problem at the next time

instant is still feasible. Solutions are given for the linear system case using reachability

analysis.

The rest of the thesis considers disturbance rejection control in coordinated

systems. We employ a fixed vehicle formation problem as an working problem. The aim

xviii



is to design a controller to maintain the formation and avoid collisions in the presence

of disturbance, measurement, and communication noises. Each vehicle has its own local

controller that uses the state and input information from neighbors via communication.

We formulate local model predictive control and estimators for one vehicle to estimate the

states of the neighboring vehicles. Since coordinated systems interact via the exchange of

information through communication, as the network of coordinated systems increases in

the number of subsystems, natural limits on the available bandwidth of communication

need to be imposed. With the gaussian assumptions on the noises and disturbance,

the estimators are designed by linear matrix inequality methods, which link control

objective, estimation performance, and communication limits. Even when bounds on the

uncertainties are known instead of the gaussian assumptions, controllers and estimators

can be formulated. Case studies are provided to demonstrate the main ideas and discuss

interesting design issues.
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1

Introduction

In this thesis, we study new schemes to improve feasibility and stabilizing per-

formance of Model Predictive Control (MPC) and disturbance rejection control in coor-

dinated systems. The main issues addressed in these subjects are:

[New schemes in MPC]

– MPC formulation for the situation where the system is not well stabilized by MPC

with the zero-terminal-state due to an initial state far from the origin.

– Online reference computation technique for feasible MPC,

[Disturbance rejection control in coordinated systems]

– Local MPC design for each subsystem aiming to reflect interaction with neighboring

subsystems,

– Estimation technique to predict the future actions of neighboring subsystems,

– Communication resource assignment of communication channels in coordinated

systems.

In the first part, we aim to develop new algorithmic approaches to improve feasibility

and stabilizing performance of MPC and provide technical conditions to realize our

ideas. In the rest of the thesis, we will concentrate on design of distributed controllers

and estimators for coordinated systems aiming to handle a noisy environment due to

disturbance, measurement, and communication noises.

1



2

1.1 Motivation

Many systems operate under physical constraints. For instance, a car engine

operates under physical limits such as maximum torque or maximum revolutions per

minute. Therefore, when we design a controller such as cruise control, we should consider

the physical limits. From a control design perspective, these limits are explicit constraints

on inputs, or states, or both. MPC is a popular and computationally tractable control

method to handle explicit input and state constraints while preserving standard design

variables. A typical MPC formulation looks like a sequence of finite horizon open-loop

constrained optimal control problems. For a given initial state (or state estimate), a finite

horizon optimal control problem with constraints is solved, but the control solution is

only applied up to the next sampling time. Then MPC takes a new measurement and

repeats the same optimal control problem. This results in a so-called receding horizon

strategy.

MPC is indeed attractive due to its capability in handling constraints. How-

ever, like any other control methods, there are some difficult design considerations. First,

closed-loop stability does not come for free. Without a proper treatment in the MPC

design for a given plant, closed-loop stability may not be achieved. Second, since MPC

solves a constrained optimization problem at each sampling time, feasibility of the op-

timization problem is not guaranteed for all time. Further compounding the headache,

one has to deal with uncertainties in the plant and measurement. Third, the optimiza-

tion problem to be solved in the MPC may not be a convex problem. In many cases, as

we shall see later, closed-loop stability arguments in the MPC-controlled systems resort

to optimality of the solution obtained from the corresponding optimization problem at

each time step. The solutions we can actually compute from non-convex optimization

problems are not necessarily global optimizers. Therefore, foundation of the closed-loop

stability by non-convex MPC may be troublesome in practice. Finally, the computa-

tional burden of the constrained optimization problem may be overly large. Since MPC

solves an optimization problem at every sampling time, if the number of state and control

variables is large and a long optimization horizon is considered, computation time may

be a problem. This can be debilitating when a system with fast dynamics is considered.
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Here we investigate the first two issues. First, we consider MPC on a general

class of constrained discrete time systems. One popular way to guarantee closed-loop

stability as well as feasibility by MPC is to put the zero-terminal-state-equality constraint

in the finite horizon open-loop optimal control problem at each sampling time (Kwon &

Pearson 1978, Keerthi & Gilbert 1988). However, if an initial state is too far from the

origin, the zero terminal constraint may not be achievable in a limited horizon. We seek

a remedy for this situation. Our aim is to formulate MPC so that it does not require

a large optimization horizon while subject to terminal equality constraints which may

vary with time. Limiting the horizon size is desirable since computation time increases as

the horizon gets larger. Second, we concentrate on feasibility of MPC in linear discrete

time systems by investigating two different MPC constraint structures: terminal-state-

equality constraints and reference dependent state constraints. Assuming that a current

MPC problem is feasible, what we look for is a set of feasible terminal states or reference

trajectories that preserves the feasibility of the MPC problem at the next time instant.

Limon, Alamo & Camacho (2005) investigated the feasibility of MPC with a terminal

state constraint set. To guarantee feasibility, they attempted to construct a sequence of

reachable sets where the system can be admissibly steered from one set to the following,

ultimately reaching the terminal constraint set. The sets are computed offline. Our

approach is to achieve the same goal online for the MPC with the two state constraint

structures stated above. Our solution provides the MPC algorithm presented for the

first issue with an actual computational tool for implementation when a linear system

with polytope constraints is considered.

The rest of the thesis is devoted to disturbance rejection control in coordinated

systems such as distributed power systems, networked communication nodes, a platoon

of vehicles, etc. Coordinated system control has become a significant topic in control.

Typically, the system size prohibits a global solution (i.e. centralized control) because

the collection of the global state information and the computation of a global control

law are overly demanding. Furthermore, subsystems in a coordinated system interact via

exchange of their state or control information, and incorporation of the interaction into

control design is the distinguishing feature that is not usually seen in the other classes

of systems. Since the framework is easily understood in the context of coordinated
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autonomous vehicles, we employ a coordinated vehicle system as a working problem. In

recent years, many improvements in this field have been made; (Stanković, Stanojević

& S̆iljak 2000, Chandler, Pachter & Rasmussen 2001, Dunbar & Murray 2004, Jeanne,

Leonard & Paley 2005, Dunbar & Murray 2006, Sepulchre, Paley & Leonard 2008) to

list a few. The main issues are creation of a formation, communication nodes, and their

relation to formation stability. However, most of their research was done in idealized

environments: disturbance free, measurement noise free, and communication error free.

The authors of (Richards & How 2004, Kuwata, Richards, Schouwenaars & How 2004)

considered disturbances on vehicles; however, their results were in noise-free-information

sharing environments. Here, our main focus is on disturbance rejection performance of

local vehicles in a fixed formation with respect to vehicle disturbance, measurement, and

communication noises.

We divide the problem into two categories: control and estimation. In the

control part, we use a distributed control structure. In other words, each vehicle in a

formation will have its own control system, which interacts with neighboring vehicles.

Due to unpredictable disturbances on vehicles, collision avoidance is a critical issue and

we attempt to achieve it by interaction between vehicles. Hence, the core issue in the

local control design is to mathematically describe such interaction so that it can function

as a control constraint. We call it a no-collision constraint. Since vehicles in a formation

are operated in a noisy environment, no-collision constraints must include the effect of it.

There exist several approaches for this. Blackmore (2006) proposed considering the possi-

ble distribution of the vehicle states using a finite number of particles to include stochastic

disturbance in a no-collision constraint. In (Richards & How 2004, Kuwata, Richards,

Schouwenaars & How 2004), the constraint tightening technique (Chisci, Rossiter &

Zappa 2001) was used for the no-collision constraint to accommodate the bounded dis-

turbances on vehicles. The initial set of allowable position outputs from the no-collision

constraint gets smaller to handle any discrepancy between predicted positions and ac-

tual positions of the vehicles due to the disturbance. Our philosophy is similar to theirs.

The difference comes from the fact that we use estimators and consider its performance

measured as the estimation error covariance driven by disturbance, measurement, and

communication noises to modify our no-collision constraints. For scalar linear systems,
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Yan & Bitmead (2005) already developed the technique to reformulate an initial state

constraint in terms of a state estimate and its corresponding estimation error covariance.

Here, we want to extend their result to the multi-dimensional case. If the no-collision

constraint can be converted as we hope, then MPC can be used as a means of constrained

control.

In the estimation part, we focus on estimator design for one vehicle to estimate

its neighbors’ future behavior for use in its local control decision. We call this estimator

a cross-estimator. This turns out to be a different estimation problem from classical

ones such as the Kalman filter problem. First, since necessary state (and control input)

information is transmitted from neighboring vehicles through communication channels,

the information is corrupted by communication noise. If input information must be

transmitted, then estimator design gets a little harder since state estimation problems

usually require perfect knowledge about control inputs. Second, if the reformulated no-

collision constraint is given in terms of the state estimate and its performance measure

such as an error covariance, it is natural to expect different vehicle behavior with respect

to estimator performance. The most exciting aspect of the cross-estimation problem is

that performance of the cross-estimator is restricted by the no-collision constraints in

the control problem. Finally, since the cross-estimator takes necessary state and input

information from neighboring subsystems via communication, as the number of vehicles

increases in the formation, limits on the available bandwidth of communication is indeed

an issue, and we need a mechanism to manage this. Hence our ultimate goal in the

cross-estimator design is to formulate the above issues and to incorporate them into our

estimator design process.

1.2 Overview

1.2.1 Model Predictive Control: New Ideas

Consider the following discrete time-invariant system

xk+1 = f(xk, uk),
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where the state and input belong to

xk ∈ X ⊂ R
n,

uk ∈ U ⊂ R
m,

with an initial condition x0. Here we assume that perfect measurement of the full state is

available, the origin is the equilibrium point, 0 ∈ X, and 0 ∈ U. Consider a constrained

finite-horizon optimal control problem at time k with the current state xk ∈ X, the

horizon N , and the terminal target state x̄k+N = 0,

P(xk, x̄k+N = 0, N) :

arg min
{uk|k,...,uk+N−1|k}

N−1
∑

i=0

h(xk+i|k, uk+i|k),

subject to

xk+i+1|k = f(xk+i|k, uk+i|k),

xk+i|k ∈ X,

uk+i|k ∈ U,

xk+N |k = x̄k+N = 0.

Here xi|k (xk|k = xk) and ui|k represent the states xi and controls ui, which are computed

at time k. The cost function h(x, u) is nonnegative definite, upper-semi continuous, and

satisfies h(0, 0) = 0 . Suppose that

{u∗k|k, u∗k+1|k, . . . , u
∗
k+N−2|k, u

∗
k+N−1|k},

is the optimal control solution to the problem P(xk, x̄k+N , N) [We will provide more

detailed conditions for the existence of a solution to the problem P(xk, x̄k+N , N) later.].

One widely used MPC scheme solves P(xk, x̄k+N = 0, N) for the current state xk and

applies the very first control u∗k|k to the plant. Then the MPC repeats the whole process

for the new measured state xk+1 = xk+1|k. Assuming that the very first optimization

problem with x0 is feasible, the system is asymptotically stabilized. The core constraint

to make this happen is the terminal equality constraint xk+N |k = x̄k+N = 0 (Keerthi &

Gilbert 1985). The problem is that, if the initial condition x0 is too far from the origin,

then the terminal equality constraint x̄N = 0 may not be achievable in N steps. To

overcome this matter, here we consider a different strategy that consists of two stages:
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– solving a finite sequence of finite horizon open-loop optimal control problems with

a time-varying terminal state equality constraint xk+N |k = x̄k+N (not necessarily

equal to zero) : the terminal target state changes at each time step and moves

closer to the origin, then

– solving a sequence of finite horizon open-loop optimal control problems with the

origin as the target terminal state to achieve closed-loop stability.

The first stage does not appear in previous MPC contexts. It functions to manipulate the

system into a situation where typical zero-terminal-state MPC such as the second stage

can be used. The critical issue in the first stage is how we update the terminal target

state x̄k+N while keeping P(xk, x̄k+N , N) feasible over time. We will show that, if the

system can make contractive movements in the sense of the weighted norm of the state or

some energy measures such as a Control Lyapunov Function (CLF), then the first stage

feasibly proceeds and shifts to the second stage in finite time. The authors of (Primbs,

Nevistić & Doyle 1999, Kwon & Han 2005) discussed the idea of including a CLF in MPC

and pointed out its possible performance improvement due to complementary aspects of

a CLF and MPC. In this thesis, by example, we demonstrate that our scheme can also

bring improvement to control performance and give flexibility to tune system behavior.

In addition, our scheme can achieve faster stabilization of a system than the schemes

introduced in (Primbs, Nevistić & Doyle 1999, Kwon & Han 2005).

While the above focuses on the stabilization issue, here we focus more on the

feasibility of MPC. Specifically we consider two classes of state constraint structures.

Consider, at time k, the MPC problem to solve

arg min
{uk|k,...,uk+N−1|k}

N−1
∑

i=0

h(xk+i|k, uk+i|k),

subject to

xk+i+1|k = f(xk+i|k, uk+i|k),

uk+i|k ∈ U,

xk+i|k ∈ Xk+i,

where the state constraint is in one of the following forms:



8

A. A terminal state equality constraint: xk+N |k ∈ Xk+N = {x̄k+N} (no immediate

constraints Xk+i i = 1, 2, . . . , N − 1),

B. Reference dependent constraints with reference trajectories over N steps: xk+i|k ∈
Xk+i(rk+i) (only N−step reference trajectories , rk+1, rk+2, . . . , rk+N , are known.).

Then the corresponding control u∗k|k is applied to the system and the MPC takes a

new measurement to solve the above problem with newly updated x̄k+1+N or rk+1+N if

available. Suppose that the above MPCs at time k are feasible. The problems we want

to solve are:

A. What new terminal states (x̄k+N+1) can be chosen,

B. What new references (rk+1+N ) can be chosen,

so that the MPCs at time k+1 do not lose feasibility? The main observation about these

problems is that existence of the solutions only depends on the constraints, not on the

choice of the optimization objective function. That is, no matter what h(xk+i|k, uk+i|k) is

chosen, what really matters is whether the combination of U and Xk+i results in having

feasible input solutions. Therefore, the solutions to the problems are found in such a

way that a choice of x̄k+1+N or rk+1+N guarantees at least one input solution for the

MPCs at time k + 1. In the linear system case, if all the constraints are given in terms

of linear equalities or inequalities or both, we can provide a set of new terminal states

or references that preserve the feasibility of MPC at time k + 1. Reachability analysis

and convex polytope properties are the main ingredients to attack the problems.

1.2.2 Disturbance Rejection Control in Coordinated Systems

In this thesis, our focus is limited to a fixed target vehicle formation with linear

system dynamics. The task of control is to maintain the vehicles close to their target

positions in the formation. If a precise model of the vehicles is given and there is no

disturbance on the vehicles, then this problem might be easily solved. However, if there

is disturbance acting on the vehicles, not only does the control have to steer the vehicles

to their target positions, but it must also avoid possible collisions between the vehicles.

Consider the second vehicle formation with 10 m target separation in Figure 1.1. If there
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Figure 1.1: Two vehicle formation on a highway.

are disturbances acting on the vehicles, then the 10 m separation may be a dangerous

choice because the vehicles’ spatial variations around their target positions may be big

enough to cause collision. To avoid this, the vehicles can interact via exchange of their

state and input information.

While the vehicle formation with 10 m separation illustrates the motivation for

local MPC at each vehicle aiming to maintain formation and avoid collision via exchange

of information between the vehicles, the first formation with 100 m target separation

implies that coordinated control is not always necessary. Even if there are disturbances

acting on the vehicles, collision is not likely since they are too far away from each other.

Therefore, before investigating the local coordinated MPC design, we first provide the

criterion that clarifies the situation which requires coordinated control. Consider the

following linear vehicle dynamics:

xk+1 = Axk +Buk + wk,

yk = Cxk,

zk = Dxk + vk,

where uk, yk, zk and xk represent the input vector, the position output vector, the

measurement vector, and the state vector of the vehicle and of its associated disturbance

process. The vehicles and their disturbance process are driven by a process noise wk and

the measurement is corrupted by a measurement noise vk. Both noises are modeled as
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white normally distributed sequences,

wk ∼ N(0, Q), vk ∼ N(0, R).

Our study begins with a Linear Quadratic Gaussian (LQG) control strategy for the

disturbance rejection of vehicles in a formation. Then we take the following steps:

– Calculation of the closed-loop LQG control position variance of an isolated vehicle

around its nominal position under the effect of exogenous disturbances.

– Evaluation of the interaction constraint which seeks to ensure sufficiently infrequent

activity of the no-collision constraint.

The last stage links formation geometry and the LQG control performance so that we

can judge whether coordinated local MPC is required.

If LQG control is not sufficient to avoid collisions, MPC is used at each vehicle

to maintain formation and prevent collision. The no-collision constraint basically says

that the future position of one vehicle cannot overlap its neighbors’ future positions.

However, due to uncertainties (e.g. disturbances), calculating the exact future positions

of the vehicles is not possible. Hence, proper conversion from this stochastic constraint

to a deterministic one is required. If disturbance, measurement, and communication

noises are gaussian, then the deterministic form of the no-collision constraint with more

than 1− ǫ probability at Vehicle i is given by

||ŷik+j|k−ŷℓi,k+j|k||>α+β

√

λmax

(

C(Sip,j + Σℓ
i,j)C

T
)

, (1.1)

where ŷik+j|k=Cx̂ik+j|k and ŷℓi,k+j|k=Cx̂ℓi,k+j|k are, respectively, Vehicle i’s j step ahead

future positions with the state error covariance Sip,j and Vehicle ℓ’s j step ahead pre-

dicted positions computed by Vehicle i at time k with the state error covariance Σℓ
i,j.

The scalars, α and β, are the numbers associated with the size of the vehicle and the

probability of collision ǫ respectively, and || · || and λmax(·) represent a two norm of

a vector and the maximum eigenvalue of a matrix respectively. The last term on the

right hand side of the inequality (1.1) can be understood as a stand-off value by using

the estimates (ŷ) in the decision making process and this is given in terms of the er-

ror covariances. For a given self-position estimate (ŷik|k) and cross-position predictions
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(ŷℓi,k+j|k), the local MPC at Vehicle i makes a decision in a way such that ŷik+j|k satisfies

(1.1).

In order to use the no-collision constraint, the local MPC at Vehicle i takes

information from two sources: one is a Kalman filter for the self-position estimate (ŷik|k),

and the other is a cross-estimator to predict Vehicle ℓ’s future position (ŷℓi,k+j|k). Since

the Kalman filter is used for the self-state estimation, the error covariance Sip,j in (1.1)

is fixed. Then, a smaller cross-estimation error covariance Σℓ
i,j will give a smaller stand

off value and, therefore, will lead to less frequent activity of the no-collision constraint.

Indeed, (1.1) provides the performance limit of the cross-estimator. To see this, assuming

that the nominal separation between Vehicle i and Vehicle ℓ is d, consider the case that

Σℓ
i,j satisfies

d < α+ β

√

λmax

(

C(Sip,j + Σℓ
i,j)C

T
)

. (1.2)

Then, even if ŷik+j|k and ŷℓi,k+j|k are at their target positions in the future (i.e. ||ŷik+j|k−
ŷℓi,k+j|k|| = d), the no-collision constraint (1.1) will be active. This is not desirable since

the MPC problem will encounter active constraints frequently. There are two ways to

obtain a smaller Σℓ
i,j. One is to alter the cross-estimator gain if a better value were to

exist. The other is to assign enough communication resource between the vehicles if this

can solve the problem. However, in general, communication channels are band limited,

which may be modeled as quantization of data transmitted over a channel. Assuming

that a scalar signal has been scaled to a range of [−0.5, 0.5], the effect of quantization

to mj bits of accuracy is to add a white, zero-mean noise of variance 1
122−2mj (Widrow,

Kollár & Liu 1996). If the total bandwidth to be assigned to a channel is limited to τ

bits per sample time and each piece of information from j = 1 to J is assigned by mj

bits, then the limit is captured by

J
∑

j=1

mj ≤ τ. (1.3)

We formulate Linear Matrix Inequalities (LMI) to obtain the (sub) optimal estimator

gains, communication resource assignment, and upper bound of the cross-estimation

error covariance while satisfying the following:

R1. stable cross-estimation,
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R2. the requirement from the no-collision constraint: d≥α+β

√

λmax

(

C(Sip,j+Σℓ
i,j)C

T
)

from the observation in (1.2),

R3. the communication limit (1.3).

The main ideas presented above could be developed with the assistance of the

linear gaussian assumptions on disturbance, measurement, and communication noises.

Without the assumptions, it would be hard to compute estimation error covariances

and, therefore, the no-collision constraint (1.1), and the LMI design approach for the

cross-estimators may not work. We also provide control and estimation schemes without

probabilistic models on the uncertainties: only their bounds are given. In this case,

covariances are replaced by the worst case norm of the estimation error in the analysis.

Then one can still construct local MPC with a similar no-collision constraint to (1.1) and

design estimators to satisfy R1 and R2 by an approach akin to Adaptive Kalman filtering

(Haykin 2001). However communication resource assignment could not be included in

the analysis and, hence, we do not consider R3 in the analysis. Rather, we will assume

that bounds of communication errors are given.

1.3 Contributions

The contributions of this dissertation are summarized as follows:

(1) Development of a new MPC algorithm applicable to a system that is not effectively

stabilized by classical MPC due to an initial state far from the origin. (Chapter 2)

– Identification of central conditions to run the algorithm: contractibility or

existence of control Lyapunov functions,

– Performance enhancement compared to control methods that solely depend

on a control Lyapunov function.

(2) Development of online reference computation algorithms for feasible MPC. (Chap-

ter 2)
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– Algorithms based on reachability analysis and convex polytopes for the linear

system case,

– Approximation schemes to reduce computational burden of the developed

algorithms.

(3) Distributed control design for disturbance rejection in coordinated systems. (Chap-

ter 3)

– Analysis to clarify the criterion for including cooperative control between the

subsystems,

– Conversion from a stochastic local MPC to a deterministic one.

(4) Cross-estimator design for coordinated systems. (Chapter 4)

– Derivation of sufficient requirements on the cross-estimator performance for

only sporadic activity of the constraints in the local MPC,

– Unified approach to design the cross-estimator gain and assign communication

resources.
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Model Predictive Control: New

Ideas

2.1 Introduction

Model Predictive Control (MPC) is a closed-loop control approach, which pro-

ceeds by the successive solution of open-loop finite-horizon optimal control problems.

For a given system, MPC solves a finite horizon optimal control problem (with con-

straints) and apply the control solution to the system until the new state measurement

(or state estimate) is available. Then, using the new state measurement (or state esti-

mate), the MPC repeats the same finite horizon control problem. Therefore, MPC is

often termed as Receding Horizon Control (RHC). The key idea of MPC is to apply a

sequence of solutions in a receding horizon fashion, thereby converting the open-loop con-

trol to closed-loop control. The fundamental question is to understand how properties of

the open-loop problem might be inherited or translated to properties of the closed-loop

solution. Unfortunately, the closed-loop solution might fail to stabilize the system or

the closed-loop solution might not even exist due to computational infeasibility of the

open-loop constrained optimal control problem at some time instant. In this chapter,

new ideas in MPC are presented:

1. Contraction Based MPC,

2. Online reference computation for feasible MPC.

14
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1. Contraction Based MPC

We study stabilization of a constrained discrete time system, whose behavior

is limited by input and state constraints. In particular, we focus on an MPC scheme for

the situation where the system is not effectively stabilized by typical MPC (D.Q.Mayne,

Rawlings, C.V.Rao & P.O.M.Scokaert 2000) with the zero-terminal-state or terminal set

around the origin due to an initial state being too far from the origin. If the system

has some structural property such as the satisfaction of contractibility condition, to

be defined, or the existence of a Control Lyapunov Function (CLF) in some subset of

the state constraint set, then one can construct feasible and stabilizing MPC solutions

applicable to initial states far from the origin. Furthermore the proposed scheme gives

flexibility to tune the system performance. This is not usually permitted when controller

design is solely based on a CLF.

To achieve closed-loop stability, there is apparently a single central idea whereby

the unapplied tail of the receding horizon solution is proven to provide a feasible solution

for the next instants problem with reduced cost-to-go. This idea is traceable at least

to (Keerthi & Gilbert 1988) who use it to establish conditions for both feasibility and

asymptotic stability. Their approach is grounded in the specification of a finite-horizon

terminal state equality constraint, which also appears in (Kwon & Pearson 1978). This

has been relaxed by subsequent authors (Michalska & Mayne 1993, Chisci, Lombardi &

Mosca 1996, Chen & Allgöwer 1998, Mayne 2001) from a terminal equality constraint to

a terminal set constraint containing the origin. As one may already expect, the above

contributions are applicable only when the origin or the terminal set around the origin

is reachable from the initial state in the specified horizon, in which case the size of the

domain of attraction might be quite limited. Increasing the horizon may help, but will

require more computational resources. To enlarge the domain of attraction without using

too much computation, (Limon, Alamo & Camacho 2005) used a sequence of reachable

sets to a given initial terminal set with a control invariance property. The authors used

a sequence of sets such that the system can be feasibly steered from one set to the

following, finally reaching to the initial terminal set. This sequence of sets is computed

offline. However, this idea may require very intensive offline computation if a given initial

state is so far away from the origin that it is required to compute a sequence of overly
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many sets.

Here we consider a different approach by employing a time-varying terminal

state equality condition to ensure feasibility and stability with the aim of generating an

MPC algorithm applicable at points, from which the origin is not reachable in small time

steps. We provide conditions under which a solution to guarantee asymptotic stability

is found from initial states that are not steered to the origin within the horizon. Our

MPC scheme is deployed in two stages:

– solving a finite sequence of finite horizon open-loop optimal control problems with

a time-varying terminal state equality constraint: the terminal target state changes

at each time step and moves closer to the origin,

– solving a sequence of finite horizon open-loop optimal control problems with the

origin as the target terminal state to achieve closed-loop stability.

The first stage does not appear in typical MPC contexts and it functions to manipulate

the system into a situation where a typical MPC such as the second stage can be utilized.

We will show that, if the system can make contractive movements in the sense of the

weighted norm of the state or some energy measures such as a CLF, then the first stage

operates feasibly and shifts to the second stage in finite time, and as the second stage

comes into play the system enjoys closed-loop asymptotic stability. Our scheme does not

require intensive offline computation or an unduly long MPC horizon.

The idea of using a contraction property of a system appears in (Polak &

Yang 1993) and in (Kothare & Morari 2000) for a continuous time-invariant system.

Especially, in their studies, contraction refers to a decrease in the weighted norm of

the state vector. In (Polak & Yang 1993), contraction occurs at each sampling time

that the finite horizon open-loop control problem is solved. But the sampling time is

another decision variable in addition to the open-loop control. The interval between the

sampling times is chosen as the minimum time over which contraction occurs. Hence,

the horizon changes depending on how fast the system can make a movement of the

desired contraction rate for the current state. In (Kothare & Morari 2000), contraction is

achieved at the end of a fixed horizon. For the disturbance free case, the interval between

sampling times is the horizon and the whole open-loop control solution at each sampling
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time is applied to the system. While both studies use a contraction condition as a

constraint on the MPC, our contraction condition is applied for the choice of the terminal

target state at each sampling time. In this paper, we will show that the contraction

condition can be replaced by a CLF if it known. The idea of using a CLF is also applicable

to the proposed algorithms in (Polak & Yang 1993) and (Kothare & Morari 2000). We

establish a system condition, contractibility, for the feasibility of the MPC problem. We

show that knowledge of a CLF allows us to replace the contractibility condition.

Mayne (2001) stated that a benefit of MPC is the absence of a requirement

for knowledge of a CLF. However, (Primbs, Nevistić & Doyle 1999) discussed the idea

of including a CLF in the MPC formulation for an unconstrained nonlinear system and

pointed out its possible performance improvement due to complementary aspects of a

CLF and MPC. This idea also appears in (Kwon & Han 2005). By example, we demon-

strate that our scheme can also bring improvement to control performance and give

flexibility to tune system behavior.

2. Online reference computation for feasible MPC

While Contraction Based MPC focuses on the stabilization issue, here we focus

more on computational feasibility of MPC by considering the following two classes of

state constraint structures:

A. A terminal state equality constraint,

B. Reference dependent constraints with reference trajectories over N steps.

Suppose that the above MPC problems at time k are feasible. The problems we want to

solve are:

A. What new terminal states can be chosen,

B. What new references can be chosen,

so that the MPC problems at time k+ 1 do not lose the feasibility? In the linear system

case, if all the constraints are given in terms of linear equalities or inequalities or both,

we can provide a set of new terminal states or references that preserve the feasibility of

MPC at time k + 1. We call the above Online Reference Computation problems.
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The first structure is interesting in the sense that, although one of the tech-

niques to guarantee stability is to implement either a terminal state or a terminal set

with terminal cost (D.Q.Mayne, Rawlings, C.V.Rao & P.O.M.Scokaert 2000), it is valid

only when the corresponding optimization problem is feasible. To guarantee feasibil-

ity, the authors of (Chen, Ballance & O’Reilly 2001, Magni, De Nicolao, Magnani &

Scattolini 2001, DeDoná, Seron, Mayne & Goodwin 2002, Limon, Gomes da Silva, Alamo

& Camacho 2003, Limon, Alamo & Camacho 2005) attempted to enlarge the terminal set

or construct a sequence of reachable sets where the system can be admissibly steered from

one set to the following, ultimately reaching the terminal set. The sets are computed

offline. Here, we want to build an online mechanism to inform the system what is avail-

able for the next terminal constraint for the given current state and terminal constraint

information. The first structure is also used in the Contraction Based MPC algorithms.

However, they require to compute sets that are not yet efficiently obtained for a broad

class of nonlinear systems. For the linear system with terminal equality constraints, the

set of new feasible terminal target states can be calculated fairly efficiently.

We are also interested in the second structure since we see its potential appli-

cation to a pursuit problem. Consider the Stratotanker aircraft fueling F-15K. Suppose

Figure 2.1: The USAF Stratotanker fueling F-15K of Republic of Korea

that the vehicles are unmanned (i.e. autonomous). Then the controller of each vehicle

acts as the pilot. If the Stratotanker makes a dramatic movement, then the F-15K would

have trouble to adjust its movement and it could lead to a failure of fueling. Therefore

there exists a limit on the Stratotanker’s movement depending on the dynamic properties
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of the F-15K. For simplification, from the perspective of the follower, the leader’s planned

movements over time can be seen as a reference trajectory. Therefore we consider the sys-

tem (the follower) which pursues a reference trajectory (the leader) by MPC. It is not the

same as the general tracking problem which was considered by the authors of (Gilbert

& Kolmanovsky 1995, Bemporad, Casavola & Mosca 1997, Bemporad 1998, Gilbert

& Kolmanovsky 2001, Limon, Alvarado, Alamo & Camacho 2005, Fiacchini, Alvarado,

Limon, Alamo & Camacho 2006). Rather than achieving (off-set free) tracking of a piece-

wise constant reference trajectory in steady state without any constraint violations, we

require the system to follow a specified reference trajectory and satisfy a specified off-set

by an admissible input sequence. Thus our problem is analogous to a receding hori-

zon variety of the Target Tube problem in (Bertsekas & Rhodes 1971), whose control

objective is to keep the state in a sequence of N−step state constraint sets.

2.2 Basic Model Predictive Control Formulation

Prior to the main discussions of this chapter, brief review of MPC is given in

this section. Consider the following discrete time-invariant system

xk+1 = f(xk, uk), (2.1)

where the state and input belong to

xk ∈ X ⊂ R
n,

uk ∈ U ⊂ R
m,

with an initial condition x0. Here we assume that perfect measurement of the full state

is available and the origin is the equilibrium point. Consider a constrained finite-horizon

optimal control problem at time k with the current state xk ∈ X, the horizon N , and
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the terminal target state x̄k+N ∈ X,

P(xk, x̄k+N , N) :

arg min
{uk|k,...,uk+N−1|k}

N−1
∑

i=0

h(xk+i|k, uk+i|k),

subject to

xk+i+1|k = f(xk+i|k, uk+i|k),

xk+i|k ∈ X,

uk+i|k ∈ U,

xk+N |k = x̄k+N .

(2.2)

Here xi|k (xk|k = xk) and ui|k represent the states xi and controls ui, which are computed

at time k. We assume the following:

A1. X is closed and 0 ∈ X,

A2. U is closed and 0 ∈ U,

A3. f : X×U 7−→ R
n is continuous and 0 = f(0, 0),

A4. h : X × U 7−→ R is nonnegative definite, upper-semi continuous, and satisfies

h(0, 0) = 0.

Closure of X and U, continuity of f and h, and positive definiteness of h in the assump-

tions A1∼4 are the conditions for the finite horizon problem P(xk, x̄k+N , N) to have an

optimal solution provided there exists an admissible sequence pair {(xk+i|k, uk+i|k)}N−1
i=0

(Keerthi & Gilbert 1985). If the assumptions A1∼4 hold, P(xk, x̄k+N , N) has an optimal

open-loop control solution sequence,

{u∗k|k, u∗k+1|k, . . . , u
∗
k+N−2|k, u

∗
k+N−1|k},

and a corresponding or prediction state sequence

{xk|k = xk, x
∗
k+1|k, . . . , x

∗
k+N−1|k, x

∗
k+N |k = x̄k+N}.

For given initial state x0, using a sequence of P(xk, x̄k+N , N) with x̄k+N = 0, the stan-

dard MPC algorithm is stated as follows.

Offline Preparation
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choose control horizon for the first stage (N)

Standard Model Predictive Control Law

set time k = 0,

repeat

solve P(xk, 0, N),

apply u∗k|k to the system: xk+1 = x∗k+1|k = f(xk, u
∗
k|k),

update xk ← xk+1,

end

Remark 2.2.1. Although the open-loop control problem is solved at each sampling time,

the above MPC is actually closed-loop control since the control law uses the newly mea-

sured state every time the open-loop control problem is solved.

Closed-loop stability of the system controlled by this Standard MPC Law is

established by the following theorem.

Theorem 2.2.1. (Keerthi & Gilbert 1988) Suppose that the following hold:

– Assumptions A1∼4.

– Initial P(x0, 0, N) with x0 ∈ X is feasible.

Then the system (2.1) is asymptotically stabilized by Standard MPC Law.

Proof. For P(x0, 0, N), let J∗(x0, 0, N) be the corresponding optimal cost. It can be

seen as

J∗(x0, 0, N) = h(x0, u
∗
0|0) + J∗(x∗1|0, 0, N − 1).

By the optimality principle,

J∗(x∗1|0, 0, N) ≤ J∗(x∗1|0, 0, N − 1).

Hence

J∗(x0, 0, N)− J∗(x∗1|0, 0, N) ≥ h(x0, u
∗
0|0).

Successive use of this inequality leads to

J∗(x0, 0, N) − J∗(x∗j|j−1, 0, N) ≥
j−1
∑

k=0

h(xk, u
∗
k|k),
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where j ≥ 1. Since

J∗(x0, 0, N) ≥ J∗(x0, 0, N)− J∗(x∗j|j−1, 0, N) ≥
j−1
∑

k=0

h(xk, u
∗
k|k)

holds for arbitrary j,
∞

∑

k=0

h(xk, u
∗
k|k) <∞ (2.3)

holds. This implies that the tails of (2.3) are zeros. Since h(·) = 0⇐⇒ (xk, uk) = (0, 0),

xk −→ 0 as k −→∞. This completes the proof.

Remark 2.2.2. Instead of using the terminal state equality constraint xk+N |k = 0, a

terminal state set constraint, xk+N |k ∈ Ω ⊆ X, may be used with a proper choice of the

objective function in (2.2) (Michalska & Mayne 1993, Chisci, Lombardi & Mosca 1996,

Chen & Allgöwer 1998, Mayne 2001). The set Ω is a neighborhood of the origin and

the purpose of MPC is to steer the state into Ω in finite time. Then a local stabilizing

controller κf (·) is employed. In this approach, region of attraction may be expanded.

This type of MPC is often referred to as dual mode MPC.

2.3 Contraction Based Model Predictive Control

2.3.1 Problem

For the system controlled by Standard MPC Law, we saw that cost of P(xk, 0, N)

decreases over time and the system is asymptotically stabilized, provided that the origin

is feasibly reachable from the initial state x0 in N steps. Quite naturally the following

question arises: what can we do for initial states that cannot be steered to the origin in N

steps? We want to develop an MPC scheme to deal with this situation by using the same

structure as (2.2), in which case x̄k+N will not be necessarily zero. Therefore the main

focus is on how we construct the sequence of terminal states {x̄N , x̄1+N , x̄2+N , . . . } that

preserve feasibility of P(xk, x̄k+N , N) over time and finally achieve asymptotic stability.

2.3.2 Algorithm

Before stating our MPC algorithm formally, we first reveal a big picture about

how it proceeds. The proposed MPC law consists of two stages. In the first stage,
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finite horizon problems P(xk, x̄k+N , N) are solved over time with a time varying least

decreasing norm terminal target state x̄k+N . This manipulates the system into the

situation where the second stage can take over from the first stage. In the second

stage, finite horizon problems P(xk, 0, N +N1) with an extended control horizon N1 +N

are solved. In fact, the second stage coincides with Standard MPC Law introduced

in the previous section, which leads to asymptotic stability of the closed-loop system.

We introduce notation and definitions to be used in the algorithm as well as in later

discussions. For a vector x ∈ R
n, ||x||S is the weighted norm

√
xTSx with a positive

definite matrix S ∈ R
n×n: when S = I (an identity matrix), we use ||x||.

Definition 2.3.1. A ball contained in X is defined by B(α, S) , {x ∈ X
∣

∣||x||S ≤ α, α >
0} with appropriately chosen parameters α and S.

Definition 2.3.2. The subset of X, X (0, N1) is the set of states, from which the origin

is reachable in N1 steps.

The MPC algorithm is given for an initial state x0 ∈ B(α, S) ⊆ X, where

B(α, S) is some known domain of attraction to be discussed later.

Offline Preparation

choose control horizons for the first stage (N) and the second stage (N +N1),

choose any feasible x̄N ∈ B(α, S) based on x0 ∈ B(α, S),

compute X (0, N1) ∈ X.

Contraction Based Model Predictive Control Law

set time k = 0,

[First Stage]

while x̄k+N /∈ X (0, N1)

solve P(xk, x̄k+N , N),

compute x̄k+1+N = arg minx̃{||x̃||S
∣

∣x̃ = f(x̄k+N , ūk+N ), ūk+N ∈ U},
apply u∗k|k to the system: xk+1 = x∗k+1|k = f(xk, u

∗
k|k),

update xk ← xk+1 and x̄k+N ← x̄k+N+1,

end
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[Second Stage]

repeat

solve P(xk, 0, N1 +N),

apply u∗k|k to the system,

update xk ← xk+1,

end

Remark 2.3.1. Note that the terminal target state x̄k+1+N can be computed offline since

the choice of x̄k+1+N is independent of the current state xk or the predicted state x∗k+1|k.

This observation triggers further exploration of the above algorithm later in Section 2.3.5.

At this point, it is not guaranteed that the first stage terminates in finite time

and therefore that the system is stabilized by the second stage. Also the domain of

attraction B(α, S) has not been clearly specified yet. We will show that, under some

conditions, the proposed MPC completes the first stage in finite time and the system

enjoys asymptotic stability due to the second stage.

2.3.3 Feasibility and Stability

The machine to propel our discussion on feasibility and stability properties of

the proposed MPC algorithm is contractibility, which is given bellow.

Definition 2.3.3. The system (2.1) is contractible in the domain B(α, S) if, for any

x ∈ B(α, S), there exists a feasible control u ∈ U such that ||f(x, u)||S ≤ ρ||x||S , where

ρ ∈ [0, 1).

Remark 2.3.2. Our contractibility definition is a special case of a condition in (Kothare

& Morari 2000). In their paper, the contraction occurs every j steps and in our case

j = 1. Also contractibility appears in (Polak & Yang 1993). In their setting, for a

different state, contraction can occur with different time intervals, which are also decision

variables to minimize in the open-loop control problem.

Finite time termination of the first stage is described by the following lemma.

Lemma 2.3.1. Suppose that the following hold:

– Assumptions A1∼4.
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Figure 2.2: Graphical description of Lemma 2.3.1.

– A convex domain B(α, S) ⊆ X is given in which the system is contractible.

– Initial P(x0, x̄N , N) with x0, x̄N ∈ B(α, S) is feasible.

– The origin is an interior point of X (0, N1).

Then the first stage of the Contraction Based Model Predictive Control Law terminates

in finite time.

Proof. First we show that feasibility at the current time implies feasibility all times if

the terminal state constraint is chosen by

x̄k+1+N = arg min
x̃
{||x̃||S

∣

∣x̃ = f(x̄k+N , ūk+N ), ūk+N ∈ U}. (2.4)

Since P(x0, x̄N , N) is feasible, then due to A1∼4, there exist an optimal input sequence

and open-loop state trajectory

{x0|0, x
∗
1|0, . . . , x

∗
N−1|0, x̄N},

{u∗0|0, u∗1|0, . . . , u∗N−2|0, u
∗
N−1|0}.
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Consider the next time finite horizon problem P(x1, x̄1+N , N) with the new current state

x1 = x∗1|0 and the new terminal target state x̄1+N given by (2.4). This has the following

feasible input sequence and state trajectory:

{u∗1|0, u∗2|0, . . . , u∗N−1|0, ū
∗
N},

{x1, x
∗
2|0, x

∗
3|0, . . . , x̄N , x̄1+N},

where ū∗N ∈ U is the control to steer x̄N to x̄1+N that is given by (2.4). Successive use

of the above argument guarantees feasibility all time k = 0, 1, 2, . . . . Now it remains

to show that x̄k+N reaches X (0, N1) in finite time. Since the origin is an interior point

of X (0, N1), there exists some positive real number γ > 0 such that B(γ, S) = {x ∈
X

∣

∣||x||S ≤ γ} ⊆ X (0, N1). Since the system is contractible, x̄1+N given by (2.4) satisfies

||x̄1+N ||S ≤ ρ||x̄N ||S , ρ ∈ [0, 1).

By successive applications of this result,

||x̄j+N ||S ≤ ρj ||x̄N ||S

holds. This implies that the terminal target state will be inside B(γ, S) in M1 steps,

where M1 is the smallest nonnegative integer j satisfying

j ≥ log γ − log ||x̄N ||S
log ρ

.

This completes the proof.

Remark 2.3.3. Keerthi & Gilbert (1988) used controllability (property C) of the system

to obtain X (0, N1) that has the origin as an interior point. Our condition on X (0, N1)

is weaker than their controllability condition.

Remark 2.3.4. There is no requirement that xk+j|k ∈ B(α, S), ∀j = 1, 2, . . . , N − 1.

Only the current and terminal states need to be in B(α, S).

Once the first stage terminates, asymptotic stability of the system is achieved

by the second stage as classically established in Theorem 2.2.1 by the zero terminal state

constraint.

Theorem 2.3.1. Suppose that the following hold:
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– Assumptions A1∼4.

– A convex domain B(α, S) ⊆ X is given in which the system is contractible.

– Initial P(x0, x̄N , N) with x0, x̄N ∈ B(α, S) is feasible.

– The origin is an interior point of X (0, N1).

Then Contraction Based Model Predictive Control Law asymptotically stabilizes the sys-

tem.

Remark 2.3.5. If some set D ⊆ X is a control invariant set for the system such

as B(α, S), using the tools of (Raković, Kerrigan, Mayne & Lygeros 2006), one might

construct a larger set of states from which D is feasibly reachable in N steps. Hence,

one may expand the domain of attraction.

2.3.4 Use of Control Lyapunov Functions

The key to Contraction Based Model Predictive Control Law is to construct

a sequence of finite horizon optimal control problems with contractive terminal target

states in the sense of a weighted norm. The essential condition to achieve this is that

the system be contractible. We now show how this might be relaxed by the knowledge

of a Control Lyapunov Function.

Definition 2.3.4. A scalar function V(x) is said to be a Control Lyapunov Function

(CLF) for the system (2.1) in the domain XV ⊆ X if the following hold:

– It is smooth.

– There exist K∞ class functions W1, W2 such that, for all x ∈ XV ,

W1(||x||) ≤ V(x) ≤W2(||x||).

– There exists u ∈ U such that f(x, u) ∈ XV and

V(f(x, u))− V(x) ≤ −β(||x||), (2.5)

where β is positive definite, continuous, and satisfies β(0) = 0.
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Contractibility in Definition 2.3.3 can be seen as using xTSx to be a CLF in

the domain XV = B(α, S). This motivates the following control law.

Offline Preparation

choose control horizons for the first stage (N) and the second stage (N +N1),

choose any feasible x̄N ∈ XV ⊆ X based on x0 ∈ XV ⊆ X,

compute X (0, N1) ∈ X.

Control Lyapunov Function Based Model Predictive Control Law

set time k = 0,

[First Stage]

while x̄k+N /∈ X (0, N1)

solve P(xk, x̄k+N , N),

compute x̄k+1+N = arg minx̃{V(x̃)
∣

∣x̃ = f(x̄k+N , ūk+N ), ūk+N ∈ U, x̃ ∈ XV},
apply u∗k|k to the system: xk+1 = x∗k+1|k = f(xk, u

∗
k|k),

update xk ← xk+1 and x̄k+N ← x̄k+N+1,

end

[Second Stage]

repeat

solve P(xk, 0, N1 +N),

apply u∗k|k to the system,

update xk ← xk+1,

end

Theorem 2.3.2. Suppose that the following hold:

– Assumptions A1∼4,

– There exists a CLF in the domain XV ⊆ X,

– Initial P(x0, x̄N , N) with x0, x̄N ∈ XV ⊆ X is feasible,

– The origin is an interior point of X (0, N1).
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Then Control Lyapunov Function Based Model Predictive Control Law asymptotically

stabilizes the system.

Proof. It suffices to show that x̄k+N ∈ X (0, N1) in finite time: the proof for feasibility

and stability is obtained in an identical way to that of Lemma 2.3.1 and Theorem 2.2.1.

Since there exists a CLF V(x) in the domain XV , x̄k+1+N given by

x̄k+1+N = arg min
x̃
{V (x̃)

∣

∣x̃ = f(x̄k+N , ūk+N ), ūk+N ∈ U, x̃ ∈ XV},

satisfies

V(x̄k+1+N ) ≤ V(x̄k+N )− β(||x̄k+N ||),

where β is a positive definite function. By standard Lyapunov stability argument, this

implies that x̄k+N → 0 as k → ∞. That is, given sufficiently small γ > 0 such that

{x
∣

∣||x|| ≤ γ} ⊆ X (0, N1), there exists an finite integer M2 such that ||x̄k+N || ≤ γ from

all k ≥M2. This completes the proof.

2.3.5 Use of the Closed-loop State

We have presented two stabilizing MPC laws based on minimizing a positive

definite function in determining the sequence of successive terminal target states. In the

proposed algorithms, we see that the process to update the terminal target state could

have been computed offline since it is determined solely by the positive definite function

(e.g. CLF) and hence independent of the closed-loop state. Now we develop a more

complicated algorithm, which can expand the achievable set of terminal target states.

As we shall see, if we use the knowledge of the computed optimal state x∗k+1|k to determine

x̄k+1+N , then the previous algorithms can be improved to accelerate convergence of the

terminal target state to X (0, N1). To facilitate this idea, we will rely on the N−step

reachable set from x∗k+1|k.

Definition 2.3.5. X
fwd
N (x∗k+1|k) is the set of states that are feasibly reachable from x∗k+1|k

forward in N steps.

The set, X
fwd
N (x∗k+1|k), relies on information available at time k and so is

denoted as dependent on x∗k+1|k. The MPC algorithm is stated for an initial state

x0 ∈ B(α, S) ⊆ X, where B(α, S) is a domain in which the system is contractible.
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Offline Preparation

choose control horizons for the first stage (N) and the second stage (N +N1),

choose any feasible x̄N ∈ B(α, S) based on x0 ∈ B(α, S),

compute X (0, N1) ∈ X.

State Dependent Contraction Based Model Predictive Control Law

set time k = 0,

[First Stage]

while x̄k+N /∈ X (0, N1)

solve P(xk, x̄k+N , N),

compute X
fwd
N (x∗k+1|k),

compute x̄k+1+N = arg minx̃{||x̃||S
∣

∣x̃ ∈ X
fwd
N (x∗k+1|k)},

apply u∗k|k to the system: xk+1 = x∗k+1|k = f(xk, u
∗
k|k),

update xk ← xk+1 and x̄k+N ← x̄k+N+1,

end

[Second Stage]

repeat

solve P(xk, 0, N1 +N),

apply u∗k|k to the system,

update xk ← xk+1,

end

To understand the effectiveness of this algorithm, recall the computation of

x̄k+1+N for given x̄k+N at time k in Contraction Based Model Predictive Control Law:

x̄k+1+N = arg min
x̃
{||x̃||S

∣

∣x̃ = f(x̄k+N , ūk+N ), ūk+N ∈ U}.

This is equivalent to

x̄k+1+N = arg min
x̃
{||x̃||S

∣

∣x̃ ∈ f(x̄k+N ,U)}, (2.6)

where f(x̄k+N ,U) , {x|x = f(x̄k+N , ūk+N ),∀ūk+N ∈ U} is the one-step reachable set

from x̄k+N . By the definition of X
fwd
N (x∗k+1|k), we see that X

fwd
N (x∗k+1|k) ⊇ f(x̄k+N ,U).
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Hence, the new construction of x̄k+1+N by

x̄k+1+N = arg min
x̃
{||x̃||S

∣

∣x̃ ∈ X
fwd
N (x∗k+1|k)} (2.7)

results in at least

||x̄k+1+N ||S ≤ ρ||x̄k+N ||S . (2.8)

Therefore, if the first stage of State Dependent Contraction Based Model Predictive

Control Law is feasibly executed over time, then the system may be stabilized faster by

the above MPC law than Contraction Based Model Predictive Control Law.

Theorem 2.3.3. Suppose that the following hold:

– Assumptions A1∼4.

– A convex domain B(α, S) ⊆ X is given in which the system is contractible.

– Initial P(x0, x̄N , N) with x0, x̄N ∈ B(α, S) is feasible.

– The origin is an interior point of X (0, N1).

Then the State Dependent Contraction Based Model Predictive Control Law asymptoti-

cally stabilizes the system.

Proof. Since x̄k+1+N is chosen in the N−step reachable set from x∗k+1|k, X
fwd
N (x∗k+1|k),

feasibility is guaranteed at each time step and this is enough to complete the proof.

If the first stage operates feasibly then finite time termination of the first stage

is immediate by the fact that the newly chosen terminal target state x̄k+1+N achieves at

least (2.8). Then the system is asymptotically stabilized by the second stage.

Remark 2.3.6. In the above MPC law, the computational burden may be an issue for

systems with high dimensions and short sampling time because X
fwd
N (x∗k+1|k) has to be

computed at each time step. This idea is tractable at least for a linear system with

polytope constraints using the tools of (Kvasnica, Grieder & Baotić 2004) and Section

2.4.
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Remark 2.3.7. Of course, a CLF V(x) can be used, if it exists, in the domain XV ⊆ X.

By replacing (2.7) with

x̄k+1+N = arg min
x̃
{V(x̃)

∣

∣x̃ ∈ X
fwd
N (x∗k+1|k) ∩XV}, (2.9)

one can still construct an MPC law. This also may give faster termination time of the

first stage than that of the first stage in Control Lyapunov Function Based Model Pre-

dictive Control Law. This approach deserves comparison with the control laws proposed

in (Kwon & Han 2005) as well as (Freeman & Kokotović 1995) for continuous time

systems. In (Kwon & Han 2005), a CLF is used to develop a state constraint. That is,

for the given state xk+1 = x∗k+1|k at time k + 1, they constrain the open-loop control to

achieve

V(xk+i+1|k+1) ≤ V(xk+i|k+1)− β(||xk+i|k+1||), (2.10)

for the complete horizon i = 1, 2, . . . , N or just for the next step i = 1. In other words,

their open-loop control problem only requires the predicted states xk+i+1|k+1 to satisfy

(2.10). In our case, for the given x∗k+1|k, we choose the terminal target state x̄k+N+1 by

(2.9) to cause the greatest reduction in V(·) and find an open-loop control solution for

xk+1 = x∗k+1|k to reach x̄k+1+N . Thus, our method may lead to faster stabilization of the

system than the MPC law of (Kwon & Han 2005).

2.3.6 Example: Hovercraft Control

We use a hovercraft model to demonstrate the system stabilization by our MPC

algorithms: Contraction Based Model Predictive Control and State Dependent Contrac-

tion Based Model Predictive Control. These cases include taking the weighted state

norm as a CLF. We use the model of HotDeC (HOvercraft Testbed for DEcentralized

Control) whose details are presented in Appendix A. The vehicle model has the state

vector

[xp,k yp,k θp,k xs,k ys,k θs,k]
T .

The elements xp,k, yp,k, xs,k, and ys,k represent positions and velocities in Cartesian co-

ordinates respectively. The variables θp,k and θs,k are angular displacement and velocity

of the vehicle respectively. Each coordinate in the model is independent. Therefore, for
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simplicity, we consider only the x−coordinate of the vehicle given by





xp,k+1

xs,k+1



 =





1 0.3

0 1









xp,k

xs,k



 +





0.01

0.09



uk. (2.11)

We assume that the model (2.11) is a precise description of the vehicle in the x−coordinate

and that perfect state measurement is available. The control uk is constrained to the set

U = [−5, 5]. (2.12)

Let us denote [xp,k xs,k]
T by xk. The goal, for a given initial state x0, is to steer the

vehicle to the zero state using the proposed MPC algorithms. At each time step k, we

solve the following open-loop control problem,

P(xk, x̄k+N , N̄) :

arg min
{uk|k,...,uk+N̄−1|k}

N̄−1
∑

i=0

xTk+i|kQcxk+i|k + uTk+i|kRcuk+i|k,

subject to

xk+i+1|k =





1 0.3

0 1



xk+i|k +





0.01

0.09



uk+i|k,

uk+i|k ∈ U,

xk+N |k = x̄k+N ,

(2.13)

with Qc=I and Rc=100. For the given initial state x0 = [10 0]T , two cases are considered:

Case 1 The vehicle is controlled by the Contraction Based Model Predictive Control

Law (CBMPC).

Case 2 The vehicle is controlled by the State Dependent Contraction Based Model

Predictive Control Law (SD-CBMPC).

For both cases, we choose N̄ = N = 4 and N̄ = N + N1 = 7 (N1 = 3) as control

horizons for the first and second stages respectively. The set X (0, 3) is shown in Figure

2.3. We choose x̄N = [9.4 − 1]T as an initial feasible terminal target state for x0. Note

that the given initial state x0 can never be steered to the origin within the fixed horizon

N̄ = 7: the closest to the origin it can come in seven steps is xp = 5.82. From the initial
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Figure 2.3: Graphical depiction of X (0, 3).

target terminal state x̄N , the system is contractible in the euclidean norm sense. [It is

still possible to consider the weighted norm ||x||S to update x̄k+N with an appropriately

chosen S.] Once the terminal target state reaches the region shown in Figure 2.3, the

MPC algorithms of both cases will switch to the second stage with zero terminal target

state and the horizon N̄ = 7. Results are shown in Table 2.1 and Figure 2.3.6 and 2.5.

Table 2.1: Time comparison between the two methods.
CBMPC SD-CBMPC

First Stage Termination Time 31.8 sec 3.9 sec

Time for xk inside {x
∣

∣||x|| ≤ 0.0001} 35.1 sec 9.3 sec

2.3.7 Example: Integrator

A simple scalar integrator is employed to show how our scheme can be beneficial

to stabilization performance and tuning the system behavior. We consider a simple scalar

integrator

xk+1 = xk + uk, (2.14)
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Figure 2.4: Time trajectories of the vehicle position by the two methods. The dot-dashed

lines represent the terminal target position x̄p,k+N over time.

since its behavior is quite easy and hence to appreciate the performance enhancement of

our scheme. We assume 0.2 second sampling time just for visualization of the results over

time. The input constraint is assumed to remain as in (2.12). The objective of control

is to steer the initial state x0 to the origin using Contraction Based Model Predictive

Control Law. Consider the following open-loop control problem at time k,

P(xk, x̄k+N , N̄) :

arg min
{uk|k,...,uk+N̄−1|k}

N̄−1
∑

i=0

xTk+i|kQcxk+i|k + uTk+i|kRcuk+i|k,

subject to

xk+i+1|k = xk+i|k + uk+i|k,

uk+i|k ∈ U,

xk+N |k = x̄k+N ,

(2.15)

with Qc = 1. Here we use two different weightings Rc: Rc = 0 and Rc = 100. The

control horizons N̄ = N = 3 and N̄ = N + N1 = 6 (N1 = 3) are chosen for the first

and second stages respectively. The set X (0, 3) is [−15, 15]. The initial state is given by
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Figure 2.5: Time trajectory of the vehicle velocity. The dot-dashed lines represent the

terminal target velocity x̄s,k+N over time.

x0 = 50 and the initial target terminal target state is chosen to be x̄N = 42. The system

is contractible in the sense of the euclidean norm, which can be viewed as having a CLF

V(x) = x2. If MPC is not considered, we might think of a nominal feedback control law

uk = −0.1xk based on V(x), which does not violate the control constraint. However, as

shown in Figure 2.6, the state trajectory by the nominal feedback law converges to the

origin much more slowly. In this particular setting, for the given x̄k+N , u = −5 minimizes

V(x̄k+N + u) and results in the terminal target state trajectory {42, 37, 32, . . . , 17} until

x̄k+N enters X (0, 3). Without control penalty R, one can expect that the MPC will allow

the full control capacity to steer the state, which results in a straight-line-like trajectory

as shown in Figure 2.6. The above results suggest that MPC combined with a CLF may

lead to better control performance than a nominal control solely based on the known

CLF.
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Horizon Control.

2.4 Online Reference Computation for Feasible Model Pre-

dictive Control

In the previous section, we discussed how we can stablize the system

xk+1 = f(xk, uk), (2.16)

whose initial state is hard to be steered to the origin in a limited horizon. The core

idea was constructing a sequence of feasible finite horizon optimal control problems with

manipulated terminal target states. The proposed algorithms require to compute sets

such as rechable sets. Here, we concentrate on computational issues associated with

constructing feasible MPC

We denote the reference and the input sequences from time i to j by rji ,

{ri, ri+1, . . . , rj} and uji , {ui, ui+1, . . . , uj} respectively. The reference sequence rji will

be equivalently written as rji = {ri, rji+1} = {rj−1
i , rj}. We denote the input sequence

given in one-vector form by ūji ,

[

ui
T ui+1

T . . . uj
T
]T

. For two vector x and y, x > y

and x ≥ y will be taken elementwise. For a given scalar s, s̄ denotes the vector of

s (i.e. s̄ , s[ 1 1 . . . 1 ]T ) of an appropriate dimension. For the given set of ψ points,
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E = {e1, e2, . . . , eψ}, we denote by conv(E) the convex hull of E. The expression vert(F )

represents the vertex set of convex set F and f⋆ represents a vertex.

2.4.1 Problems

We first state two problems using the system

xk+1 = f(xk, uk),

with perfect state measurement. Then, for simplicity, clarity, and computation, we con-

sider a linear time invariant system.

Problem 1: Terminal state equality constraint case

Using the following finite horizon optimal control problem,

P(xk, x̄k+N , N) :

arg min
{uk|k,...,uk+N−1|k}

N−1
∑

i=0

h(xk+i|k, uk+i|k),

subject to

xk+i+1|k = f(xk+i|k, uk+i|k),

uk+i|k ∈ U,

xk+N |k = x̄k+N ,

(2.17)

consider the following MPC for an initial state x0:

set time k = 0,

repeat

solve P(xk, x̄k+N , N),

apply the optimal control u∗k|k to the system: xk+1 = x∗k+1|k = f(xk, u
∗
k|k),

update xk ← xk+1, x̄k+N ← xk+1+N ,

end,

which would be feasibly executed for all time provided that a feasible terminal state x̄i+N

is given for all i. With xk and x̄k+N given, consider P(xk, x̄k+N , N). Assume that there

exists a feasible but unknown solution at time k. Find the set, X̄k+N+1(xk, x̄k+N ), of

subsequent terminal states x̄k+1+N such that P(xk+1, x̄k+1+N , N) is also feasible for any

x̄k+1+N ∈ X̄k+1+N (xk, x̄k+N ).
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Remark 2.4.1. In State Dependent Contraction Based Model Predictive Control, we

used current state xk+1 = xk+1|k to decide x̄k+N . However, in this problem, we attempt

to obtain a set of all feasible x̄k+1+N by only using the fact that P(xk, x̄k+N , N) is feasible.

In addition to the MPC with the terminal state equality constraint, we also

consider an MPC problem whose state constraints are defined using reference trajectory.

Problem 2: Reference dependent state constraint case

Using the following optimal control problem

P(xk, r
k+N
k+1 , N) :

arg min
{uk|k,...,uk+N−1|k}

N−1
∑

i=0

h(xk+i|k, uk+i|k),

subject to

xk+i+1|k = f(xk+i|k, uk+i|k),

uk+i|k ∈ U,

xk+i|k ∈ Xk+i(rk+i),

(2.18)

consider the following MPC for an initial state x0:

set time k = 0,

repeat

solve P(xk, r
k+N
k+1 , N),

apply the optimal control u∗k|k to the system: xk+1 = x∗k+1|k = f(xk, u
∗
k|k),

update xk ← xk+1, r
k+N
k+1 ← rk+N+1

k+2

end,

where, by permissible deviation from the reference, Xk+i(rk+i) are defined in relation to a

reference sequence rk+Nk+1 = {rk+1, r
k+N
k+2 }. With xk given, suppose that there exists a feasi-

ble optimal solution u
k+N−1|k
k|k,∗ , {u∗k|k, u∗k+1|k, . . . , u

∗
k+N−1|k} for P(xk, r

k+N
k+1 , N) and the

corresponding next state xk+1 is available. Consider the next problem P(xk+1, r
k+N+1
k+2 , N)

with extended reference sequence rk+N+1
k+2 = {rk+Nk+2 , rk+N+1}, where rk+N+1 is the sole

variable to be chosen. Find a set of rk+N+1 such that this problem is feasible.

In the sequel, we will consider a linear time invariant system and a polytope
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for the input constraint:

xk+1 = f(xk, uk) = Axk +Buk,

uk+i−1 ∈ U = {uk+i−1

∣

∣ ‖ uk+i−1 ‖∞≤ c}

= conv{u⋆,1k+i−1, u
⋆,2
k+i−1, . . . , u

⋆,2m

k+i−1},

(2.19)

where ||·||∞ is the vector infinity norm. Note that the vertices u⋆,ik+i−1 are readily obtained

since U is symmetric about the origin. The state equality constraint in (2.17) is given

by

x̄k+N = ANxk +
N

∑

i=1

AN−iBuk+i−1. (2.20)

and, for the state constraints in (2.18), we use

xk+i∈Xk+i(rk+i)={xk+i
∣

∣‖ rk+i − xk+i ‖∞≤ d}. (2.21)

What is nice about (2.19), (2.20), and (2.21) is that, if set operations associated with

them result in convex sets, then they can be given in terms of a set of inequalities or a

convex hull of vertices. We also note that the constraints associated with rk+i and d do

not have to be in the form (2.21) as long as they are in the form of linear inequalities

which can be equivalently given as a convex hull of vertices. We use (2.21) for the ease

of representation.

Remark 2.4.2. Our focus here is entirely on feasibility and so, not surprisingly, the

optimization objectives in (2.17) and (2.18) will not appear in our later analysis.

2.4.2 Algorithm: Terminal state equality constraint case

In order to construct an algorithm for this problem, we first need to understand

implication of the feasible problem P(xk, x̄k+N , N) of (2.17) for given xk and x̄k+N . Using

the linear system and the symmetric input constraint in (2.19) and the state constraint

(2.20), we define the following sets:

X
fwd
1 (xk) = {x|x = Axk +Buk,∀uk ∈ U}

= {x|Ωf (x−Axk) ≤ bf},
(2.22)
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X
bwd
N−j(x̄k+N) = {x|x̄k+N = AN−jx+

N
∑

i=j+1

AN−iBuk+i−1,

∀uk+i−1 ∈ U,∀i = j + 1, j + 2, . . . , N}

= {x|Ωb
N−j(x̄k+N −AN−jx) ≤ bbN−j}.

(2.23)

– X
fwd
1 (xk) is the set of all xk+1 evaluated by all uk ∈ U forward in time for the

given xk.

– X
bwd
N−j(x̄k+N ) is the set of all xk+j evaluated (N − j)−steps backward in time for

the given x̄k+N by all uk+i−1 ∈ U, ∀i = j + 1, j + 2, . . . , N .

– The matrices Ωf and bf are obtained by writing x − Axk in terms of feasible

uk. Likewise, Ωb
N−j and bbN−j are obtained by the state evolution for all feasible

uk+i−1, ∀i = j + 1, j + 2, . . . , N . If xk ∈ R
1 and uk ∈ U = [−c, c], then

X
fwd
1 (xk) = {x| −Bc ≤ x−Axk ≤ Bc}

=







x
∣

∣

∣





1

−1



 (x−Axk) ≤





Bc

Bc











,

X
bwd
N−j(x̄k+N )=

{

x| −
N

∑

i=j+1

AN−iBc≤ x̄k+N−AN−jx≤
N

∑

i=j+1

AN−iBc
}

=







x
∣

∣

∣





1

−1



(x̄k+N−AN−jx)≤





∑N
i=j+1A

N−iBc
∑N

i=j+1A
N−iBc











.

– Once the control horizon N is fixed, then Ωf , bf , Ωb
N−j, and bbN−j are fixed.

Remark 2.4.3. Reconsider Section 2.3 with the linear system (2.19). From X
fwd
1 (xk),

we see that the set f(x̄k+N ,U) of (2.6) will have the same structure of X
fwd
1 (xk). Fur-

thermore, the N -step reachable set X
fwd
N (x∗k+1|k) in State Dependent Contraction Based

Model Predictive Control Law will be in the form of linear inequality that is similar to

X
fwd
1 (xk).

Define X
feas
k+1 (xk, x̄k+N ) , X

fwd
1 (xk) ∩ X

bwd
N−1(x̄k+N ) to be the set of all xk+1, which are

reachable from both xk and x̄k+N . Assuming feasibility at time k, the following statement

is true.
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Theorem 2.4.1. For given xk and x̄k+N , suppose that P(xk, x̄k+N , N) of (2.17) is

feasible. Then X
feas
k+1 (xk, x̄k+N ) 6= ∅.

Proof. If X
feas
k+1 (xk, x̄k+N ) = ∅ then this implies no feasible solution. This contradicts the

assumption.

The algorithm is now stated and details of each step will be followed.

Algorithm for the terminal state equality constraint problem

Step 1. Compute X
feas
k+1 (xk, x̄k+N ).

Step 2. Compute X̄k+1+N (xk, x̄k+N ), the set of all x̄k+1+N whose N -step backward sets

X
bwd
N (x̄k+1+N ) = {x|Ωb

N (x̄k+1+N −ANx) ≤ bbN} (2.24)

contains X
feas
k+1 (xk, x̄k+N ).

The graphical explanation is given in Figure 2.7. Since any x̄k+1+N ∈ X̄k+1+N (xk, x̄k+N )

is reachable from any xk+1 ∈ X
feas
k+1 (xk, x̄k+N ), whatever the solution at time k, if any

x̄k+1+N ∈ X̄k+1+N (xk, x̄k+N ) is chosen then P(xk+1, x̄k+N+1, N) with xk+1 = x∗k+1|k is

feasible.

Figure 2.7: Graphical description of the algorithm.

Step 1:

Using (2.22) and (2.23), X
feas
k+1 (xk, x̄k+N ) is given by

X
feas
k+1 (xk, x̄k+N )=

{

x
∣

∣

∣





Ωf

−Ωb
N−1A

N−1



x≤





ΩfAxk + bf

−Ωb
N−1x̄k+N + bbN−1





}

= conv{x⋆,1k+1, x
⋆,2
k+1, . . . , x

⋆,q
k+1}.

(2.25)
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Note that, since it is a numerical procedure to obtain vertices from the set of inequalities,

the number of vertices varies all the time.

Step 2:

Using the vertices of X
feas
k+1 (xk, x̄k+N ), we obtain X̄k+1+N (xk, x̄k+N ) as follows.

Theorem 2.4.2. For given xk and x̄k+N , suppose that P(xk, x̄k+N , N) is feasible. Then

the set of all feasible x̄k+1+N at time k + 1 is given by

X̄k+1+N (xk, x̄k+N ) =































x
∣

∣

∣

















Ωb
N

Ωb
N
...

Ωb
N

















x ≤

















bbN + Ωb
NA

Nx⋆,1k+1

bbN + Ωb
NA

Nx⋆,2k+1
...

bbN + Ωb
NA

Nx⋆,qk+1















































, (2.26)

and it is not empty.

Proof. The set (2.26) is the collection of all x̄k+1+N whose X
bwd
N (x̄k+1+N ) of (2.24) con-

tains all the vertices of X
feas
k+1 (xk, x̄k+N ), which is equivalent to containing all xk+1 ∈

X
feas
k+1 (xk, x̄k+N ). To prove that X̄k+1+N (xk, x̄k+N ) is not empty, we will show its subset

is not empty. If the MPC at time k is feasible, X
feas
k+1 (xk, x̄k+N ) exists and every element

in the set can reach x̄k+N in (N − 1) steps. We can construct the set X
fwd
1 (x̄k+N ) which

is reachable from x̄k+N in one step. This implies that X
fwd
1 (x̄k+N ) is reachable from any

xk+1 ∈ X
feas
k+1 (xk, x̄k+N ) in N steps. Thus the set X̄k+1+N (xk, x̄k+N ) ⊇ X

fwd
1 (x̄k+N) is

not empty.

2.4.3 Algorithm: Reference dependent state constraint case

To understand the problem further, the following definition is useful.

Definition 2.4.1. Feasible Input Set

For given xk and rk+Nk+1 , define the Feasible Input Set of the MPC problem (2.18):

U
k+N−1
k (xk, r

k+N
k+1 ),

{

ūk+N−1
k

∣

∣xj|k∈ Xk+i(rk+i) ∀j=k+1, . . . , k+N and ūk+N−1
k ∈UN

}

,

where UN denotes the N product of U.

For given xk and rk+Nk+1 , if there exists a feasible solution for the N−step optimal control

problem P(xk, r
k+N
k+1 , N), then the (N − 1)−step problem P(xk+1, r

k+N
k+2 , N − 1) with

xk+1 = f(xk, u
∗
k|k) and rk+Nk+2 also has a feasible solution. That is
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Lemma 2.4.1. If U
k+N−1
k (xk, r

k+N
k+1 ) 6= ∅ then U

k+N−1
k+1 (xk+1, r

k+N
k+2 ) 6= ∅.

Consider U
k+N
k+1 (xk+1, r

k+N+1
k+2 ) with xk+1 and rk+N+1

k+2 = {rk+Nk+2 , rk+N+1}, where rk+N+1

is to be chosen. One way to solve the problem is to choose rk+N+1 in such a way

that, by feasible uk+N ∈ U, Xk+N+1(rk+1+N ) is reachable from xk+N which is driven

by some ūk+N−1
k+1 ∈ U

k+N−1
k+1 (xk+1, r

k+N
k+2 ). Then U

k+N
k+1 (xk+1, r

k+N+1
k+2 ) will not be empty

and, therefore, P(xk+1, r
k+N+1
k+2 , N) at time k + 1 will be feasible. For given xk and

rk+Nk+1 , consider P(xk, r
k+N
k+1 , N) of (2.18) with the linear system and the symmetric input

constraint in (2.19) and the state constraints (2.21)

uk+i−1 ∈ U = {uk+i−1

∣

∣ ‖ uk+i−1 ‖∞≤ c}

= conv{u⋆,1k+i−1, u
⋆,2
k+i−1, . . . , u

⋆,2m

k+i−1},

xk+i∈Xk+i(rk+i)={xk+i
∣

∣‖ rk+i − xk+i ‖∞≤ d}

= {xk+i| − d̄+ rk+i ≤ xk+i ≤ d̄+ rk+i}.

Since the system is linear, the state constraint becomes

−d̄+ rk+i ≤ Aixk +Ai−1Buk + · · · +Buk+i−1 ≤ d̄+ rk+i, (2.27)

which shows that the state constraint (2.21) can be seen as constraints on inputs. By

combining all the constraints in (2.19) and (2.27), we have the feasible input set

U
k+N−1
k (xk, r

k+N
k+1 ) = {ūk+N−1

k

∣

∣

∣
Aūk+N−1

k ≤ b(xk, rk+Nk+1 )}, (2.28)

where A and b(xk, r
k+N
k+1 ) are given in (2.29). Once the control horizon N is fixed then

A is fixed but b(xk, r
k+N
k+1 ) is not since we use rk+N+1

k+2 at time k + 1. If P(xk, r
k+N
k+1 , N)

is feasible, U
k+N−1
k (xk, r

k+N
k+1 ) is not empty. It is a convex polytope since it is given as a

combination of linear inequalities.

Algorithm for the reference dependent state constraint case

Step 1. For given xk+1 = f(xk, u
∗
k|k), compute U

k+N−1
k+1 (xk+1, r

k+N
k+2 ), the set of all fea-

sible solutions ūk+N−1
k+1 .

Step 2. Compute X
feas
k+N(xk+1), the set of all xk+N which are driven from xk+1 by all

ūk+N−1
k+1 ∈ U

k+N−1
k+1 (xk+1, r

k+N
k+2 ).
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. (2.29)

Step 3. Compute X
reach
k+N+1, the set of all xk+N+1 which are reachable from some xk+N ∈

X
feas
k+N (xk+1) by some uk+N ∈ U.

Step 4. Dilate X
reach
k+N+1 by d in every coordinate to get Rk+N+1, the set of all rk+N+1

such that xk+N+1 ∈ Xk+N+1(rk+N+1) for some xk+N+1 ∈ X
reach
k+N+1 (i.e. U

k+N
k+1 (xk+1,

rk+N+1
k+2 ) 6= ∅).

Figure 2.8: Schematic description of the algorithm.
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The illustrative figure is shown in Figure 2.8. Any xk+N ∈ X
feas
k+N (xk+1) is reachable from

xk+1 by some ūk+N−1
k+1 ∈ U

k+N−1
k+1 (xk+1, r

k+N
k+2 ) without violating any constraints. Since

X
reach
k+N+1 is reachable from some xk+N ∈ X

feas
k+N(xk+1) by some uk+N ∈ U, any xk+N+1 ∈

X
reach
k+N+1 is reachable from xk+1 without violating Xk+i(rk+i), ∀i = 2, 3, . . . , N and U.

Then we choose rk+N+1 whose resulting Xk+N+1(rk+N+1) has some xk+N+1 ∈ X
reach
k+N+1.

Here the vertices of sets play a very important role. From Step 2 to Step 4, all

the set computations are indeed the Minkowski sums of two sets. In our case, since sets

are convex polytopes, each vertex of the Minkowski sum is the sum of a vertex of one

polytope and one of the other. That is, for linear systems with half plane constraints, the

vertices of the feasible state set are given by propagation of the vertices of the feasible

input set.

Step 1: The set

U
k+N−1
k+1 (xk+1, r

k+N
k+2 )={ūk+N−1

k+1

∣

∣

∣
A′ūk+N−1

k+1 ≤b(xk+1, r
k+N
k+2 )},

is obtained by reconstructing (2.28) with xk+1 = Axk+Bu
∗
k|k and is not empty by Lemma

2.4.1. This set gives all the possible solutions that can steer xk+1 over (N − 1) steps

without violating all the state and input constraints (2.19) and (2.21). It is a convex

polytope in R
(m×[N−1]) which can be equivalently given as a convex hull of l vertices

U
k+N−1
k+1 (xk+1, r

k+N
k+2 )= conv({ūk+N−1,⋆,1

k+1 , ūk+N−1,⋆,2
k+1 , . . . , ūk+N−1,⋆,l

k+1 }),

Step 2: Consider (N − 1)−step evolution of the state for the given xk+1 by ūk+N−1,⋆,i
k+1 ∈

U
k+N−1
k+1 (xk+1, r

k+N
k+2 ):

xik+N =AN−1xk+1+[AN−2B AN−3B . . . B ]ūk+N−1,⋆,i
k+1 .

Then the set of all xk+N which are feasibly reachable from xk+1 is given by

X
feas
k+N(xk+1) = conv({x1

k+N , x
2
k+N , . . . , x

l
k+N}),

vert(Xfeas
k+N (xk+1)) = {x⋆,1k+N , x

⋆,2
k+N , . . . , x

⋆,q
k+N}.

(2.30)

One can understand X
feas
k+N(xk+1) as the Minkowski sum of the single point set {AN−1xk+1}

and the other associated with U
k+N−1
k+1 (xk+1, r

k+N
k+2 ). In general, the number of vertices

q in (2.30) is less than or equal to l.
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Step 3: Consider one-step state evolution from some x⋆,ik+N ∈ X
feas
k+N(xk+1) by some

u⋆,jk+N ∈ U

xi,jk+N+1 = Ax⋆,ik+N +Bu⋆,jk+N .

The set of all reachable xk+N+1 from some xk+N ∈ X
feas
k+N(xk+1) is given by

X
reach
k+N+1=conv({xi,jk+N+1|x

i,j
k+N+1=Ax

⋆,i
k+N+Bu⋆,jk+N ,

∀x⋆,ik+N∈X
feas
k+N(xk+1), ∀u⋆,jk+N∈U}),

vert(Xreach
k+N+1) ={x⋆,1k+N+1, x

⋆,2
k+N+1, . . . , x

⋆,w
k+N+1}.

(2.31)

Step 4: Consider the state constraint

Xk+N+1(rk+N+1)={xk+N+1| ‖ rk+N+1 − xk+N+1 ‖∞≤d}.

The inequality in Xk+N+1(rk+N+1) is equivalent to

xk+N+1 − d̄ ≤ rk+N+1 ≤ xk+N+1 + d̄, (2.32)

which implies that Rk+N+1 is the collection of all rk+N+1 satisfying (2.32) for some

xk+N+1 ∈ X
reach
k+N+1. In addition, the expression (2.32) implies that Rk+N+1 is obtained

by dilating X
reach
k+N+1 by ±d in every coordinate. Consider the set

D={v| ‖ v ‖∞≤d}

= conv({v⋆,1, v⋆,2, . . . , v⋆,2n}),

as the dilation of the single point set {0} by ±d. Its vertices are readily obtained since it

is symmetric about the origin. Now, for some x⋆,ik+N+1 ∈ X
reach
k+N+1 we can define a feasible

rk+N+1 satisfying (2.32) using the vertices of D

ri,jk+N+1 , x⋆,ik+N+1+ v⋆,j . (2.33)

Then, using (2.33), Rk+N+1 is given in the following theorem.

Theorem 2.4.3. For given xk and rk+Nk+1 , suppose that P(xk, r
k+N
k+1 , N) is feasible. Then

the set, Rk+N+1, of all feasible rk+N+1 is given by

Rk+N+1=conv({ri,jk+N+1|r
i,j
k+N+1=x

⋆,i
k+N+1+ v⋆,j ,

∀x⋆,ik+N+1 ∈X
reach
k+N+1, ∀v⋆,j∈ D}).

(2.34)
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Note that, if we do not use the vector-infinity-norm state constraints, then D may have

a different form.

Remark 2.4.4. To solve the problem, we assume to have an available optimal solution

and its resulting xk+1. Instead, one could be tempted to consider the set of feasible

xk+1 using all the feasible uk in the solutions of (2.28), obtain X
feas
k+N which is now

reachable from any feasible xk+1, and finally X
reach
k+N+1 and Rk+N+1 as in (2.31) and

(2.34). However, such X
feas
k+N that is reachable from any feasible xk+1 is not guaranteed

to be non-empty. Hence it is not a reliable idea to consider all feasible xk+1.

2.4.4 Computational Cost and Approximation

In general, the complexity of convex set computation is measured by critical

input parameters such as the number of inequalities or vertices and the dimension of

the inequality solutions (Fukuda 2004). It is commonly agreed to consider the worst

case computational size to measure the complexity. The worst computational size of

the convex hull algorithm for d points in R
n is bounded above O(dn) (O(dn/2) if d ≥ 4

(Chazelle 1993)). Therefore the costs for the proposed algorithms may not be cheap. If

we have a fast system with large dimensions and control horizon, the algorithms might

not be viable. In that case, provided that cheap but guaranteed feasible approxima-

tions exist, we should trade off between computational cost and full description of the

sets (X̄k+1+N (xk, x̄k+N ),Rk+N+1). For X̄k+1+N (xk, x̄k+N ), one could use the optimal

solution to consider only one xk+1 = x∗k+1|k (i.e. X
feas
k+1 (xk, x̄k+N ) = {xk+1}). Then

X̄k+1+N (xk, x̄k+N ) is simply the N−step reachable set from xk+1 in which case we avoid

the computations (2.25) and most of (2.26). The complexity is just as much as evaluating

(2.26) for only one vertex. Note that this is exactly the same situation as computing the

N -step reachable set in State Dependent Contraction Based Model Predictive Control

of Section 2.3.5. For Rk+N+1, we observe that the set computations from Step 2 to Step

4 are the Minkowski sum of multiple sets. That is, using

Rpk+N+1={r
i,j,h
k+N+1|r

i,j,h
k+N+1=A

Nxk+1+[AN−1B AN−2B . . .AB ]ūk+N−1,∗,i
k+1

+Bu∗,jk+N + v∗,h, ∀v∗,h ∈ D,∀ūk+N−1,∗,i
k+1 ∈ U

k+N−1
k+1 (xk+1, r

k+N
k+2 ), ∀u∗,jk+N ∈ U},

(2.35)
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we get the convex hull conv(Rpk+N+1)=Rk+N+1. Since RPk+N+1 will have a large number

of points, conv(RPk+N+1) will not be a cheap computation. We propose the following

approximation

Rapproxk+N+1 = conv(min{RPk+N+1} ∪max{RPk+N+1}), (2.36)

where min{RPk+N+1} (max{RPk+N+1}) denotes the set of the vectors in RPk+N+1 that

have at least one minimum (maximum) value in some coordinate. The illustrative picture

in R
2 is given in Figure 2.9. To complete (2.35) and (2.36), only one convex hull com-

Figure 2.9: Graphical description of the approximation for Rpk+N+1. The transparent

circles are the points excluded by the approximation.

putation with reduced number of points is needed. It is easy to see Rapproxk+N+1 ⊂ Rk+N+1.

Therefore, Rapproxk+N+1 is relatively conservative.

2.4.5 Example

The following is the example for the reference dependent state constraint prob-

lem. Consider the linear system xk+1 = Axk +Buk with the following matrices

A =





0.9 0.5

0 0.9



 , B =





0

1



 .

The initial condition xk = [x1
k x2

k]
T = [0 0]T . Consider the 5−step MPC with the

following constrained optimal control problem:

arg min
{uk|k,...,uk+N−1|k}

4
∑

i=0

xTk+i+1|kQxk+i+1|k + uTk+i|kRuk+i|k,

subject to

xk+i+1|k = Axk+i|k +Buk+i|k,

xk+i+1|k∈Xk+i+1(rk+i+1)={x
∣

∣‖ rk+i+1 − x ‖∞≤ 0.5},

uk+i|k ∈ U = {u
∣

∣ ‖ u ‖∞≤ 1},

(2.37)
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where

Q = I2, R = I1,

[

rk+1 rk+2 . . . rk+5

]

=





0 0.6 1.4 2.5 3

1.2 2.0 2.8 3.5 4.0



 .

After xk+1 is computed by u∗k|k, the set X
feas
k+5 (xk+1) is obtained as shown in Figure 2.10.

The reference sequence rk+5
k+1 and resulting state xk+1 are shown as ∗ and o respectively.

The red square region represents the state constraint Xk+5(rk+5) (The other state con-

straints were not depicted in the figure.) and the green polytope in the lower right corner

is X
feas
k+5 (xk+1). Then X

reach
k+6 is generated by evaluating all the vertices in X

feas
k+5 (xk+1) and

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x1

x2

Figure 2.10: Graphical description from Step 1 to 2 of the algorithm.

Rk+6 are obtained by dilating X
reach
k+6 with ±0.5 in x1 and x2 coordinates. The graphical

representation is given in Figure 2.11. The small green polytope represents X
reach
k+6 and

the big red region in addition to X
reach
k+6 is Rk+6.

2.5 Conclusion

First, it has been shown that, using a system’s structural property of con-

tractibility, one may construct MPC for the case where the initial states are not able to
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Figure 2.11: Graphical description from Step 3 to 4 of the algorithm.

be feasibly steered to the origin in reasonable time by classical MPC schemes. Further-

more, the proposed strategy may lead to improvement in the stabilizing performance and

give freedom to tune the controlled behavior of the system compared to the case that the

control law is solely based on a CLF. Second, we have introduced the online reference

computation problem and provided algorithms for the linear system with linear equality

and inequality constraints. The algorithms we suggested give the set of terminal states

or references to guarantee feasibility.

Further investigation is necessary for the system with disturbance for robust-

ness and the computability of the proposed MPC algorithms. Especially, in terms of the

computability, the proposed MPC algorithms are tractable for linear systems with poly-

tope constraints. However, required set calculations might not be achieved efficiently

and accurately for some constrained nonlinear systems. Therefore, more analysis on the

computability is desired.
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Coordinated System Control

3.1 Introduction

In this chapter, we seek to formulate control schemes for coordinated systems.

Since the coordinated system is understood well in the coordinated vehicle context, we

employ coordinated vehicles as our working problems. However, the developed ideas in

the coordinated vehicle control and estimation may be inherited to the other coordi-

nated systems. Here we only consider a fixed vehicle formation with noisy environments

such as disturbance on vehicles, measurement noise, and communication error if any

communication is used.

The vehicle formation control problem was considered in (Kang, Xi & Sparks

2000) using the reference projection method. Artificial forces between each vehicle and

virtual leaders were used in (Leonard & Fiorelli 2001, Xi & Abed 2005). Model Predictive

Control (MPC) was considered in (Dunbar & Murray 2002, Dunbar & Murray 2004,

Dunbar & Murray 2006). Their investigation was based on a deterministic system and

focused on creating the specified formation from the vehicles’ initial locations and then

on the stability of the vehicles in the formation. Hence, in the stationary stage, the

vehicles achieve their desired formation asymptotically. Our concern is different from

theirs; we consider steady state disturbance rejection with respect to vehicle disturbances,

measurement noise, and control design parameters. Main features of this chapter are:

– Analysis to understand the need for coordinated control in a fixed vehicle forma-

53
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tion,

– Formulation of local MPC for each vehicle as a method of coordinated control,

– Communication resources in the coordinated vehicle control.

In order to understand why coordinated control is necessary, we first consider

a disturbance rejection control problem on each vehicle in the formation and relate the

covariance of neighboring vehicles positions to no-collision between vehicles. This can be

done by calculating the closed-loop Linear Quadratic Gaussian (LQG) control position

variance of an isolated vehicle around its nominal position under the effect of exogenous

disturbances. Our approach gives a quite useful perspective on when the coordinated

control scheme may help to avoid collision.

When LQG control of each vehicle does not handle collision avoidance well

enough in the formation, one should seek ways to prevent possible collisions between

vehicles: one vehicle’s future position cannot overlap neighbors’ future positions. Due

to the uncertainties such as disturbance, predicting exact future position outputs is not

possible and therefore control design for collision avoidance requires a careful treatment

about this. If the variances of predicted vehicle position errors are given, then uncertainty

regions of the vehicles can be obtained, which contain the actual vehicle locations with

a certain probability. The uncertainty regions are centered at the position estimates (ŷ).

Using these regions, the no-collision constraint is re-formulated for each vehicle. Since

implementing explicit constraints such as the no-collision constraint is not tractable in

an infinite horizon control formulation, we attempt to solve a series of constrained finite

horizon control problems in a receding horizon fashion. This is exactly why MPC is an

attractive control approach to deal with coordinated vehicles.

The no-collision constraint in one vehicle requires knowledge about future po-

sitions of the other vehicles. So communication is necessary and, in our development, it

defines the coordinated control. Each vehicle receives the state and input information

from the neighboring vehicles and uses it to predict their future positions. We call the

device for this a cross-estimator. The covariance of the cross-estimator is affected by

inter-vehicle communications. Sufficient communication resources might reduce commu-

nication errors and lead to better estimation and control performance. In this chapter,
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our discussion will be limited to this fundamental perspective. More details will be given

in the next chapter along with the cross-estimator design.

The above overlook is given with gaussian assumptions on the uncertainties.

We will extend our results in the coordinated vehicle control to the same vehicle forma-

tion scenario without probabilistic models on the uncertainties. In this case, the only

information about the uncertainties is their bounds or a representative time profile so

that we can model the overall behavior of them with fictitious white noise.

3.2 Coordinated Vehicle Problem

The fundamental task of vehicles that we consider is to follow specified trajec-

tories while attempting to keep a certain formation and avoid collisions. We also use

the following assumptions The assumptions are easily removable, but at the expense of

clarity.

A1. The dynamics of each vehicle are linear, time-invariant, and identical.

A2. We consider only stationary values of covariances, without introducing the transient

calculations, which are easy to accommodate.

A3. The spectral properties of the disturbances acting on each vehicle are identical and

independent.

A4. For the theoretical development, the disturbances are zero-mean and gaussian.

A5. The nominal reference trajectory of each vehicle is known to all others in advance

and the target formation geometry is fixed.

A6. Some limited communication is permissible: this leads to a decentralized or dis-

tributed disturbance rejection control problem.

Since the target trajectory is known ahead of time and the vehicle dynamics are lin-

ear, we may re-center the local control tasks of formation maintenance to keeping each

vehicle to a neighborhood of its own origin.

Our approach to coordination is to pose the problem as disturbance rejection –

perhaps best captured by imagining the interaction between aerial acrobatic team aircraft
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under the influence of heavy gusts. Without this stochastic aspect to the coordination

problem, a no-communication, open-loop control strategy might suffice. However, we

see it as important to capture the environmental effects on the formation via posing a

disturbance rejection problem.

Now we consider the following dynamical model for the vehicles and assume

the models are perfect and identical:

xk+1 = Axk +Buk + wk,

yk = Cxk,

zk = Dxk + vk,

(3.1)

where uk, yk, zk and xk represent the input vector, the position output vector, the

measurement vector, and the state vector of the vehicle and of its associated disturbance

process. The vehicles and their disturbance process are driven by a process noise wk and

the measurement is corrupted by a measurement noise vk. Both noises are modeled as

white normally distributed sequences,

wk ∼ N(0, Q), vk ∼ N(0, R). (3.2)

Remark 3.2.1. We identify here that we model the exogenous disturbances as gaussian,

although we seek to guarantee non-collision between vehicles. This requires assuming a

density of bounded support for the noises, which we comment upon later.

In the absence of plant uncertainty, exogenous disturbances, and measurement

noise, this control problem becomes a tracking problem, which might be solved by open-

loop or closed-loop methods without the need to introduce communication between vehi-

cles. Since we assume perfect modeling and consider only stationary formation-keeping

in the face of stationary disturbances, our analysis reduces to the consideration of each

vehicle’s controlled motion around its local zero point. We first consider the position

variability of an isolated vehicle under LQG control with the disturbance operating. This

will provide a useful benchmark for the need to introduce constrained local control and

communications.
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3.3 Steady State LQG Control of an Isolated Vehicle

The feedback control problem of formation keeping is tied to disturbance rejec-

tion in our synthesis. Ignoring, for the moment, interaction between vehicles, one may

formulate a local disturbance rejection control problem for an isolated vehicle around the

origin. If the formation geometry is such that the permissible deviations of the vehicle

from their nominal origins are so small as to preclude collision, then there is no need for

constrained control and inter-vehicle communication. This observation establishes the

link between target formation geometry, disturbance rejection, constrained control, and

communication requirements.

We pose an LQG disturbance rejection control problem for each individual

vehicle in isolation. The LQG problem captures, via selection of penalty matrices Qc

and Rc, the derivable cost function associated with solo vehicle control. Later, we will

introduce interaction between the vehicles via a no-collision constraint imposed over

and above this nominal LQG control. The distraction from the LQG control problem

by the constrained problem rests in the choice of a control penalty, by which normal

unconstrained operation seeks to use a modest amount of control as captured by the

penalty matrix Rc, which is not infinitesimal. Under active no-collision constrained

operation, the LQG penalty is subservient to the necessary control to maintain feasible

operation.

An initial analysis will be to study the dependence of the stationary spatial

deviation of the vehicles from their nominal zero positions as a function of the LQG

control penalty Rc. The LQG control law is given by solving the following minimization

problem, with the stochastic disturbance operating,

min
uk

[

lim
N→∞

1

N
E(

N−1
∑

k=0

xTkQcxk + uTkRcuk)
]

.

The corresponding control Discrete-time Algebraic Riccati Equation (DARE) and control

signal are given by

P = ATPA−ATPB(BTPB +Rc)
−1BTPA+Qc,

uk = −Kcx̂k|k,

Kc = (BTPB +Rc)
−1BTPA,

(3.3)
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where x̂k|k is the filtered state estimate of the vehicle. We use the Kalman filter for state

estimation. The filtering problem is obtained by solving the following estimation DARE

Sp= ASpA
T−ASpDT (DSpD

T +R)−1DSpA
T+Q, (3.4)

where

Sp = lim
k→∞

E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T |Zk−1].

Here Zk−1 is the measurement sequence {z0, z1, . . . ,zk−1} up to time k − 1. We have

the corresponding filtering gain

Kf = SpD
T (DSpD

T +R)−1.

By the separation principle, the optimal control law from (3.3) is optimal for

our stochastic linear system. We assume that the weightings Qc, Rc, Q, and R are chosen

so that Kf and Kc are stabilizing filter and control gains respectively. The closed loop

system and state estimator error equation are given by

xk+1 = (A−BKc)xk +BKcx̃k|k + wk,

x̃k+1|k+1 = (A−KfDA)x̃k|k + (I −KfD)wk −Kfvk,
(3.5)

where x̃k|k , xk − x̂k|k. Define

S , lim
k→∞

E[xkx
T
k |Zk],

Sc , lim
k→∞

E[xkx̃
T
k|k|Zk],

Sf , lim
k→∞

E[x̃k|kx̃
T
k|k|Zk].

Then, using (3.5), we have the following standard Lyapunov equation for these variables




S Sc

STc Sf



=





A−BKc BKc

0 A−KfDA









S Sc

STc Sf









A−BKc BKc

0 A−KfDA





T

+





Q Q(I −KfD)T

(I−KfD)Q (I−KfD)Q(I−KfD)T+KfRK
T
f



 .

(3.6)

This equation describes the stationary closed loop covariance of the system (vehicle+

disturbance) state, the spatial position components of which contain the information

about the vehicle’s deviation from nominal position. Thus we are interested in analyzing

these components of S as a function of Rc. Note that the dependence of S on Rc in (3.6)

is manifested via Kc and the control DARE.
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3.3.1 Analysis of Controlled System Outputs

To discuss dependence of S on the choice of Rc, we introduce the LQG control

performance results of Maciejowski (Maciejowski 1985).

Theorem 3.3.1. (Maciejowski 1985) Consider the given system (3.1) under LQG con-

trol. If det(CB) 6= 0 , Qc = CTC, Rc = 0, and the system is minimum-phase, then

S = Sp.

The minimum phase property is required. Otherwise the closed loop system will lose

internal stability. This theorem establishes that minimum variance position control

(Qc = CTC, Rc = 0) for a minimum phase system yields a closed-loop state covari-

ance identical to the Kalman predictor state estimation error covariance. For the vehicle

control problem, this has the immediate interpretation that if we do not penalize the con-

trol and focus entirely on maintaining the position, then the achieved position deviation

will be, subject to assumptions, identical to the variance of the one-step-ahead position

estimate. When this result is brought into the vehicle coordination problem, as we shall

see, it results in separating the class of control problem into those where collisions are

precluded even without communications and those where inter-vehicle communication

does not lead to effective collision avoidance with reasonable control energy.

If we accept that it is desirable not normally to allow cost-free control, so that

Rc > 0, then we shall see that the deviation of the vehicles under LQG control will

exceed their prediction error deviation. First we establish that, with Rc > 0, we must

have S ≥ Sp.

Theorem 3.3.2. Suppose the following conditions hold.

– A has full rank and [A,B] is stabilizable.

– Rc > 0, Qc ≥ 0, and [A,Q
1/2
c ] is observable.

Then S ≥ Sp.

Proof. First we will show that S − Sf is symmetric positive definite. From (3.6)

S =(A−BKc)S(A−BKc)
T +BKcSc(A−BKc)

T

+ (A−BKc)S
T
c K

T
c B

T +BKcSfK
T
c B

T +Q.
(3.7)
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Note that x̃k|k is zero mean white noise process and independent of the estimate x̂k|k.

Thus

Sc = lim
k→∞

E[xkx̃
T
k|k|Zk]

= lim
k→∞

E[(x̂k|k + x̃k|k)x̃
T
k|k|Zk]

= lim
k→∞

E[x̃k|kx̃
T
k|k|Zk]

= Sf .

Hence (3.7) becomes

S =(A−BKc)S(A−BKc)
T +BKcSf (A−BKc)

T

+ (A−BKc)SfK
T
c B

T +BKcSfK
T
c B

T +Q.

By subtracting Sf from the left and right hand sides, it is easy to show that

S−Sf=(A−BKc)(S − Sf )(A−BKc)
T+ASfA

T+Q−Sf

=(A−BKc)(S − Sf )(A−BKc)
T+Sp−Sf .

(3.8)

The last equality is obtained from the Kalman filtering and prediction error covari-

ance relation. This is the Lyapunov equation for a closed-loop LQG-controlled system.

de Souza, Gevers & Goodwin (1986) showed that, if [F,G] is stabilizable, [A,Q
1/2
c ] is ob-

servable, Rc > 0, and Qc ≥ 0, then the control DARE in (3.3) has a symmetric positive

definite solution P and A−BKc has all eigenvalues inside the unit circle. The solution

of (3.8) is given by

S − Sf =
∞

∑

k=0

(A−BKc)
k(Sp − Sf )(A−BKc)

kT ,

from which it is immediate that

S − Sf ≥ Sp − Sf .

Hence S ≥ Sp.

The property S ≥ Sp implies that, if we penalize the control, the LQG-

controlled position has greater variability than that of the position prediction error.

In the vehicle formation context, two situations can result. In one, collision is precluded
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by sufficient separation between the vehicles even though S ≥ Sp. In this case, commu-

nication and local constrained control are not needed to prevent collision. In the other

case, target separation does not rule out possible collision because the two vehicles’ con-

trolled spatial uncertainty regions intercept. Then a collision might be prevented by

constrained control and sufficient inter-vehicle communication.

We make additional observations about the stationary spatial uncertainty re-

gions in this vehicle coordination context.

– Define the actual vehicle position by ȳk = Cxk ∈ R
2. Then, with this model, ȳk is

distributed as an N(0, CSCT ) random 2-vector. A controlled spatial uncertainty

set is defined as follows

S = {ȳk
∣

∣ȳTk (CSCT )−1ȳk ≤ κ}. (3.9)

Here κ is related to the probability that ȳk stays close to its origin (or target

position) when the vehicle is affected by the disturbance and is under LQG control.

Once we assign the desired probability then κ can be obtained by the chi-square

distribution of the two degree of freedom. Larger κ means larger probability. For

the implementation of a non-collision constraint, we need to assume disturbance

and measurement noise with distribution of compact support. Then, for more

appropriate value of κ, ȳk will be guaranteed to lie within this uncertainty set. We

note that this set is centered at the vehicle’s nominal position.

– Define the vehicle position prediction error measurement by ỹk = C(xk− x̂k|k−1) ∈
R

2. Then ỹk has the distribution N(0, CSpC
T ). We define a prediction error

uncertainty set associated with Sp

Sp = {ỹk
∣

∣ỹTk (CSpC
T )−1ỹk ≤ κ}. (3.10)

The interpretation of this set is that, with the same probability we assigned for

(3.9), the vehicle’s controlled real position is close to the one-step-ahead prediction

of its position. Thus this set is centered at the predicted position Cx̂k+1|k. We

note that this latter region lies entirely with the regions defined by (3.9).

– When Rc = 0 and the vehicle is minimum-phase, the sets S and Sp are coincident.
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Figure 3.1: A formation of four vehicles as viewed from the perspective of V1.

– If the control is penalized (Rc > 0), the vehicle’s prediction-error uncertainty

region, given by (3.10), lies entirely within its controlled uncertainty region, given

by (3.9). This is the importance of Theorem 3.3.2. The smaller Sp region jiggles

inside the bigger S region.

In the next section, we will link the developed ideas about the LQG-controlled isolated

vehicle of this section to the requirement of local constrained control via communication

in the vehicle formation.

3.4 Links to Local Constrained Control via Communica-

tion

The four-vehicle formation is given in Figure 3.1 representing the case that

the conditions in Theorem 3.3.2 hold. We denote vehicle i by Vi (i = 1, 2, 3, 4). The

largest circles with solid, thin lines indicate the boundary of the set S in (3.9). Now

we call the region inside the circle controlled uncertainty region. The smallest solid,

heavy lines represent the boundary of the set Sp in (3.10). We give the name prediction-

error uncertainty region to the area inside the circle. The dashed circles refer only to

V1 and to its estimates of predicted positions of V2 and V3. These estimators, to be

discussed in the next chapter, are called cross-estimators and rely on communicated
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information from the other vehicles to V1. The radii of these circles will depend on the

cross-estimate covariances. Although the uncertainty regions are circles for simplicity,

they will generally be ellipsoids depending on the dynamical model that one obtains. In

the following subsections, our main concern will be limited to V1 only. The others’ cases

can be analyzed in the same manner.

3.4.1 No Communication Advantage

Consider V1 and V4. Their nominal separation in the formation provides full

separation of their own controlled uncertainty regions. Hence collision cannot occur.

In general, for any given vehicle formation, if the controlled uncertainty regions do not

overlap in the formation, then they are guaranteed not to collide with each other. Hence,

in this case, we no longer require any cooperative control via communication between V1

and V4 to avoid collision.

Consider the case that the conditions in Theorem 3.3.1 hold. Then the con-

trolled uncertainty regions of all the vehicles are identical to their prediction-error un-

certainty regions. As a special case, one can consider the case that the prediction-error

uncertainty regions overlap. The vehicles may be present anywhere within the regions

at the next time instant and this is unpredictable. If the prediction-error uncertainty

regions overlap, the eventual collision is guaranteed with LQG control whatever the

communication between the vehicles. If their prediction-error uncertainty regions do not

overlap because of formation design, then no communication is necessary to avoid colli-

sion. This leads us to the surprising conclusion that, for coordinating vehicles operating

under minimum variance control, the communication of information between vehicles is

immaterial to their collision prospects.

3.4.2 Communication Advantage

Consider V1, V2, and V3. The LQG controlled uncertainty regions of V2 and

V3 overlap that of V1 but their prediction-error uncertainty regions do not. If the LQG

control of V1 were replaced by a constrained control, say MPC, and V1 were provided

with an estimate of the positions of V2 and V3, then collision could be avoided as long

as V1’s prediction error circle (centered at x̂k+1|k) can be kept outside the estimate-error
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circles of V2 and V3. The radii of these dashed circles in Figure 3.1 depend on covariances

of cross-estimates for V2 and V3. [Details on the cross estimator design, covariances, and

communication resource assignment will be fully discussed in the next chapter.]

In the case that vehicles’ prediction-error uncertainty regions overlap, of course

one may formulate a constrained control problem to separate the circles by control ac-

tion and so to preclude collisions. Unfortunately, if the overlapping circle is the result

of specification of the target positions, then this constrained control will lead to contin-

ual (or at least very frequent) activity of the no-collision constraint in the constrained

solution. This is undesirable from the perspective of average control energy and strong

instability. Hence the advantage of communication is very limited.

3.5 Coordinated System Control by Constrained Model

Predictive Control

In this section, we formulate local constrained MPC to avoid collision between

vehicles in a given formation. Denote the joint state of the ith vehicle and of its distur-

bance at time k by xik. Denote; the control signal computed at time k as uik|k, the actual

position by yik, and the measurement by zik. We assume that the vehicle and its locally

acting disturbance are jointly described by

xik+1 = Axik +Buik|k + wik, (3.11)

yik = Cxik, (3.12)

zik = Dxik + vik. (3.13)

We take wik and vik to be independent, zero-mean, white noise sequences. We capture

the non-collision of Vehicle i with Vehicle ℓ through a minimal separation requirement

||yik+j − yℓk+j||M > α, (3.14)

where positive definite matrix M > 0 defines an ellipse with center yℓk+j and semi-axes

given by the eigenvectors of M . This condition says that, from Vehicle i’s perspective,

Vehicle i’s position must be outside the ellipsoid given by (3.14) centered at yℓk+j.



65

3.5.1 Local Probabilistic MPC Problem for Vehicle i

At time k and from current state, xik, the MPC problem is given by

arg min
{ui
k|k
,...,ui

k+N−1|k
}

N
∑

j=1

xi
T

k+jQcx
i
k+j + ui

T

k+j−1|kRcu
i
k+j−1|k,

subject to: xik+j|k = Axik+j−1|k +Buik+j−1|k + wik+j−1,

yik+j|k = Cxk+j|k,

xik+j ∈ Xk,

uik+j−1|k ∈ Uk,

P r
(

||yik+j|k − yℓk+j|k||M < α
)

< ǫ,

(3.15)

where xik+j|k (yik+j|k) is the j-step-ahead state (output) computed at time k and Xk (Uk)

represents the local state (input) constraint set. Currently, the objective function and

the probabilistic no-collision constraint are expressed in terms of the actual vehicle states

and positions at the future time k + j. Due to unknown disturbance (wik+j−1, w
j
k+j−1),

we cannot solve the above MPC directly. Our objective is to recast (3.15) in terms

of local predictions, so that the MPC problem might be converted into a deterministic

problem soluble with local information.

3.5.2 Deterministic Restatement of the MPC

The local MPC control problem is couched in terms of the prediction of the

local Vehicle i’s dynamic performance over horizon length N based on Kalman state pre-

dictions, x̂ik+j|k, with corresponding covariance matrices Sip,k+j|k computed via standard

covariance recursions. In this framework above with the inclusion of a gaussian assump-

tion on the noises and initial state estimate, the future state is random and gaussian

with,

xik+j ∼ N(x̂ik+j|k, S
i
p,k+j|k). (3.16)

Suppose for the moment that Vehicle i also has an unbiased estimate of the state of

Vehicle ℓ distributed similarly,

xℓk+j ∼ N(x̂ℓi,k+j|k,Σ
ℓ
i,k+j|k). (3.17)
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Note that this distribution describes the likelihood of Vehicle ℓ’s state given the informa-

tion received up to time k at Vehicle i with local information including the cross-estimate.

The mean of this distribution, x̂ℓi,k+j|k, is Vehicle i’s cross-estimate of Vehicle ℓ’s state.

The corresponding cross-estimate of Vehicle ℓ’s position is ŷℓi,k+j|k = Cx̂ℓi,k+j|k with co-

variance CΣℓ
i,k+j|kC

T . Define the two j-step-ahead prediction errors

ỹik+j|k = yik+j − ŷik+j|k ∼ N(0, CSip,k+j|kC
T ),

ỹℓi,k+j|k = yℓk+j − ŷℓi,k+j|k ∼ N(0, CΣℓ
i,k+j|kC

T ).
(3.18)

Using (3.18), the no-collision constraint (3.14) becomes

||ŷik+j|k − ŷℓi,k+j|k + ỹik+j|k − ỹℓi,k+j|k||M > α. (3.19)

The triangle inequality ensures the inequality (3.19) is guaranteed by satisfaction of

||ŷik+j|k−ŷℓi,k+j|k||M > α+||ỹik+j|k−ỹℓi,k+j|k||M . (3.20)

From (3.16-3.17) plus the earlier assumption of independence of noises, the following

holds:

ỹik+j|k− ỹℓi,k+j|k∼N
(

0, C
(

Sip,k+j|k+Σℓ
i,k+j|k

)

CT
)

. (3.21)

Then the probabilistic statement of no-collision is converted into a deterministic one by

the following lemma.

Lemma 3.5.1. Assume that all estimation errors are gaussian with covariances given

above. Denote the dimension of the position vector by d and denote the cumulative

distribution function of the χ2 density with d degrees of freedom by Ψd(·). Consider

the probabilistic no-collision constraint in (3.15) with weighting matrix M > 0, and

define the value β to be any value satisfying Ψd(β
2) ≥ 1 − ǫ. Then, with P ℓi,j =

C
(

Sip,k+j|k+Σℓ
i,k+j|k

)

CT , satisfaction of the probabilistic no-collision constraint is implied

by

||ŷik+j|k−ŷℓi,k+j|k||M>α+β

√

λmax

(

P ℓi,j
1

2MP ℓi,j
1

2

)

. (3.22)

Proof. From (3.21) we have that ỹik+j|k−ỹℓi,k+j|k=P ℓi,j
1

2zj , where zj is a d-dimensional

random vector with N(0, Id) and Pr(zTj zj < γ2) = Ψd(γ
2). Thus, with the defined β, we
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have Pr
(

zT z > β2
)

≤ ǫ. Then Pr
(

λ̄zT z > λ̄β2
)

≤ ǫ holds with λ̄ = λmax

(

P ℓi,j
1

2MP ℓi,j
1

2

)

.

Since

||ỹik+j|k−ỹℓi,k+j|k||2M =
(

ỹik+j|k−ỹℓi,k+j|k
)T
M

(

ỹik+j|k−ỹℓi,k+j|k
)

= zTP ℓi,j
1

2MP ℓi,j
1

2 z ≤ λ̄zT z,

we have Pr
(

||ỹik+j|k − ỹℓi,k+j|k||2M ≥ λ̄β2
)

≤ ǫ. This and (3.22) imply that (3.20) and

(3.19) hold with probability at least 1− ǫ, and therefore, the satisfaction of the proba-

bilistic no-collision constraint in (3.15).

A similar result for a scalar case appears in (Yan & Bitmead 2005). Now it remains to

express the state constraint in (3.15) in terms of x̂ik+j|k, as from (3.16) the true plant state

has been modeled as a gaussian random vector and, accordingly, cannot be guaranteed

to satisfy the state constraint at any time in the future. However, if we adopt a similar

probabilistic formulation of Lemma 3.5.1, then we may replace the state constraint by

altering the feasible set Xk as follows

x̂ik+j|k ∈ X̄k = Xk − X̃(δ, Sip,k+j|k), (3.23)

indicating that these state constraints are tightened in accordance with the probability

of satisfaction, δ, and the Kalman prediction error covariance, Sip,k+j|k. If the densities

involved have compact support, then one might guarantee almost sure satisfaction of

these constraints via gaussian overbounds. Finally the MPC problem (3.15) becomes

deterministic as following:

arg min
{ui
k|k
,...,ui

k+N−1|k
}

N
∑

j=1

x̂i
T

k+j|kQcx̂
i
k+j|k + ui

T

k+j−1|kRcu
i
k+j−1|k,

subject to: x̂ik+j|k = Ax̂ik+j−1|k +Buik+j−1|k,

ŷik+j|k = Cx̂ik+j|k,

x̂ℓi,k+j|k ∈ X̄k,

uik+j−1|k ∈ Uk,

||ŷik+j|k−ŷℓi,k+j|k||M>α+β

√

λmax

(

P ℓi,j
1

2MP ℓi,j
1

2

)

.

(3.24)

Remark 3.5.1. The proposed MPC (3.24) cannot be solved by standard quadratic pro-

gramming due to non-convex nature of the no-collision constraint. We use a nonlinear
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Figure 3.2: The block diagram at Vehicle i.

optimization solver such as SNOPT (Gill, Murray & Saunders 2006) to compute a sub-

optimal solution.

Remark 3.5.2. The no-collision constraint provides a AHA! moment for the commu-

nication requirement in control. If the communication quality is poor (i.e. noisy com-

munication), then we can expect to obtain larger Σℓ
i,k+j|k. This leads to more frequent

activities of the no-collision constraint. This justifies assigning enough communication

resource on communication channels if available. We will further investigate this issue

in the next chapter.

Remark 3.5.3. The right-hand-side of the no-collision constraint may be fixed with

P ℓi,1
1

2 since vehicle i is assured receiving updated measurements from Vehicle ℓ before

being required to assert the constraint.

3.6 Local Constrained MPC with Bounded Noise and Dis-

turbance

We developed the local constrained MPC formulation to maintain a vehicle

formation and avoid collisions under the gaussian assumption on disturbance and noise

processes. However, gaussian process is unbounded and, therefore, it is not possible

to guarantee %100 collision avoidance. In practice, physical disturbance, measurement,

and communication noises are generally bounded and hard to capture their probabilistic

characteristics. Hence it is worth investigating the coordinated control without prob-
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abilistic assumptions on the disturbance and noise processes. Especially, we consider

the case that the area where the vehicles operate is known to have a specific class of

disturbance so that we can sample the disturbance data for modeling.

The focus of this section is on the formulation of a disturbance rejection con-

troller capable of preventing possible collisions. It starts from fitting a disturbance

description by data record alone into an approximating state-space model. In this way,

we hope to provide an approach suited to the rejection of realistic disturbances such

as wind gusts on vehicles; deterministic disturbance cases were investigated in (Francis

& Wonham 1976). Due to possible collisions between the vehicles, the controller must

be able to avoid the collisions. Therefore, we will formulate a deterministic no-collision

constraint similar to the one in (3.24).

3.6.1 Local MPC Formulation

Consider a vehicle formation scenario in the previous section. Consider Vehicle

i whose dynamic equation is given by

xi,vk+1 = Avx
i,v
k +Bvu

i
k|k +Gvq

i,real
k , (3.25)

where xi,vk is the state vector and uik|k denotes the MPC-input vector uik computed at

time k. We assume that the dynamics of each vehicle are linear, time-invariant, identical,

and precisely given by Av, Bv, and Gv . The real disturbance qi,realk can be empirically

measured from nature as time-domain-data sets before the estimator and control design

processes and it is assumed that qi,realk is the typical disturbance class acting on Vehicle

i. We seek to describe qi,realk by a linear model

xi,dk+1 = Aidx
i,d
k +Gidw

i
k,

qik = Cidx
i,d
k ,

(3.26)

with the disturbance state xi,dk , the output qik (same dimension as qi,realk ), and fictitious

white noise input wik. Since we will never obtain a perfect model for qi,realk , we only aim

to obtain a reasonable model, where the acceptability of a model is determined by its

ability to yield a good prediction of qi,realk . Then we have the following equations:

xik+1 = Aixik +Buik|k +Giwik, (3.27)
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where

xik =





xi,vk

xi,dk



 , Ai =





Av GvC
i
d

0 Aid



 , B =





Bv

0



 , Gi =





0

Gid



 ,

position-output : yik = Cxi,vk ,

measurement : zik = Dxi,vk + vik.

The measurement zik is corrupted by bounded random noise vik. Here we assume that

the choice of Aid, G
i
d, and Cid satisfies the requirements. Recall the no-collision constraint

(3.14)

||yik+j − yℓk+j|| > α, (3.28)

with M = I. The issue is how we could convert this constraint without any probabilistic

assumptions on disturbance and noise processes. Indeed it is not possible to obtain

deterministic form of the no-collision constraint in terms of covariances due to the absence

of probabilistic models for disturbances and noises. However, since we have data profiles

of disturbances and noises are bounded, we may be able to compute the worst estimation

errors of the state estimators. Consider

|ỹik+j|k|p , max
k
||ỹk+j|k||, |ỹℓi,k+j|k|p , max

k
||ỹℓi,k+j|k||, (3.29)

the worst two norms of the j-step self- and cross-prediction errors over time. Then using

the relationship y = ŷ + ỹ and the triangle inequality, (3.28) is converted to

||ŷik+j+1|k−ŷℓi,k+j+1|k||> |ỹik+j|k|p+|ỹℓi,k+j|k|p+ α. (3.30)

The constraint (3.30) means that the control for Vehicle i must be chosen in such a

way that the distance between ŷik+j|k and ŷℓi,k+j|k is greater than the sum of the worst

position error bounds. This can be understood as no overlapping of two circles around

ŷik+j|k and ŷℓi,k+j|k as shown in Figure 3.3. The deterministic MPC for Vehicle i is

arg min
{ui
k|k
,...,ui

k+N−1|k
}

N−1
∑

j=0

(ŷik+j+1|k−ri)TQc(ŷik+j+1|k−ri)+u1T

k+j|kRcu
1
k+j|k,

subject to: x̂1
k+j+1|k=Aix̂ik+j|k+Buik+j|k,

ŷik+j+1|k=Cx̂ik+j+1|k,

uik+j|k∈U,

||ŷik+j+1|k−ŷ
j
i,k+j+1|k||> |ỹik+j|k|p+|ỹℓi,k+j|k|p+ α.
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Figure 3.3: The graphical description of the control at Vehicle i. The actual vehicle

positions are inside the solid and dashed circles.

Remark 3.6.1. As discussed earlier, one may use |ỹik+1|k|p + |ỹℓi,k+1|k|p instead of

|ỹik+j|k|p+|ỹℓi,k+j|k|p.

Remark 3.6.2. If there exists a state constraint Xk, then it should be modified to reflect

estimation errors in a similar way to (3.23). In this case, the constraint tightening

technique (Richards & How 2004) may be used.

Remark 3.6.3. Since the proposed MPC is also a non-convex problem due to the no-

collision constraint, we use a nonlinear optimization solver such as SNOPT (Gill, Murray

& Saunders 2006).

3.7 Conclusion

We have shown that the requirement of the local constrained control via com-

munication in the vehicle formation can be understood by analyzing the regions of the

LQG-controlled closed-loop state covariance and the prediction error covariance of an

isolated vehicle position associated with formation geometry. In the case that the local

constrained control is required, we can formulate a local constrained MPC to reject dis-

turbance and avoid collisions. Since the no-collision constraint takes information from

the cross-estimator, in the next chapter, we will focus on the cross-estimator design and

its related issues such as communication resource.
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Cross-Estimator for Coordinated

Systems: Constraints, Covariance,

and Communication Resource

Assignment

4.1 Introduction

In this chapter, we concentrate on the technique for one vehicle to estimate

neighbors’ future behavior so that each vehicle can use this for its control decision process.

The main features of this chapter are:

– Deriving, from this deterministic constrained control problem in the previous chap-

ter, sufficient requirements on the covariance of predictions of other vehicles state

for only sporadic activity of the constraints in the feedback control,

– Tying together the covariance requirement on the cross-estimator design and the

communication resource assignment using a Linear Matrix Inequality (LMI) ap-

proach.

Control approaches to coordination in (Dunbar & Murray 2004, Kuwata, Richards,

Schouwenaars & How 2004, Richards & How 2004, Jeanne, Leonard & Paley 2005,

73



74

Dunbar & Murray 2006, Sepulchre, Paley & Leonard 2008) were proposed in a full-

information-sharing environment. Here we adopt an approach which permits the in-

clusion of limited information sharing by introducing disturbances and the associated

uncertainty of systems states. Of central concern is the covariance of the predicted state

of a cross-estimator, which estimates the state of neighbors from communicated informa-

tion consisting of some limited data concerning the neighbor’s self-estimated state and

computed control inputs.

The cross-estimation error covariance is important in the sense that the overall

control performance is related to the prediction error covariances. This is captured by

no-collision constraints. No-collision corresponds to non-intersection of the regions of

uncertainty of the two systems which is quantified by an underlying estimation error

covariance matrix. The cross-estimate error covariance calculation accommodates the

following effects: limited communication bandwidth, delay, random packet dropout, dis-

turbance acting on neighboring vehicles, and neighboring vehicles’ state estimate errors.

Especially, as the network of coordinated systems increases in the number of subsystems,

natural limits on the available communication bandwidth need to be imposed. In this

chapter, we shall show how cross-estimator design and communication resource manage-

ment can be treated in one set of Linear Matrix Inequalities (LMI). It is still possible to

accommodate random packet loss or delay in our formulation.

In addition, we develop a cross-estimator design technique for a coordinated

system with a different controller structure. We consider the case that a subsystem has a

fixed feedback control law that uses its self- and cross-state estimates of its neighboring

subsystems. In this case, the goal is to design a cross-estimator that minimizes the

variance of the cross-estimation error. We can still provide LMI formulation to achieve

our goal.

In the previous chapter, we also discussed how we may control a coordinated

system if the only available information about the disturbance and the noise is their

bounds, but not probabilistic descriptions for them. We have seen that interaction

constraints such as the no-collision constraint contain the worst case estimation error

magnitudes. This impacts the estimator design process and we will show how we can

design self- and cross-estimators under this situation.
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4.2 Cross-Estimator and Information Architecture

4.2.1 Control Requirements of Estimation

We recall the coordinated system control problem in the previous chapter with

the same assumptions:

A1. The dynamics of each vehicle are linear, time-invariant and identical.

A2. We consider only stationary values of covariances, without introducing the transient

calculations, which are easy to accommodate.

A3. The spectral properties of the disturbances acting on each vehicle are identical and

independent.

A4. For the theoretical development, the disturbances are zero-mean and gaussian.

A5. The nominal reference trajectory of each vehicle is known to all others in advance

and the target formation geometry is fixed.

A6. Some limited communication is permissible: this leads to a decentralized or dis-

tributed disturbance rejection control problem.

Denote the joint state of the ith vehicle and of its disturbance at time k by xik. De-

note the control signal as uik, the actual position by yik, and the measurement signal by

zik. The vehicle and its locally acting disturbance are jointly described by

xik+1 = Axik +Buik|k + wik, (4.1)

yik = Cxik, (4.2)

zik = Dxik + vik, (4.3)

with xik ∈ R
ξ and uik|k ∈ R

ψ. We take wik and vik to be independent, zero-mean, white

noise sequences. Then the deterministic MPC for formation keeping and collision avoid-

ance is constructed by solving the following problem at each time step k with x̂ik|k and
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{ŷℓi,k+1|k, ŷ
ℓ
i,k+2|k, . . . , ŷ

ℓ
i,k+N |k} :

arg min
{ui
k|k
,...,ui

k+N−1|k
}

N
∑

j=1

x̂i
T

k+j|kQcx̂
i
k+j|k + ui

T

k+j−1|kRcu
i
k+j−1|k,

subject to: x̂ik+j|k = Ax̂ik+j−1|k +Buik+j−1|k,

ŷik+j|k = Cx̂ik+j|k,

x̂ik+j|k ∈ X̄k,

uik+j−1|k ∈ Uk,

||ŷik+j|k−ŷℓi,k+j|k||M≥α+β

√

λmax

(

P ℓi,j
1

2MP ℓi,j
1

2

)

,

(4.4)

where P ℓi,j=C
(

Sip,k+j|k+Σℓ
i,k+j|k

)

CT . Henceforth, since we are assuming that our problem

is stationary, we take Σℓ
i,j not to be a function of time k. Where it clarifies matters, we

use the k+ j|k subscript even though we are considering the stationary case. The cross-

estimates x̂ℓi,k+j|k play a central role in the no-collision constraint, and their stationary

position covariances CΣℓ
i,jC

T appear in the standoff added to the constraint margins.

We now focus on the connection between the control objective and the estimation tasks.

Suppose that yi⋆,k is the target position of Vehicle i at time k. Since the target formation

geometry is fixed, ||yi⋆,k− yℓ⋆,k||M will be constant and is denoted by ||yi⋆− yℓ⋆||M . We ob-

serve that, under a stationarity assumption, it is desirable to ensure that the constraints

are not always active, but only become active as needed and in response to the distur-

bances. This provides the key to formulating the control requirements of estimation via

an inequality on state/position cross-estimation, P < W , where P is the matrix of co-

variances of the state cross-estimators and W is a design parameter reflecting the vehicle

dynamics, the disturbance environment, the tightness of the no-collision constraints, and

the information exchange between vehicles.

Definition 4.2.1. We say that the (i, ℓ) no-collision constraint is usually inactive, if

the target positions satisfy, ||yi⋆− yℓ⋆||M > α+β

√

λmax

(

P ℓi,j
1

2MP ℓi,j
1

2

)

, for j = 1, . . . , N .

Note that having a constraint usually inactive implies that, in nominal opera-

tion, the constraint does not activate other than as an exception to deal with relatively

infrequent disturbance-induced movement of a neighbor.
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Lemma 4.2.1. The (i, ℓ) no-collision constraint is usually inactive provided the covari-

ance satisfies

CΣℓ
i,k+j|kC

T≤(||yi⋆ − yℓ⋆||M−α)2

β2
M−1−CSip,k+j|kCT . (4.5)

This lemma describes an important connection between the control problem of

managing a fleet of vehicles and the concomitant estimation performance to achieve this.

Shortly, we shall formulate this further in terms of communications resource manage-

ment.

4.2.2 Modeling the Communication Channel

The cross-estimation of neighbors’ states demands a non-standard information

architecture, because the control signal of Vehicle ℓ is not perfectly known to Vehicle

i. This information, like the state information, must be transmitted over an imperfect

communication channel.

Communication modeling should capture a number of effects, the relative im-

portance of which will depend on the application; limited bandwidth or equivalently

maximal total bit-rate, dropped packets and unreliability of the network, and network

delays in the arrival of data. The principal feature that we seek to develop is the require-

ment for the communications to scale properly with increasing numbers of interacting

systems. As this number increases, so too does the demand on communications re-

sources and some methodology needs to be presented to assist in the orderly solution of

this problem. Here we link the assignment of communications resources to the achieved

covariance of the cross-estimators.

In underwater operations, communications channels are typically very low bit-

rate. Likewise in situations requiring stealth or limited environmental impact, there

might be a desire to limit communications rates seriously. Our development will focus on

the assignment of bit-rates in situations such as this and will rely on modeling the effect

of bit-rate on the cross-estimator covariances, via a convexified optimization problem.

For systems with deterministic communication delay, it is straightforward to incorporate

delay effects directly into the prediction error covariance models. When one introduces

stochastically varying delays or packet drops, then one can still compute the covariance

in real time and, with tools such as those of (Sinopoli, Schenato, Franceschetti, Poolla,
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Jordan & Sastry 2004), stationary statistics of these resulting covariances. The method-

ology of using cross-estimator covariance calculation appears to capture most of these

phenomena well. While our approach is to analyze the stationary case, the techniques

would seem to apply equally to real-time evaluation of constraints.

We model the quantization error of data transmitted over such a channel as

additive white noise. Assuming that a scalar signal has been scaled properly to a range

of [−0.5, 0.5], the effect of quantization to mj bits of accuracy is to add a white, zero-

mean noise of variance 1
122−2mj (Widrow, Kollár & Liu 1996). From a linear estimation

perspective, this has the effect of adding measurement noise. If the total bandwidth to

be assigned to a channel is limited to, say, τ bits per sample time and each piece of

information from j = 1 to J (= ξ + N × ψ) is assigned by {mj} bits, then the total

bandwidth limit is captured by the inequality

J
∑

j=1

mj ≤ τ. (4.6)

4.2.3 Dealing with the Control Signal

Recall the linear equations describing the ℓ-th dynamical system’s evolution

and measurement zℓk as in (4.1-4.3). On the basis of known control signal {uℓk−1|k−1}
and measured output {zℓk}, Vehicle ℓ uses a Kalman filter to estimate x̂ℓk|k and, from

this to solve the MPC. This Kalman estimate has associated covariance Σℓ
k|k. Vehicle

ℓ might transmit this own-state estimate to Vehicle i over the limited-bit-rate channels

and acquire an increase in measurement noise covariance to Σℓ
i,k|k = Σℓ

k|k + Rx. Here

Rx is the covariance matrix associated with the bit-rate limitations and Vehicle i might

use an observer to update its estimate of xℓ; these are to be discussed shortly. However,

to compute further predicted cross state estimates Vehicle ℓ’s control signal is needed.

This introduces new issues to the problem of cross state estimation. Since MPC is used

at each vehicle, at time k prior to the computation of the new control, only the previous

control sequence is available for transmission over the limited-bit-rate channels to Vehicle

i for use in its constrained MPC computation. The time-k control calculation at Vehicle

i requires prediction of Vehicle ℓ’s position up to time k + N , which in turn requires

control values up to uℓk+N−1|k – one short of the full sequence available for transmission.
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Likewise, because of obvious timing issues, the control sequence used is one sample out-

of-date compared with the current value. How ought this be accommodated in this

framework? At time k, Vehicle i receives the following information from Vehicle ℓ:























x̌ℓi,k|k

ûℓi,k−1|k

ûℓi,k|k
...

ûℓi,k+N−2|k























=























x̂ℓk|k

uℓk−1|k−1

uℓk|k−1
...

uℓk+N−2|k−1























+























νi,ℓx,k

νi,ℓu1,k

νi,ℓu2,k
...

νi,ℓuN ,k























. (4.7)

where νi,ℓ·,k is the quantization noise corresponding to the bit-rate assignment for that

information.

Remark 4.2.1. It is possible to transmit the measurement zℓk to Vehicle i instead of x̂ℓk|k.

In this case, instead of x̌ℓi,k|k, Vehicle i will receive partial state measurement corrupted

by Vehicle ℓ’s measurement noise (vℓk) and the communication error.

By adopting the model for quantization effects in (Widrow, Kollár & Liu 1996),

we can model Cov(νi,ℓ) as follows

Rx,Cov(νi,ℓx )=
1

12
diag{2−2mi,ℓx,1, 2−2mi,ℓx,2 ,· · ·, 2−2mi,ℓ

x,ξ},

Ruj,Cov(νi,ℓuj )=
1

12
diag{2−2mi,ℓuj,1, 2

−2mi,ℓuj,2 ,· · ·, 2−2mi,ℓ
uj,ψ},

(4.8)

where mi,ℓ
·,r is the r th element of mi,ℓ

· . A filter is used to incorporate the transmitted

state information into the current cross-estimate of Vehicle ℓ’s state,

x̂ℓi,k|k=
(

I−Kℓ
i

)

Ax̂ℓi,k−1|k−1+
(

I−Kℓ
i

)

Bûℓi,k−1|k+K
ℓ
ix̌
ℓ
i,k|k. (4.9)

The following predictor can then be applied for the propagation of the state cross-

predictions.

x̂ℓi,k+j+1|k=Ax̂
ℓ
i,k+j|k+Bû

ℓ
i,k+j|k, ∀j = 1, 2, · · · , N − 1, (4.10)

x̂ℓi,k+N |k=Ax̂
ℓ
i,k+N−1|k+Bû

ℓ
i,k+N−2|k. (4.11)

That is, the final (missing) control element, ûℓi,k+N−1|k, is taken to be identical to its

predecessor, ûℓi,k+N−2|k. Note that (4.9-4.11) could be standard Kalman filter/prediction
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equations if the covariance matrices Rx and Ruj were known. In our framework, the

goal is to design the cross-estimator gain and the bit-rate variables so that (4.5) can be

satisfied.

This is done via the calculation of covariances of xℓk+j − x̂ℓi,k+j|k that involves

errors due to the discrepancy of control signals and the communication bandwidth as-

signed. Specifically because of the timing issues of coordinated MPC, we are constructing

state cross-prediction based on applying noisy versions of the previous time sample’s con-

trol sequence {uℓk+j|k−1} in place of the actual control {uℓk+j|k} and we need to limit the

variability of the MPC control solutions. In modeling terms it may be captured by

writing
















uℓk|k
...

uℓk+N−2|k

uℓk+N−1|k

















=

















uℓk|k−1
...

uℓk+N−2|k−1

uℓk+N−2|k−1

















+

















ηℓ1,k
...

ηℓN−1,k

ηℓN,k

















, (4.12)

for some noise process {ηℓj,k} with appropriately chosen covariance matrix

H , diag{Cov(ηℓ1,k),Cov(ηℓ2,k), · · · ,Cov(ηℓN,k)}

, diag{H1,H2, · · · ,HN}.

Remark 4.2.2. The implementation of such as restriction on the variation of succes-

sive control solutions would be effected through the selection of Uk in the MPC problem

(Dunbar & Murray 2004, Dunbar & Murray 2006).

Remark 4.2.3. In some applications, it might not be reasonable to employ the above

control signal information structure. In the worst case, one could model the control

signal (restricted by Uk that contains zero) by a white, zero-mean noise sequence with

an approximated covariance matrix based on Uk.

The cross-estimator is formed by combining the recursions from (4.10-4.12)

across the horizon of interest. This yields a linear recursion for cross-predictions based on

current estimates and transmitted data. The covariance is calculated by standard means,

to be detailed in the next section, and then absorbed into the constraint management

of a deterministic problem. The bandwidth limitation lies in the restriction that (4.6)

places on the assigned covariances of quantization noises νi,ℓ.
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4.3 Cross-Estimator Design and Bandwidth Assignment

via LMI

In Section 4.2, we specified a set of linear filters for the propagation of cross-

predictions from transmitted data. The covariance of the estimates can then be cal-

culated via estimate errors produced from the state and control transmission equation

(4.7), the control delay error captured by (4.12), the recursion (4.9), the computation of

cross-predictions via (4.10-4.11), and the true system (4.1). The driving noises for these

covariance calculations are the local process noises {wik, wℓk} and measurement noises

{vik, vℓk} from (4.1) and (4.3) affecting own-state estimation, the control variation noise

ηℓk from (4.12), and the communications quantization noise νi,ℓ from (4.7). For the mo-

ment, the sole design variable of the cross-estimator is the estimator gain matrix Kℓ
i .

Combining (4.1) and the first element of (4.7),

x̌ℓi,k|k = Axℓk−1 +Buℓk−1|k−1 + wℓk−1 + x̃ℓk|k + νi,ℓx,k,

where x̃ℓk|k denotes the own-state Kalman filter error signal. This may be substituted

into (4.9) to yield an expression for the filtered cross-state error:

x̃ℓi,k|k=(I−Kℓ
i )Ax̃

ℓ
i,k−1|k−1−(I−Kℓ

i )Bν
i,ℓ
u1,k

+(I−Kℓ
i )w

ℓ
k−1−Kℓ

i x̃
ℓ
k|k−Kℓ

i ν
i,ℓ
x,k. (4.13)

This equation (4.13) describes the evolution of the filtered cross-state estimate error

signal. If we consider fixed gain matrix Kℓ
i then, provided the matrix (I − Kℓ

i )A is

stable, this error has a fixed covariance, denoted Σℓ
i,k|k. Using the error equation (4.13)

we can establish the following second moment inequality.

Lemma 4.3.1. Suppose that the following inequality holds with P > 0.

P−(I−Kℓ
i )APA

T(I−Kℓ
i )
T−(I−Kℓ

i )(BRu1
BT+Qo)(I−Kℓ

i )
T−Kℓ

i (S
ℓ
f +Rx)K

ℓ
i
T
> 0, (4.14)

with Sℓf the stationary Kalman filter covariance at Vehicle ℓ and Qo,Cov(wℓk). Then

the filtering cross-estimator is stable and has a limiting covariance limk→∞

[

Σℓ
i,k|k

]

<P .

The subsequent cross-predictor covariances Σℓ
i,k+j|k are computable in similar
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fashion from (4.1), (4.10), (4.11), and (4.12):

x̃ℓi,k+j|k=A
jx̃ℓi,k|k+

j
∑

m=1

Aj−mB(

m
∑

n=1

ηℓn,k+m−n)−
j+1
∑

m=2

Aj+1−mBνi,ℓum,k+

j−1
∑

m=0

Amwℓk+(N−1−m),

(4.15)

whence

Σℓ
i,k+j|k, Aj

















Σℓ
i,k|k

Ru2

. . .

Ruj+1

















ATj +Qj , (4.16)

where

Aj , [Aj , Aj−1B, . . ., B],

Qj ,

j
∑

m=1

Aj−mB(

m
∑

n=1

Hn)B
TAj−m

T
+

j−1
∑

m=0

AmQoA
mT .

(4.17)

The expression Hn denotes Cov(ηn,k) as in (4.12). Also note that in this iteration, when

j = N , RuN+1
is equal to RuN due to the particular choice of control sequence update

(4.12). Recall that Σℓ
i,k+j|k should be bounded from above as in (4.5) in Lemma 4.2.1.

Substituting (4.16) into (4.5) yields a new inequality imposing bounds on Σℓ
i,k|k and Ruj s:

Cj

















Σℓ
i,k|k

Ru2

. . .

Ruj+1

















CTj ≤ Wj, (4.18)

where Cj , CAj and Wj ,
(||yi⋆−y

ℓ
⋆||M−α)2

β2 M−1 − CSip,k+j|kCT− CQjCT . By taking the

Schur complement of (4.18),























Wj CAj CAj−1B . . . CB

Aj
T
CT Y

BTAj−1TCT R−1
u2

...
. . .

BTCT R−1
uj+1























≥ 0, (4.19)

where P = Y −1. Clearly, ifWj is negative definite, then (4.19) is infeasible. In this case,

we can restore the feasibility (positive definiteness of Wj) by increasing the distance
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between the target positions, by reducing Vehicle i’s self-prediction covariance, or by

decreasing the accumulative noise covariance Qj via decreasing Hn (i.e. limiting the

changes between the control sequences).

4.3.1 Three Cross-Estimator Requirements

We have three specific requirements of the cross-estimator:

R1. The cross-estimator should be stable.

R2. The error covariance of the cross-estimator should satisfy the control performance

requirement (4.5) or (4.19) of achieving an overbound on the prediction error covariance

associated with the target positions of the vehicles.

R3. The total bit-rate applied to all communicated information per sample should

satisfy the upperbound (4.6).

Condition R3 introduces the channel bit-rates as additional design variables to guarantee

conditions R1 and R2, which are nonlinear and, indeed, non-convex in the bit-rates.

They can, however, be satisfied by a convexified LMI formulation to be discussed later.

4.3.2 Incorporating Communications Limits

In the LMI formulation of the covariance constraints, the communications noises

(νi,ℓ) are represented by their covariances, as is done by Rx and Ruj in (4.14) and (4.19).

Here we attempt to make the bit-rate assignment to particular channels also a part of the

design problem, provided the inclusion of the bandwidth constraint (4.6) is amenable.

Using the inequality, x ≥ 1 + lnx for x > 0, the inverse expressions of (4.8) are

R−1
x ≥

















1+ln12+2(ln12)mi,ℓ
x,1

1+ln12+2(ln12)mi,ℓ
x,2

. . .

1+ln12+2(ln12)mi,ℓ
x,ξ

















,R̄−1
x ,

R−1
uj≥

















1+ln12+2(ln12)mi,ℓ
uj ,1

1+ln12+2(ln12)mi,ℓ
uj ,2

. . .

1+ln12+2(ln12)mi,ℓ
uj ,ψ

















,R̄−1
uj .

(4.20)
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We immediately have a set of linear inequalities in bit-rate variables mi,ℓ
x and mi,ℓ

u . Note

that R̄x, R̄uj serve as upper bounds on the original Rx and Ruj .

4.3.3 Cross-Estimator LMIs

We are now ready to draw the strings together from control-specified estimator

performance (4.5), cross-estimator stability and covariance calculation (4.14), and total

bit-rate limit (4.6) to yield a single set of LMIs, whose solution, if it exists, would yield;

bit-rates mi,ℓ
x ,m

i,ℓ
u1 , · · · ,mi,ℓ

uN , cross-estimator gains Kℓ
i , and limiting covariances P .

Theorem 4.3.1. Any solution {P = Y −1, L = Y Kℓ
i ,m

i,ℓ
x , m

i,ℓ
u1
, · · · ,mi,ℓ

uN } to the follow-

ing set of LMIs,




























Y (Y−L)A (Y−L) L L (Y−L)B

AT(Y−L)T Y 0 0 0 0

(Y−L)T 0 Q−1

o 0 0 0

LT 0 0 Sℓf
−1

0 0

LT 0 0 0 R̄−1

x 0

BT(Y−L)T 0 0 0 0 R̄−1

u1





























>0, (4.21)

ξ
∑

k=1

mi,ℓ
x,k +

N
∑

j=1

ψ
∑

k=1

mi,ℓ
uj ,k

< τ, (4.22)























Wj CAj CAj−1B . . . CB

AT
j
CT Y

BTAj−1TCT R̄−1

u2

...
. . .

BTCT R̄−1

uj+1























> 0, (4.23)

where τ is the total bit-rate, R̄−1
x and R̄−1

uj are given by (4.20), and Wj=
(||yi⋆−y

ℓ
⋆||M−α)2

β2

×M−1 −CSip,k+j|kCT −CQjCT , yields a solution for (4.5), (4.14), and (4.6).

Proof. The Schur complements of (4.14) lead to same the expression as (4.21) but with

R−1
x and R−1

u1
instead of R̄−1

x and R̄−1
u1

. Due to the relationship (4.20), the satisfaction of

(4.21) implies (4.14). If (4.23) is satisfied then (4.19) is satisfied. The scalar LMI (4.22)

is a restatement of (4.6).



85

The LMIs in Theorem 4.3.1 may be infeasible if we consider a fixed limited

total available bandwidth τ in (4.22) and a fixed bound on the covariance P in (4.23)

at the same time. This can be easily amended by taking the total bandwidth τ as a

variable to be minimized subject to (4.21)-(4.23). Due to the approximation (4.20), the

solution of the LMIs is a feasible solution but not the global minimum if applied to the

vehicles.

Once the solution of the above LMIs is obtained, one may construct a new

Kalman filter as a cross-estimator as if the transmitted information (x̌ℓi,k|k, û
ℓ
i,k−1|k,

ûℓi,k|k, · · · , ûℓi,k+N−2|k) of (4.7) is the measured signal for Vehicle ℓ corrupted by quan-

tization errors νi,ℓx and νi,ℓu . In this case, using the bit-rate assignment solution from the

above LMIs, one can compute Rx and Ru of (4.8) and use them as a measurement noise

error covariance. Since R̄x and R̄u overbound Rx and Ru, the resulting state estimation

error covariance from the newly constructed Kalman filter will underbound P from the

LMIs in Theorem 4.3.1. In the case that Kℓ
i is used in the cross-estimator, actually

achieved state estimation error covariance is also smaller than P . To see this, consider

the solution P , Kℓ
i , R̄x, and R̄u from Theorem 4.3.1. They satisfy the inequality

P−(I−Kℓ
i )APA

T(I−Kℓ
i )
T−(I−Kℓ

i )(BR̄u1
BT+Qo)(I−Kℓ

i )
T−Kℓ

i (S
ℓ
f + R̄x)K

ℓ
i
T
> 0.

This implies that there exist a positive definite matrix Γ such that

P−Γ=(I−Kℓ
i )APA

T(I−Kℓ
i )
T+(I−Kℓ

i )(BR̄u1
BT+Qo)(I−Kℓ

i )
T+Kℓ

i (S
ℓ
f + R̄x)K

ℓ
i
T

(4.24)

holds. The achieved estimation error covariance is given by solving

Sℓf,i=(I−Kℓ
i )AS

ℓ
f,iA

T(I−Kℓ
i )
T+(I−Kℓ

i )(BRu1
BT+Qo)(I−Kℓ

i )
T+Kℓ

i (S
ℓ
f +Rx)K

ℓ
i
T
, (4.25)

where Sℓf,i is the actual cross-estimation error covariance of Vehicle ℓ at Vehicle i. By

subtracting (4.25) from (4.24), we obtain

P−Sℓf,i=(I−Kℓ
i )A(P−Sℓf,i)AT(I−Kℓ

i )
T+(I−Kℓ

i )(B(R̄u1
−Ru1

)BT)(I−Kℓ
i )
T

+Kℓ
i (R̄x−Rx)Kℓ

i
T
+Γ.

Since R̄u1
>Ru1

, R̄x>Rx, and Γ > 0, we have P > Sℓf,i.
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Figure 4.1: A formation of three vehicles.

4.4 Example

We consider a three vehicle formation as shown in Figure 4.1. Vehicles track a

known 2D trajectory while keeping a certain formation. The vehicle model of HoTDeC

in Appendix A is used. The model of each vehicle is assumed to be identical, with the

state vector xk = [xp,k yp,k θp,k xs,k ys,k θsk ]
T , where (xp,k, yp,k) and (xs,k, ys,k) represent

positions and velocities in cartesian coordinates, and θp,k and θs,k are angular displace-

ment and velocity. Full state measurement is assumed available. The vehicle produces

actuation for x, y, and θ coordinates (i.e. uk ∈ R
3). The ambient disturbance processes

are modeled by simple white noises with normal distributions N(0,Cov (wk)) impinging

directly onto the states of the vehicles where Cov(wk) = diag{1, 1, 1, 10, 10, 10}. Each

vehicle has self-measurements and communications with the other two. Each local con-

troller is assumed to be a three-step MPC with 99% probability of no-collision with

the others. As shown in the figure, the nominal separations between V1 and V2, V3 are

s12 = 1.7m and s13 = 2.0m. Our goal is to derive cross-estimator gains and a band-

width assignment scheme with minimal total bit-rates for V1 only. The problem is to

minimize τ subject to two sets of (4.21) and (4.23), one for V2 and one for V3, and a

combined version of (4.22) which sums up all the bit-rates. The formulation can be ex-

panded to include others similarly. The additional noises on the control sequences {ηk} in

(4.12) are zero-mean, white gaussian with Cov(ηk) = diag{5, 5, 5, 5, 5, 5, 10, 10, 10}. The

computation results showing bitrate assignments from LMI and corresponding integer

approximation are shown in Table 4.1. A total of 120 bits per sample is assigned after
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Table 4.1: Bitrate assignment at Vehicle 1. The bitrate assignment for the other state

variables and control signals are omitted since they are all 1.

Assigned bit-rates for states
xp yp xs ys

V2 19.64 (20) 19.64 (20) 18.68 (19) 18.68 (19)

V3 4.20 (5) 4.20 (5) 4.19 (5) 4.19 (5)

rounding up the bandwidth values from the LMI. Since the effect of the inputs on the

vehicle motion covariances is relatively small (due to the model), very small bit rates for

the controls are enough to capture the neighbors’ motion. The numerical results show

another benefit of considering communication resource assignment. That is, one can ob-

serve what is more important and what is not to predict neighbors’ behaviors by looking

at bandwidth assignment results. For V1, capturing neighbors’ angular state information

and control sequence information is not as important as state information of x and y

coordinates to predict neighbors’ positions. Our computation shows that a small differ-

ence in nominal separation of vehicles (say s12 = 1.69 m) may lead to dramatic increase

in the required quality of information (more bits). This means a slight decrease in the

bound Wj over prediction error covariance demands many additional bits. Very small

bit-rate assignments may be rounded to zero, as all other assignments may be rounded

up or down, and a computation (4.25) of the resultant exact cross-estimate covariance

is made to validate the specific integer choice.

4.5 Cross-Estimator Design for Coordinated Systems with

Fixed Feedback Control

As a special case, we consider a coordinated system whose subsystems use fixed

control laws that use self- and cross-estimates. For simplicity, we assume a coordinated

system with two subsystems (i = 1, 2):

Dynamic Equation : xik+1 = Axik +Buik + wik,

Output : yik = Cxik,

Measurement : z1
k = Dxik + vik,
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with the disturbance wik ∼ (0, Qi) and the measurement noise vik ∼ (0, Ri). Their control

laws are assumed to be

u1
k = M11x̂

1
k|k +M12x̂

2
1,k|k + l1,

u2
k = M21x̂

1
2,k|k +M22x̂

2
k|k + l2,

where the control gains Mij and the additive constants li are known to both subsystems.

The self-estimates x̂1
k|k and x̂2

k|k are computed by standard Kalman filters. The cross-

estimators are given by

Cross−Estimator 1 at 2 : x̂1
2,k+1|k =Ax̂1

2,k|k +Bū1
k,

x̂1
2,k+1|k+1 = x1

2,k+1|k +K1
2 (z1

2,k −Dx̂1
2,k+1|k),

Cross−Estimator 2 at 1 : x̂2
1,k+1|k =Ax̂2

1,k|k +Bū2
k,

x̂2
1,k+1|k+1 = x2

1,k+1|k +K2
1 (z2

1,k −Dx̂2
1,k+1|k),

where

z1
2,k = Dx1

k + v1
2,k, ū1

k = M11x̂
1
2,k|k +M12x̂

2
k|k + l1,

z2
1,k = Dx2

k + v2
1,k, ū2

k = M21x̂
1
k|k +M22x̂

2
1,k|k + l2.

We model v1
2,k and v2

1,k as the noise caused by measurement and communication noises

with vij,k ∼ (0, Rij). Since the subsystem i does not have the direct knowledge of ujk, we

attempt to capture uik by ūik. As usual define x̃ = x− x̂, then we obtain

X̃k+1 = (I − K̄D̄)ĀX̃k + (I − K̄D̄)B̄wk − K̄vk+1,

where

X̃k =

















x̃1
k|k

x̃1
2,k|k

x̃2
1,k|k

x̃2
k|k

















, wk =





w1
k

w2
k



 , vk+1 =

















v1
1,k+1

v1
2,k+1

v2
1,k+1

v2
2,k+1

















,

Ā =

















A 0 0 0

−BM11 (A+BM11) −BM12 BM12

BM21 −BM21 (A+BM22) −BM22

0 0 0 A

















,
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B̄ =

















I 0

I 0

0 I

0 I

















, K̄ =

















K1 0 0 0

0 K1
2 0 0

0 0 K2
1 0

0 0 0 K2

















, D̄ =

















D 0 0 0

0 D 0 0

0 0 D 0

0 0 0 D

















.

Consider the steady state covariance P = Cov(X̃k) that satisfies

P = (I − K̄D̄)ĀP ĀT (I − K̄D̄)T+(I − K̄D̄)B̄QB̄T (I − K̄D̄)T+K̄RK̄T ,

where

Q =





Q1 0

0 Q2



 , R =

















R1 0 0 0

0 R1
2 0 0

0 0 R2
1 0

0 0 0 R2

















.

First of all, the estimators must be stable. Using the same idea of Lemma 4.3.1, if we

find an upper bound of positive definite P for

−P+(I − K̄D̄)ĀPĀT(I − K̄D̄)T+(I − K̄D̄)B̄QB̄T(I − K̄D̄)T+K̄RK̄T< 0, (4.26)

then the estimators are stable. Taking the Schur complement of (4.26) yields
















−Y (Y− LD̄)Ā (Y−LD̄)B̄Q
1

2 LR
1

2

ĀT(Y− D̄TLT ) −Y 0 0

Q
1

2B̄T(Y− D̄TLT) 0 −I 0

R
1

2LT 0 0 −I

















< 0, (4.27)

where P = Y −1 and K̄ = PL. From the perspective of formulating and solving non-

classical information architecture control problems, however, an incipient problem arises

through the inability to explore a block diagonal structure on the computed solution

M̄ from (4.27) without also imposing such a structure on Y and P . Evidently from

the structure of Ā a block diagonal P is not typically of interest. Indeed it is the

cross-covariance between terms such as x̃1
1,k|k and x̃1

2,k|k that captures the information

architecture. Without a structural condition on K̄, the solution of minimizing tr(Y −1)

subject to (4.27) would yield the classical, fully-shared-measurement Kalman filtering

solution. To explore the development of an LMI approach to finding feasible solutions to

the non-standard information architecture problem, we employ a result of (de Oliveira,

J.Bernussou & J.C.Geromel 1999).
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Lemma 4.5.1. (de Oliveira, J.Bernussou & J.C.Geromel 1999) The following state-

ments are equivalent.

(i) There exists a symmetric matrix P > 0 such that

ATPA− P < 0.

(ii) There exist a symmetric matrix P and a matrix G such that





−P ATGT

GA −G−GT + P



 ≤ 0.

Now we use Lemma 4.5.1 to establish the following theorem.

Theorem 4.5.1. Matrices G, Y , and L satisfying

















−G−GT+ Y (G−LD̄)Ā (G− LD̄)B̄ LR
1

2

ĀT (GT −D̄TLT ) −Y 0 0

B̄T (GT − D̄TLT ) 0 −I 0

R
1

2LT 0 0 −I

















≤ 0, (4.28)

yield P = Y −1 and K̄ = G−1L which satisfy (4.26). Conversely, P and K̄ satisfying

(4.26) provide Y = G = P−1, L = P−1K̄ which satisfy (4.28).

Corollary 4.5.1. If G and L are constrained to be block diagonal matrices in (4.28),

then P = Y −1 and K̄ = G−1L are also feasible in (4.26) with M̄ block diagonal.

Corollary 4.5.2. If matrices G, Y , and L, with G and L block diagonal conformably

with X̃k, can be found satisfying (4.28) then the state estimators, with the gains given by

the block diagonal elements of K̄ = G−1L, are stable and their covariances are bounded

above by the corresponding diagonal blocks of P.

Since our aim is to seek a solution of (4.28), which minimizes the variance of

the estimation error, we introduce a new variable W such that

W > Y −1, (4.29)

and then minimize the tr(W ). The Schur compliment of (4.29) is




−W I

I −Y



 < 0.
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This yields the following convex LMI optimization problem to provide a solution for the

observer gains for coordinated control with non-standard information structure.

min
G,L,W,Y

tr(W )

subject to:
















−G−GT+ Y (G−LC̄)Ā (G− LC̄)B̄ LR
1

2

ĀT (G−LC̄)T −Y 0 0

B̄T (G− LC̄)T 0 −I 0

R
1

2LT 0 0 −I

















≤ 0,





−W I

I −Y



 < 0,

(4.30)

where G and L are block diagonal, and Y and W are symmetric.

Note that we use Kalman filters for x̂ik|k. Hence, once we get solutions G, Y

and L from (4.30), the gains K1 and K2 will be replaced by their initial Kalman filtering

gains.

4.6 Self- and Cross-Estimator Design with Bounded Noise

and Disturbance

As seen in the previous sections, if probabilistic properties of the noise and

disturbance are known, then cross-estimator design can be given in a set of LMIs. If

we do not have any probabilistic models on the noise and disturbance, cross-estimator

design takes an different approach from what we have seen in the previous sections. Here

we attempt to design state estimators for coordinated systems under this circumstance.

We consider the control problem presented in Section 3.6. Recall the vehicle

dynamics of Vehicle i

xi,vk+1 = Avx
i,v
k +Bvu

i
k +Gvq

i,real
k , (4.31)

where xi,vk is the state vector and qi,realk is the actual disturbance acting on the vehicle.

We seek to describe qi,realk by a linear model

xi,dk+1 = Aidx
i,d
k +Gidw

i
k,

qik = Cidx
i,d
k ,

(4.32)
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with the disturbance state xi,dk , the output qik (same dimension as qi,realk ), and fictitious

white noise input wik. This model is required to

– allow the construction of an observer-based predictor for qi,realk ,

– preserve detectability (preferably observability) of the vehicle model

xik+1 = Aixik +Buik|k +Giwik, (4.33)

where

xik =





xi,vk

xi,dk



 , Ai =





Av GvC
i
d

0 Aid



 , B =





Bv

0



 , Gi =





0

Gid



 ,

position-output : yik = Cxi,vk ,

measurement : zik = Dxi,vk + vik.

The measurement noise vk is random and bounded. Here we assume that the choice of

Aid, G
i
d, and Cid satisfies the requirements. We consider the estimators at Vehicle i: the

design process for the other vehicles will be identical. The self-estimator of Vehicle i is

given by

x̂ik|k=(I−KiD̄)Aix̂ik−1|k−1+ (I−KiD̄)Buik−1|k−1+Kizik, (4.34)

where D̄=
[

D 0
]

and Ki is the self-estimator gain. Since (Ai, D̄) is detectable there

exists Ki such that (I−KiD̄)Ai is stable. For cross-estimation, Vehicle i receives the

full-state information from Vehicle ℓ via a communication channel:

zℓi,k =





x̂ℓ,vk|k + vℓ,vi,k

x̂ℓ,dk|k + vℓ,di,k



 .

The vectors νℓ,vi,k and vℓ,di,k capture the bounded random communication noises such as

quantization errors, packet dropout, and delay. Then the cross-estimator for Vehicle ℓ is

x̂ℓi,k+1|k=(Aℓ−Kℓ
i )x̂

ℓ
i,k|k−1+Bu

ℓ
i,k|k−1+K

ℓ
i z
ℓ
i,k, (4.35)

where Kℓ
i is the cross-estimator gain. There exists a stabilizing Kℓ

i by the same argument

as for the self-estimator case. For j−step ahead estimation, the input signal uℓi,k+j−1|k−1

is also transmitted from Vehicle ℓ via the communication channel:

uℓi,k+j−1|k−1 = uℓk+j−1|k−1 + νℓ,j−1
i,k , j=1, 2, . . . , N−1.
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We also consider vℓ,j−1
i,k as bounded random communication noise. Due to the timing

issue, the control sequence at time k−1 is transmitted The final control element is taken

to be identical to uℓk+N−2|k−1 since uℓk+N−1|k−1 does not exist. The error by using the

previous control is captured by

ηℓ,j−1
k = uℓk+j−1|k − uℓk+j−1|k−1, j = 1, . . . , N − 1,

ηℓ,N−1
k = uℓk+N−1|k − uℓk+N−2|k−1.

(4.36)

The variability (ηℓ,j−1
k ) is assumed to be bounded by the control constraint U.

4.6.1 Control Requirement of Estimation

From Section 3.6, the no-collision constraint of Vehicle i to avoid collision with

Vehicle ℓ is given by

||ŷik+j|k−ŷℓi,k+j|k||≥ |ỹik+j|k|p+|ỹℓi,k+j|k|p + α, (4.37)

where |ỹik+j|k|p , maxk ||ỹk+j|k||, |ỹℓi,k+j|k|p , maxk ||ỹℓi,k+j|k||, and α is the constant that

corresponds to the size of the vehicles. Since the right-hand-side of (4.37) can be fixed

by |ỹik+1|k|p+|ỹℓi,k+1|k|p +α, for simplicity, we only consider this choice of the no-collision

constraint. The communication and estimation objective is to ensure that constraints

are not always active. We want to have as small |ỹik+1|k|p+|ỹℓi,k+1|k|p as possible so that

the following condition is met:

|ỹik+1|k|p+|ỹℓi,k+1|k|p + α < d, (4.38)

where d is the nominal distance between the vehicles in the formation. This is the

minimum requirement for the estimators that is similar to (4.5) of the gaussian noise

and disturbance. Otherwise the no-collision constraint will be active even when ŷik+j|k

and ŷℓi,k+j|k are at the target positions. This provides the key guideline for the estimator

design.

The condition (4.38) also suggests that the Kalman filters are not the best choice

for the self-estimators. It is because that the Kalman filter is the optimal filter in terms

of achieving the minimum estimation error variance: this does not imply minimization

of maxk |ỹik+1|k|p. Therefore, the self-estimator design should also be reconsidered along

with the cross-estimator design.
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4.6.2 Estimator Gain Tuning and Performance

The gain tuning begins with calculating ỹik+1|k and ỹℓi,k+1|k as shown in the

following theorems.

Theorem 4.6.1. Suppose that Vehicle i has the model (4.33) and a self-estimator as in

(4.34). If uik|k is applied, then the input to output map qi,realk and vik to ỹik+1|k is given by





x̃i,v
k+1|k

x̂i,dk+1|k



 =





Av−Ki,1D −GvCid
Ki,2D Aid









x̃i,v
k|k−1

x̂i,dk|k−1



 +





Gv

0



 qi,realk +





−Ki,1

Ki,2



 vik,

ỹik|k−1 =
[

C 0
]





x̃i,vk|k−1

x̂i,dk|k−1



 ,

(4.39)

where Ki=AiKi= [Ki,1T Ki,2T ]T .

Theorem 4.6.2. Suppose that Vehicle ℓ has a model as in (4.33) and its cross-estimator

at Vehicle i as in (4.35). Then the input to output map from qℓ,realk , ηℓ,0k , νℓ,0i,k , ν
ℓ,v
i,k , ν

ℓ,d
i,k ,

and vℓk+1 to ỹℓi,k+1|k is given by (4.40) with

Kℓ
i =





Kℓ,11
i Kℓ,12

i

Kℓ,21
i Kℓ,22

i



, Kℓ =





Kℓ,1

Kℓ,2



 .

Denote |ỹk+1|k|p evaluated for a single input ek by |ỹk+1|k|ep. Then the worst error bounds

are given by

|ỹik+1|k|p = |ỹik+1|k|q
i,real

p + |ỹik+1|k|v
i

p ,

|ỹℓi,k+1|k|p= |ỹℓi,k+1|k|q
ℓ,real

p + |ỹℓi,k+1|k|η
ℓ,0

p + |ỹℓi,k+1|k|
νℓ,0
i
p

+ |ỹℓi,k+1|k|
νℓ,vi
p + |ỹℓi,k+1|k|

νℓ,di
p + |ỹℓi,k+1|k|v

ℓ

p .

To compute |ỹik+1|k|p and |ỹℓi,k+1|k|p, one may use peak-induced system norms (⋆-norm)

(Bu, Sznaier & Holmes 1996) of (4.39) and (4.40) for each input. This would be useful

when the only knowledge about input is its bound. However since qi,realk and qℓ,realk are

available as data records, |ỹik+1|k|
qi,real
p and |ỹℓi,k+1|k|

qℓ,real
p can be obtained by numerical

simulation for given Ki and Kℓ
i . This usually achieves less conservative |ỹik+1|k|

qi,real
p

and |ỹℓi,k+1|k|
qℓ,real
p than computing them via peak-induced system norms. Since the rest

of the inputs are bounded random sequences, for fixed Ki and Kℓ
i , the remainder of

|ỹik+1|k|p and |ỹℓi,k+1|k|p is calculated via peak-induced system norms.
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















x̃ℓ,vi,k+1|k

x̂ℓ,di,k+1|k

x̃ℓ,vk+1|k+1

x̂ℓ,d
k+1|k+1

















=

















Av−Kℓ,11
i Kℓ,12

i −GvCℓd Kℓ,11
i −Kℓ,12

i

Kℓ,21
i Aℓd −K

ℓ,22
i −Kℓ,21

i Kℓ,22
i

0 0 (I−Kℓ,1D̄)Av −(I−Kℓ,1D̄)GvC
ℓ
d

0 0 Kℓ,2D̄Av Aℓd−Kℓ,2D̄GvCℓd
































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x̃ℓ,vk|k
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


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









+

















Gv

0

(I−Lℓ,1D̄)Gv

Lℓ,2D̄Gv

















qℓ,realk +

















−Bv
0

0

0

















ηℓ,0k +

















−Bv
0

0

0

















νℓ,0i,k+

















−Kℓ,11
i

Kℓ,21
i

0

0

















νℓ,vi,k

+

















−Kℓ,12
i

Kℓ,22
i

0

0

















νℓ,di,k+

















0

0

−Kℓ,1

Kℓ,2

















vℓk+1,

ỹℓi,k|k−1=
[

C 0 0 0
]

















x̃ℓ,vi,k|k−1

x̂ℓ,di,k|k−1

x̃ℓ,vk|k

x̂ℓ,d
k|k

















,

(4.40)

Our aim is to design the estimators that achieve small |ỹik+1|k|p and |ỹℓi,k+1|k|p.
We may tune Ki and Kℓ

i directly by evaluating the difference in |ỹik+1|k|p and |ỹℓi,k+1|k|p
with respect to variation in the elements of Ki and Kℓ

i . However, if their dimension is

high, this approach would not be tractable. Furthermore it is hard to tune Ki and Kℓ
i

only over the elements which are stabilizing. Alternatively since we can approximate

the covariance matrix (R) of measurement and communication noises (denote R for self-

and cross-estimators by Ri and Rℓi respectively), for fixed Ri and Rℓi , one may use the

Discrete time Algebraic Riccati Equation (DARE) to obtain stabilizing Ki and Kℓ
i . In

this case, one should pick Qi and Qℓi as the covariance matrices of the fictitious noise wk

in (4.33) for self- and cross-estimators. If we limit Qi and Qℓi to be symmetric positive

semi-definite, then it would be manageable to tune Qi and Qℓi by evaluating the differ-

ence in |ỹik+1|k|p and |ỹℓi,k+1|k|p with respect to variation in the elements of Qi and Qℓi .
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Gain Tuning and Performance Determination of Self- (Cross-) estimator

For fixed Ri (Rℓi),

➀ make an initial guess of Qi (Qℓi),

➁ solve the DARE to obtain Ki (Kℓ
i ),

➂ evaluate |ỹik+1|k|p (|ỹℓi,k+1|k|p) ,

➃ adjust elements of Qi (Qℓi) and take the same procedure above (➁∼➂),

➄ evaluate the difference in |ỹik+1|k|p (|ỹℓi,k+1|k|p) to determine the direction of steepest

descent. Repeat (➃∼➄) until the descent is sufficiently small,

➅ check if the final Ki and Kℓ
i satisfy (4.38). If so, move on to the control design.

Otherwise use better measurement and communication systems or d must be increased.

Remark 4.6.1. In Adaptive Kalman Filtering (Haykin 2001), gains are tuned on-line

using sampled error covariance information. Here |ỹik+1|k|p and |ỹℓi,k+1|k|p information

is used to adjust elements in Qi and Qℓi and, hence, tuning is performed off-line.

Remark 4.6.2. To facilitate the deign process we proposed, one can use fminsearch in

matlab that does not use analytic gradients.

4.7 Conclusion

We developed cross-estimation techniques for coordinated systems. The em-

phasis has been to link the constraint specification of control strategy, cross-estimation

performance, and the inherent requirements of inter-subsystem communication. While

conceptually straightforward, the surprising aspect is that the treatment using covari-

ance calculations permits the simultaneous specification of a single set of LMIs whose

solution yields communication resource assignment and cross-estimator gains. When

each subsystem has a known fixed feedback control law, we can still formulate a set

of LMIs to design the cross-estimators. In addition, when statistical knowledge about

uncertainties is absent, we take a quite different approach from solving LMIs to design

self- and cross-estimators.
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Simulation Studies: Hovercraft

Formation Control

5.1 Introduction

In this chapter, we demonstrate our main ideas presented in Chapter 3 and 4.

We use the dynamical model of the HotDec hovercraft, which is described in Appendix

A. The vehicle levitates on a flat ground and hence moves in the 2D space. The dynamics

are linear. We consider the case in which only bounds on the noise are known and a

specific disturbance class is acting. Therefore, the control and estimator design process

is based on Sections 3.6 and 4.6.

5.2 Scenario

We consider the two-vehicle-formation control problem depicted in Figure 5.1.

Both vehicles are initially on their target positions. The offset d is 0.6 m. To effectively

reveal the control performance in the presence of disturbances, we consider the following

scenario:

– The gusts on Vehicles 1 and 2 blow from the positive X and the negative X direc-

tions respectively with a slight time delay,

– The vehicles’ target positions are fixed for all time. That is, their reference trajec-

98
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Figure 5.1: A formation of two vehicles and the coordinates.
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Figure 5.2: Sampled wind gust in thrust (N).

tories are constant.

One can easily implement more realistic wind gust scenarios and consider time-varying

reference trajectories. Typical and representative wind gusts are shown in Figure 5.2.

The control objective is to steer the vehicles to their target positions while avoiding

collision in the presence of the disturbance.

The vehicles are represented by

xi,vk+1 = Avx
i,v
k +Bvu

i
k +Gvq

i,real
k ,

with the state vector

xi,vk =
[

xip,k yip,k θip,k xis,k yis,k θis,k

]T
,
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and the actual disturbance qi,realk . The elements xip, y
i
p, x

i
s, and yis respectively represent

the positions and velocities in Cartesian coordinates. The variables θip and θis are the

angular displacements and velocities of the vehicles respectively. Three control inputs

control X, Y, and angular motions of the vehicle, and have the limits defined by

Ui , {u ∈ R
3
∣

∣

∣
||u||∞ ≤ 5}, i = 1, 2, (5.1)

where || · ||∞ denotes the vector infinity norm. We model both disturbances in Figure

5.2 as the outputs of linear systems (4.32):

xi,dk+1 = Aidx
i,d
k +Gidw

i
k,

qik = Cidx
i,d
k ,

with the disturbance state xi,dk ∈ R
4, the output qik, and fictitious white noise input wik.

Then the combined vehicle models for Vehicles 1 and 2 are constructed as (4.33):





xi,vk+1

xi,dk+1



 =





Av GvC
i
d

0 Aid









xi,vk

xi,dk



 +





Bv

0



uik|k +





0

Gid



wik.

Measurement noise is assumed to be uniformly distributed for numerical simulation and

bounded by

||vik||∞≤0.01.

5.3 Control without Communication

We first demonstrate the results of Section 3.3. We have shown that vehicles

may be able to avoid collision even without using communications if the formation ge-

ometry is such that the deviations of the vehicles from their target positions are small

enough to preclude collision. The results were developed by using the Kalman filter

and LQG control. Here the vehicles have input constraints and, therefore, they use

MPC. Furthermore, the measurement and communication noises are bounded without

any probabilistic knowledge. However, we still expect that the overall MPC-controlled

behavior of the vehicles would be quite similar to that in Section 3.3.
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Each vehicle uses MPC to solve the following problem at each time step:

arg min
{ui
k|k
,...,ui

k+N−1|k
}

N−1
∑

j=0

(ŷik+j+1|k−ri)TQc(ŷik+j+1|k−ri)+ui
T

k+j|kRcu
i
k+j|k,

subject to : x̂ik+j+1|k=Aix̂ik+j|k+Buik+j|k,

ŷik+j+1|k=Cx̂ik+j+1|k,

uik+j|k∈Ui,

where ri is the vehicle’s reference trajectory. Since there is no communication between

the vehicles, there is only a self-estimator at each vehicle. In this case, we look for self-

estimator gains that minimize |ỹik+1|k|p. This can be done in a similar fashion to the

gain tuning process presented in Section 4.6.2:

➀ select a measurement noise (vik) covariance Ri,

➁ select a disturbance driving noise (wik) covariance Qi ,

➂ solve the DARE to obtain the estimator gain Ki,

➃ optimize Ki over Qi to minimize |ỹik+1|k|p.

Simulation results are shown in Figure 5.3. The horizon N is 5 and the other

control parameters are described in Figure 5.3. When we do not penalize the control

input at all, the vehicles stay at their target positions very closely. Even when we do

not allow control-cost-free control, as seen in Figure 5.3 (b), the vehicles seem to avoid

collisions. Although the trajectories in Figure 5.3 (c) do not overlap, due to the size of

the vehicles (0.175 m radius), the vehicles collide. Hence the vehicles may collide when

the control is given a relatively stronger penalty Rc. If it is desired that the vehicles avoid

cost-free control, each vehicle needs to use both MPC with the no-collision constraint to

avoid collision and cross-estimators to compute the future states of its neighbor.

5.4 Control with Communication

5.4.1 Self- and Cross-Estimators

We describe the design process of the cross-estimator for Vehicle 1. The coun-

terparts including noise descriptions for Vehicle 2 are parallel. We use the formulation
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(b) d = 0.6m, Qc = 100× I , and Rc = I
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Figure 5.3: Vehicle trajectories without communication



103

developed in Section 4.6. At each sampling time, each vehicle transmits its self-vehicle-

state estimate, the self-disturbance-state estimate, and the one step out-of-date con-

trol sequence to its neighbor via a communication channel. Communication errors are

assumed to be uniformly distributed for the numerical simulation with the following

bounds:

control signal : ||ν2,j−1
1,k ||∞ ≤ 0.001, j = 1, 2, . . . , N

vehicle state : ||ν2,v
1,k ||∞ ≤ 0.001,

disturbance state : ||ν2,d
1,k ||∞ ≤ 0.001.

(5.2)

Since the transmitted control information is one step out-of-date, one should consider

the error η2,j
k between this previous control and unknown current control as in (4.36).

From the description of the input constraint (5.1), η2,j
k of (4.36) is assumed to have the

following limit

||η2,j
k ||∞≤10, j = 0, 1, 2, . . . , N − 1. (5.3)

The self- and cross-estimators satisfying

|ỹ1
k+1|k|p+|ỹ2

1,k+1|k|p < d− 0.35 = 0.25 (5.4)

are designed. Here we include the effect of vehicles’ radii (2×0.175 m). After the tuning

process, the achieved worst error bounds are

|ỹ1
k+1|k|p = 0.038, |ỹ2

1,k+1|k|p = 0.167, (5.5)

which satisfy the condition (5.4).

5.4.2 Local Model Predictive Control

The local MPC at Vehicle i is

arg min
{ui
k|k
,...,ui

k+N−1|k
}

N−1
∑

j=0

(ŷik+j+1|k−ri)TQc(ŷik+j+1|k−ri)+ui
T

k+j|kRcu
i
k+j|k,

subject to : x̂ik+j+1|k=Aix̂ik+j|k+Buik+j|k,

ŷik+j+1|k=Cx̂ik+j+1|k,

uik+j|k∈Ui,

||ŷik+j+1|k−ŷℓi,k+j+1|k||> |ỹik+1|k|p+|ỹℓi,k+1|k|p+ 0.35.

(5.6)
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Simulations are performed for the following parameters:

N = 5, Qc = 100× I, Rc = I, (5.7)

with appropriate dimensions of identity matrices I. Entire vehicle trajectories with mea-
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Figure 5.4: Time trajectories of Vehicle 1 (solid lines) and Vehicle 2 (dotted lines) with

star-time (t sec) marks.
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surement and communication noises are depicted in Figure 5.4. Due to the choice of Qc

and Rc in (5.7), the vehicles’ overall positions are fairly close to their target positions

[If larger Rc is used, for fixed Qc, the vehicles will make more dramatic movements to

avoid collisions. This will be further discussed in the next subsection.]. From Figure 5.4

and Figure 5.3 (b), it is interesting to see the behavioral difference between the control

with communication and the control without communication. Without communication,

the local MPCs only attempt to steer the vehicles to their target positions against the

wind gusts. When communication is used (i.e. no-collision constraints in effect), each

vehicle estimates the future positions of its neighbor and, at some steps, the vehicles

confront active constraints as shown in Figure 5.5. (In Figure 5.5, the solid lines are

the squared-expected distance between the vehicles for the computed input sequences.

Contact between the solid line and the dashed line [(‖ ỹ1
k+1|k ‖p + ‖ ỹ2

1,k+1|k ‖p +0.35)2]

indicates constraint activity at that time.) This appears to increase each vehicle’s move-

ment in the Y direction.

In terms of activity of no-collision constraints, since there are no measurement

and communication noises acting in Figure 5.7, all active constraints are solely caused

by the disturbance q1,realk and q2,realk . On the other hand, when the measurement and

communication noises (5.2) come into play, then the active constraints are caused by

the combination of the disturbance and the noises. In particular, in the cross-prediction

process, communicated inputs are corrupted by ν2,j−1
1,k and the errors are accumulated

as the prediction step j increases. As a result, more active constraints are observed as

shown in Figure 5.5. This leads to more conservative control overall, i.e. as shown in

Figure 5.6, the more uncertainty the vehicles have, the more stand-off they need to avoid

collision. In both cases, active constraints are not observed at the one-step prediction

stage especially when the wind gusts are active (0 ∼ 20 sec) due to the integral nature

of the vehicle dynamics: extensive first-control-sequence to avoid constraint violations

at the last prediction stage.
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Figure 5.5: Activity of one- and five-step ahead no-collision constraints at Vehicle 1 when

measurement and communication noises are acting.
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Figure 5.6: Actual vehicle distance with and without measurement and communication

noises. If the dotted or the solid line is below the dashed line, then collision has occurred.

5.5 Additional Simulation Results

From the simulation results in the previous subsection, the following questions

arise naturally: How would the vehicles behave if the control were more heavily penal-

ized? What happens if their nominal separation is larger? Is two-way communication
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Figure 5.7: Activity of one- and five-step ahead no-collision constraints at vehicle 1

without measurement and communication noises.

always better than one-way communication? Rather than a theoretical development,

we provide simulation results for these questions. Every simulation is done with active

communication noises (5.2).

5.5.1 Control Parameters and Formation Geometry

Figure 5.8(a) shows the vehicle trajectories using the same parameters as (5.7).

As shown in Figure 5.8(b), when we penalize the control more, the vehicles move further

away from the target positions and make more pronounced maneuvers. Although the

parameters (Qc = 25 × I, and Rc = I) do not result in any collisions, they are not

desirable choices for maintaining the formation. Furthermore, if more vehicles are in

the formation, then collision avoidance might be unmanageable. Both cases show very

different constraint activities in Figure 5.9(a) and 5.9(b). The parameter combination

of Qc = 25 × I and Rc = I causes limited control efforts: bigger predicted vehicle

separations in the figures are due to bigger control efforts.

When the nominal separation is larger, then regardless of the control parameter

choices, we obtain better formation keeping performance as shown in Figure 5.8(c) and

5.8(d). Less frequent activity of the no-collision constraints due to larger separation led
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(d) d = 1.2m, Qc = 25× I , and Rc = I

Figure 5.8: Time trajectories of the vehicles by two-way communication

to less dramatic movements by the vehicles. The active no-collision constraints in Figure

5.9(c) and 5.9(d) are less frequent than those with the 0.6 m separation.

5.5.2 One-Way Communication

Now we turn off the communication from Vehicle 2 to Vehicle 1. This leads to

leader-follower-like coordination. Vehicle 1 does not have the no-collision constraint and

it only aims to stay close to its target position. The results are shown in Figure 5.10 and

5.11. The movement of Vehicle 1 is very similar to those of Figure 5.3. Compared to

the two-way communication case, Vehicle 2 shows greater spatial variability around its

target position in Figure 5.10 and more frequent active no-collision constraints in Figure

5.11. In the leader-follower vehicle coordination contexts, effects of disturbance and noise
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(d) d = 1.2m, Qc = 25× I , and Rc = I

Figure 5.9: Constraint activity of Vehicle 2 by two-way communication presented in the

same way as Figure 5.5 and 5.7.

on the leader are conveyed to its immediate follower, and the effects are amplified by

addition of each successive vehicle’s disturbance and noise. This phenomenon is known

as string instability (Swaroop & Hedrick 1996) and the one-way communication in our

vehicle coordination scenario shows features quite similar to it. For any combination

of control parameters and formation geometry, more active constraints are observed in

the one-way communication case (Figure 5.11) than in the two-way communication case

(Figure 5.9). Since it is desirable to encounter less active no-collision constraints, the
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(d) d = 1.2m, Qc = 25× I , and Rc = I

Figure 5.10: Time trajectories of the vehicles when Vehicle 1 does not receive information

from Vehicle 2.

two-way communication appears to be a sounder choice for our vehicle formation control

scenario.

5.6 Conclusion

The disturbance rejection control in coordinated systems was demonstrated

using a local constrained MPC and cross-estimators. The developed control and estima-

tion techniques achieve our goal of formation keeping and collision avoidance fairly well.

However, this chapter reveals a few areas requiring further research such as theoretical

development of the MPC-controlled performance with respect to control parameters, ve-
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Figure 5.11: Constraint activity of Vehicle 2 when Vehicle 1 does not receive information

from Vehicle 2.

hicle formation geometry, and communications.
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Conclusion

6.1 Conclusions

In this dissertation, we investigated

– New techniques to improve stabilizing performance and to guarantee feasibility of

MPC (Chapter 2),

– Disturbance Rejection Control in Coordinated Systems (Chapter 3 and 4).

The main conclusions are the following:

– In Chapter 2, Contraction Based MPC was developed for a general class of discrete

time invariant systems with constraints. The algorithm is useful for a constrained

system whose initial states are far from the origin. A system property such as

contractibility or existence of CLF is a core condition to realize the algorithm. As

a by-product, our MPC scheme may bring faster system stabilization than control

methods solely associated with the CLF being used for feedback control.

– In Chapter 2, in addition to the above, algorithmic methods are developed to

generate feasible MPC with two state constraint structures: terminal state equality

constraint and reference dependent constraints. When a linear system is considered

and constraints are in the forms of convex polytopes, then the algorithms can be

formulated by using convex set and reachable set properties.
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– In Chapter 3, disturbance rejection control schemes were studied using the fixed

vehicle formation scenario. The role of control is to maintain the formation with-

out collision between the vehicles in the presence of disturbance. One surprising

discovery is that, to achieve our aims, coordinated control via interaction between

the vehicles is not always necessary. With linear and gaussian assumptions, we pro-

vided the analytical tool to show when coordinated control is required especially

for collision avoidance. If coordinated control is necessary, then MPC may be used

to accommodate no-collision between the vehicles as a constraint. A method to

incorporate disturbance and noise effects into the MPC design was developed.

– In Chapter 4, cross-estimator design was studied as a tool for one subsystem to

predict neighboring subsystems’ future behavior. Under linear and gaussian as-

sumptions, a set of LMIs was formulated and it is capable of accommodating the

stabilizing filter requirement, the communication limit, and the performance re-

quirement from the no-collision constraint in the feedback control. If bounded

noises and a specific disturbance class are considered, then we take a different

approach that is akin to Adaptive Kalman Filtering.

6.2 Future Work

The following issues need further investigations or will help in advancing the

presented results:

– In Chapter 2, Contraction Based MPC needs more work on the actual set compu-

tations for the nonlinear systems. Recall the terminal target state computation:

x̄k+1+N = arg min
x̃
{||x̃||S

∣

∣x̃ = f(x̄k+N , ūk+N ), ūk+N ∈ U}.

This involves an one-step reachable set using the plant f(x, u) and the set U. The

difficulty is that reachable sets computed for a nonlinear system usually lose nice

set properties such as convexity even when U is convex. Furthermore, reachable

sets would have very different characteristic depending on what nonlinear system

is considered. The algorithms for feasible MPC also require more investigations
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for the nonlinear system case for the same difficulty that Contraction Based MPC

has. Inclusion of disturbance in this chapter’s results is also a great problem.

– In Chapter 3, the local MPC design attempted to maintain the formation by using

the quadratic cost function to minimize the distance between the vehicle’s tar-

get position and its expected future position. Although a treatment to guarantee

closed-loop stability (i.e. formation keeping) such as a terminal constraint is de-

sired, further studies are required associated with some issues: incorporating the

uncertainties, effect on the other constraints and the other vehicles, and feasibility.

In addition, the current MPC formulation does not have a mechanism to guarantee

feasibility all time. This issue mainly comes from the difference between the state

estimate x̂k+1|k+1 and the one step ahead prediction x̂k+1|k: if x̂k+1|k+1 = x̂k+1|k,

then one might have been able to have feasibility by a similar argument used in

Section 2.2. In this case, one possible remedy is to include this effect by tight-

ening the constraints that was introduced in (Kuwata, Richards, Schouwenaars &

How 2004, Richards & How 2004). However, this approach may results in much

more conservative control inputs.

– In Chapter 4, when bounded noises and a class of disturbance are considered, the

current cross-estimator deign seems unable to include the communication resource

assignment as done in the gaussian case. Further investigations are needed to see

what one can do for this.

– In Chapter 5, interesting issues arose in the controlled vehicle behavior by MPC

with respect to control parameters, formation geometry, communication (one way

vs. two way), etc. The biggest headache to analyze such issues theoretically

is that MPC does not produce a fixed control law and the control input is never

predictable since it solves a numerical optimization problem at each sampling time.

This makes the analysis harder even for the steady state analysis under the linear

gaussian assumption.

– The ideas in Chapter 3, 4, and 5 were developed for the coordinated vehicles. As

we mentioned, we used the coordinated vehicle problem since the framework is easy

to understand. It would be interesting to investigate whether the developed results
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can be applied to other coordinated systems such as distributed power systems,

networked communication nodes, etc.



Appendix A

Hovercraft Model: HOvercraft

Testbed for DEcentralized

Control

Here we present the dynamical model of the hovercraft that is mainly used for

example problems in this thesis. The hovercraft we consider is known as HOvercraft

Testbed for DEcentralized Control (HoTDeC) of the University of Illinoise, Urbana-

Champagne. We provide the main features of the model based on (Rubel 2004, Stubbs,

Vladimerou, Fulford, Strick, Di & Dullerud 2005).

The hovercraft has the three degrees of freedom; X and Y in the typical Carte-

sian coordinate, and the rotational direction θ as shown in Figure A.1. The vehicle’s

equation of motion is given by
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whose state variables and parameters are given in Table A.1. We discretize the system

117



118

Figure A.1: Coordinates considered in the modeling of the hovercraft (green).

Table A.1: State and input variables and physical parameters of the HoTDeC hovercraft.
State and input variables Definition

xp position in X coordinate

yp position in Y coordinate

θ angular position

Fx thrust in X coordinate

Fy thrust in Y coordinate

T angular thrust

Physical parameters Definition Value

m mass of the vehicle 3.44 kg

J moment of inertia 0.061 kg ×m2

bt translational viscous friction constant 3.50 × e−3 N×s
m

br rotational viscous friction constant 2.63 × e−4 N×m×s
rad

diameter of the vehicle 0.35 m

equation (A.1) with 0.3 sec sampling time:
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where xp,k, yp,k, xs,k and ys,k represent positions and velocities in X and Y coordi-

nates respectively, θp,k and θs,k are angular displacement and velocity respectively, and
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[Fx,k Fy,k Tk]
T is the discrete time counterpart of [Fx Fy T ]T .
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