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Abstract
Lunar Magnetism, Space Weathering,

and Icy Satellite Interiors

by

Douglas Hemingway

An enduring mystery since Apollo is that, in spite of the Moon’s lack of a

global magnetic field, the surface is nevertheless dotted with regional magnetic

fields strong enough to be detected from orbit. Did the Moon once have an

intrinsic global field that magnetized parts of the crust but has since decayed

away? This is a question of fundamental importance to understanding the for-

mation and evolution of solid planetary bodies, and yet it remains unanswered

due in part to limitations in our knowledge of these crustal magnetic anomalies.

Adding to the puzzle, many of these magnetic anomalies are accompanied by

enigmatic optical features, known as swirls, which may hold the key to under-

standing "space weathering"—a process by which airless bodies change color

over time due to exposure to solar wind and micrometeoroids. Here we show

both that swirl morphology provides information about the structure of the

underlying magnetic sources, and that the color of the lunar surface varies

systematically with latitude in a way that allows us to distinguish between

the effects of solar wind ion and micrometeoroid bombardment, addressing a

decades-old problem in remote sensing, and aiding in the interpretation of the

spectra of airless bodies throughout the solar system.

The remarkable diversity of the outer solar system’s satellites provides im-

portant clues about the formation and evolution of the solar system. Many of

viii



the satellites have surprisingly young surfaces, owing in some cases to on-going

geologic activity. Moreover, the existence of subsurface oceans within some of

the satellites raises the intriguing possibility of extant habitable environments

in the outer solar system. Determining the properties of their ice shells and

the structures of their deep interiors places fundamental constraints on how

the icy satellites formed and evolved, and on what governs their behavior to-

day. Using gravity and topography data from Cassini, we develop analytical

models showing that Titan’s ice shell may be very rigid and therefore unlikely

to be geologically active. In contrast, we also model the internal structure

of the tiny, but highly geologically active moon Enceladus, and find that a

subsurface liquid ocean is likely.
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Chapter 1

Introduction

Gravity and magnetic fields are among the most fundamental and powerful

tools for probing the interiors of planetary bodies (Connerney , 2007; Wiec-

zorek , 2007). An internally generated geomagnetic field is a clear indication

of sustained movement of an electrically conducting fluid within the interior.

Even if no such field is present, remanent magnetization in crustal rocks can

put constraints on the material properties of the crust and may indicate that a

geomagnetic field once existed, but has since decayed away, as may be the case

for the Moon (Garrick-Bethell et al., 2009). In addition to constraining the

properties of the crust and providing clues about the deeper interior, crustal

magnetic fields may also affect the evolution of the surface itself by influencing

space weathering—the gradual optical evolution of exposed surfaces—through

magnetic deflection of solar wind (Hood and Schubert , 1980). Gravity is fun-

damentally about mass distribution and is therefore a crucial tool for interior

structure modeling. With a combination of gravity and topography data, we

can measure the thickness and elastic properties of a body’s lithosphere and

place constraints on the deeper interior.
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This work divides broadly into two parts. In the first part (Chapters 2

and 3), we use optical and magnetic field data to study “lunar swirls”, a class

of albedo anomalies associated with strongly magnetized parts of the crust.

Swirls offer insights into both the geometry of lunar crustal magnetic sources

and the role played by solar wind in space weathering. In the second part

(Chapters 4 and 5), we develop analytical models and use them in combination

with topography and gravity field data to construct interior structure models

for two of Saturn’s icy moons, Titan and Enceladus, helping to constrain the

likely level of geologic activity on the former and confirming the presence of a

subsurface liquid ocean on the latter.

Although the Moon does not possess a global magnetic field today (Ness

et al., 1967), parts of its crust are nevertheless magnetized strongly enough to

be detected from orbit (Dyal et al., 1970; Hood et al., 2001). The origin of this

remanent magnetization is unknown, but it could be the result of crustal rocks

having cooled in the presence of a dynamo field that is now extinct (Garrick-

Bethell et al., 2009) or transient episodes of intense magnetization associated

with basin-forming impact events (Hood and Artemieva, 2008; Mitchell et al.,

2008). Curiously, many of the crustal magnetic anomalies are co-located with

enigmatic collections of morphologically complex bright markings known as

“swirls” (Hood and Schubert , 1980). The mechanism for the formation of swirls

is not known, but their close association with magnetic anomalies suggests that

they may be useful for studying the characteristics and origins of lunar crustal

magnetism. In Chapter 2, we use Lunar Prospector magnetometer data and

Clementine reflectance mosaics to test the hypothesis that swirls are formed

where crustal magnetic anomalies, acting as mini magnetospheres, shield por-

tions of the surface from the darkening effects of solar wind ion bombardment,

2



thereby leaving patches that appear bright compared with their surroundings

(Hood and Schubert , 1980). We find evidence from two swirls with dissimilar

magnetization orientations, Airy and Reiner Gamma, that the bright parts

of swirls correspond to dominantly horizontal magnetic fields and that the

intra-swirl dark lanes correspond to vertical fields at the surface—just what

we would predict if the swirls are in fact formed due to magnetic deflection of

solar wind. We further show that source models constrained by the morphol-

ogy of the swirls produce fields that are consistent with the Lunar Prospector

magnetometer observations. We conclude that solar wind deflection is the

likely mechanism for the formation of swirls and suggest that swirl morphol-

ogy provides a previously unrecognized clue to the geometry of the underlying

magnetic source bodies (Hemingway and Garrick-Bethell , 2012).

Aside from its connection to lunar magnetic anomalies, space weathering

is an important phenomenon of its own as it complicates the interpretation of

spectroscopic observations of airless bodies everywhere (Hapke, 2001). Solar

wind and micrometeoroids are thought to be the dominant agents of space

weathering, but their relative contributions are not yet well understood. In

Chapter 3, building from the findings of Garrick-Bethell et al. (2011), we char-

acterize the unique spectral signature of lunar swirls and compare it against

the spectra of the lunar surface globally. Using Clementine mosaics, we find

a previously unrecognized systematic latitudinal variation in the near-infrared

spectral properties of the lunar surface, and show that the characteristics of

this latitudinal trend match those observed at swirls. We propose that reduced

solar wind flux, which should occur both at swirls and toward higher latitudes,

is the common mechanism behind these color variations. This model helps us

quantify the distinct effects of solar wind and micrometeoroid weathering and

3



could aid in interpreting the spectra of airless bodies throughout the solar

system (Hemingway et al., 2015).

Beginning with Chapter 4, we turn to the problem of modeling the interior

structures of icy satellites, specifically using gravity and topography data from

the Cassini mission. Cassini has made numerous flybys of several of Saturn’s

moons, most notably, the giant Titan and the small but geologically hyperac-

tive Enceladus—the subjects of Chapters 4 and 5, respectively. A handful of

the flybys have been dedicated to determination of the moons’ low order grav-

ity fields via radio tracking during close approaches (Iess et al., 2010, 2012,

2014), resulting in good constraints up to spherical harmonic degree 3 in the

case of Titan. For Enceladus, only the degree-2 terms and the degree-3 zonal

term have been determined. The shape of Enceladus has been determined

through compilation of dozens of limb profiles obtained from the Imaging Sci-

ence Subsystem (Nimmo et al., 2011). This technique has not been applicable

to Titan, however, due to the thick and opaque atmosphere. Instead, Titan’s

topography has been determined by compiling elevation data obtained from

Cassini ’s RADAR system (Stiles et al., 2009; Zebker et al., 2009, 2012). In

both of these chapters, we employ an admittance analysis which characterizes

the degree to which the topography is compensated, and at what depth, pro-

viding an estimate of the thickness of the icy crusts and their elastic properties.

In the case of Titan (Chapter 4), the gravity and topography show a strong

and unexpected inverse correlation at spherical harmonic degree 3 (long wave-

lengths that are not affected by tidal and rotational distortion), suggesting

that the high standing topography is associated with negative mass anomalies

at depth. We develop analytical models that allow for such a condition, but

only if the ice shell is substantially rigid (and therefore unlikely to be geologi-

4



cally active), if it has been loaded primarily from below, and if the surface has

experienced several hundred meters of erosion and deposition, with sediment

being redistributed globally (Hemingway et al., 2013).

For Enceladus (Chapter 5), the gravity data are so limited that we are

forced to take on the task of analyzing the degree-2 signal, which is compli-

cated by the effects of tidal and rotational distortion. Making the assumption

that the compensation mechanism behaves isotropically, we are able to self-

consistently separate the degree-2 gravity and topography signals into their

hydrostatic (i.e., tidal/rotational) and non-hydrostatic components in a way

that allows us to estimate the degree of compensation, the depth at which it oc-

curs, and the moment of inertia. We conclude that Enceladus is substantially

differentiated, and that the topography is highly compensated, suggesting that

it is supported isostatically, consistent with the presence of a global subsurface

liquid layer (Iess et al., 2014).

Three appendices are included at the end of this document, and are as

much for my own reference as anything else. In support of Chapters 2, 4, and

5, Appendix A describes the conventions and notation I use when working with

spherical harmonics, along with some discussion of the various normalization

schemes that are in use. Appendix B details supporting equations for Chap-

ter 2, including conversion from magnetic scalar potential to magnetic flux

density and modeling of magnetic fields generated by individual dipoles and

linear sources. Finally, in support of Chapters 4 and 5, Appendix C provides

a summary of many of the most relevant relations concerning gravitational

potential and equilibrium figures arising from tidal and rotational distortion,

including some derivations that I find useful to have written out in my own

preferred notation.
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Chapter 2

Magnetic Field Direction and

Lunar Swirl Morphology

This chapter is a modified reprint of Hemingway, D and I. Garrick-Bethell

(2012), Magnetic field direction and lunar swirl morphology: Insights from

Airy and Reiner Gamma, J. Geophys. Res. 117, E10012.

Abstract

Many of the Moon’s crustal magnetic anomalies are accompanied by high

albedo features known as swirls. A leading hypothesis suggests that swirls

are formed where crustal magnetic anomalies, acting as mini magnetospheres,

shield portions of the surface from the darkening effects of solar wind ion bom-

bardment, thereby leaving patches that appear bright compared with their sur-

roundings. If this hypothesis is correct, then magnetic field direction should

influence swirl morphology. Using Lunar Prospector magnetometer data and

Clementine reflectance mosaics, we find evidence that bright regions corre-
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spond with dominantly horizontal magnetic fields at Reiner Gamma and that

vertical magnetic fields are associated with the intra-swirl dark lane at Airy.

We use a genetic search algorithm to model the distributions of magnetic source

material at both anomalies and we show that source models constrained by

the observed albedo pattern (i.e., strongly horizontal surface fields in bright

areas, vertical surface fields in dark lanes) produce fields that are consistent

with the Lunar Prospector magnetometer measurements. These findings sup-

port the solar wind deflection hypothesis and may help to explain not only

the general form of swirls, but also the finer aspects of their morphology. Our

source models may also be used to make quantitative predictions of the near

surface magnetic field, which must ultimately be tested with very low altitude

spacecraft measurements. If our predictions are correct, our models could

have implications for the structure of the underlying magnetic material and

the nature of the magnetizing field.

2.1 Introduction

2.1.1 Background

Although the Moon does not now possess a global magnetic field (Ness et al.,

1967), remanent crustal magnetization has been identified on the surface and

several stable regional magnetic fields have been detected from orbit (Dyal

et al., 1970; Coleman et al., 1972; Lin, 1979; Lin et al., 1998; Hood et al.,

2001). Curiously, many, but not all of these crustal magnetic anomalies are ac-

companied by sinuous patterns of anomalously high surface reflectance known

as swirls (Hood et al., 1979; Hood and Williams , 1989; Richmond et al., 2005;

7



Blewett et al., 2011).

Compared with their surroundings, swirls are optically immature, exhibit

spectrally distinct space weathering trends (Garrick-Bethell et al., 2011), and

are depleted in hydroxyl molecules (Kramer et al., 2011). Swirls appear to

overprint local topography, having no detectable topographic or textural ex-

pression of their own (Neish et al., 2011). So far not identified anywhere else in

the solar system, swirls are unique natural laboratories where space weather-

ing and crustal magnetism intersect. As such, their study could help address

important questions in lunar science including the Moon’s dynamo history

(Garrick-Bethell et al., 2009; Dwyer et al., 2011; Le Bars et al., 2011), the

relative influences of solar wind and micrometeoroid bombardment on space

weathering (Hapke, 2001; Vernazza et al., 2009), and the production and dis-

tribution of water over the lunar surface (Pieters et al., 2009; Kramer et al.,

2011).

Electrostatic migration of dust has been proposed as a possible mechanism

for swirl formation (Garrick-Bethell et al., 2011), as have meteoroid or comet

impacts (Schultz and Srnka, 1980; Pinet et al., 2000; Starukhina and Shkura-

tov , 2004). Another model suggests that crustal magnetic fields act as mini

magnetospheres, deflecting the solar wind and protecting portions of the sur-

face from the optical maturation and darkening effects of proton bombardment

(Hood and Schubert , 1980; Hood and Williams , 1989). This chapter aims to

make and test predictions based on this solar wind deflection model for swirl

formation.

8



2.1.2 Predicted Influence of Magnetic Field Direction

The solar wind deflection model suggests that solar wind ions are magnetically

deflected due to the Lorentz force. Neglecting the induced electric field, the

cross product of particle velocity and magnetic field in the Lorentz Law means

the magnetic deflection force is maximized when particle velocity is perpen-

dicular to the magnetic field and zero when it is parallel. Hence, if the high

albedo of swirls is the result of inhibited space weathering due to magnetic

deflection of solar wind ions, magnetic field direction should influence swirl

morphology. While the solar wind incidence angle varies, the ion flux at the

surface and thus any darkening effects will be greatest when the ion trajec-

tories are vertical. We therefore predict that portions of the crust that are

shielded by dominantly horizontal magnetic fields should receive maximum

protection from the solar wind while portions of the crust associated with

vertically oriented magnetic fields should experience protection only at high

solar wind incidence angles, when darkening effects would be minimal anyway.

This suggests that the magnetic fields directly over the bright swirls should be

dominantly horizontal and that away from swirls and in the intra-swirl dark

lanes, the fields may be either closer to vertical or too weak to offer the surface

any protection from solar wind darkening.

Because magnetic field strength decreases rapidly with distance from the

source, swirl morphology should depend mainly on the very low altitude struc-

ture of the magnetic field. The structure of the field at higher altitudes, where

field strength is weaker, has less influence on solar wind deflection. Unfor-

tunately, spacecraft observations are typically limited to higher altitudes and

therefore do not directly capture the structure of the near-surface magnetic
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field. It is therefore important to understand the way in which the field pat-

terns change with observation altitude, including the role that is played by the

direction of magnetization. Figure 2.1 illustrates the magnetic field due to a

single dipole that is either vertically oriented (panels a and c) or horizontally

oriented (panels b and d). The upper panels (a and b) illustrate magnetic

field lines as seen in vertical cross section while the lower panels (c and d)

show profiles of the horizontal component of the magnetic field as observed

along the dashed lines shown in the upper panels (in both cases, the model

dipole is placed at the origin and arbitrarily assigned a magnetic moment of

1012 Am2). Directly over the vertically oriented dipole, field lines are vertical

at any altitude (Figure 2.1a). Peaks in the horizontal field strength appear to

either side and are separated by a distance equal to the observation altitude

(Figure 2.1c). Directly over the horizontally oriented dipole, field lines are

horizontal at any altitude (Figure 2.1b). As the observer moves along an axis

parallel to the dipole direction, horizontal field strength decreases, reaching

zero (i.e., vertical field lines) at a horizontal distance of 1/
p
2 times the ob-

servation altitude, before temporarily increasing again slightly (Figure 2.1d).

Appendix B gives a quantitative treatment of the way in which magnetic fields

vary with position relative to the source.

Our study uses Lunar Prospector magnetometer data collected at altitudes

of ⇠ 18 km and higher. While we cannot measure the magnetic field structure

below these altitudes, we can distinguish between vertically and horizontally

oriented magnetizations (we assume that strong crustal magnetic anomalies

are approximately dipolar). This means we can select anomalies exhibiting

orientations that allow us to test our predictions. Specifically, we can look

for intra-swirl dark lanes at an anomaly with approximately vertical magneti-
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Lower panels: profiles of the horizontal component of the magnetic field shown at
the various altitudes represented by dashed lines in the upper panels. In both cases,
the dipolar source has a magnetic moment of 1012Am2.
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zation because, in that case, field lines should appear vertical at any altitude

over the dark lane (Figure 2.1, panels a and c). Likewise, we can look for a cor-

relation between high albedo and strongly horizontal fields at anomalies with

approximately horizontal magnetization because field lines at such anomalies

should appear horizontal over the brightest areas regardless of observation al-

titude (Figure 2.1, panels b and d). We find that the Airy anomaly is similar

to the case illustrated in the left panels of Figure 2.1 while the Reiner Gamma

anomaly is similar to the case illustrated in the right panels of Figure 2.1.

2.2 Data Processing

2.2.1 Lunar Prospector Magnetometer Data

Our study uses Lunar Prospector 3-axis magnetometer measurements (level

1B data) obtained from NASA’s Planetary Data System (ppi.pds.nasa.gov).

Two distinct approaches are available for producing maps of crustal magnetic

fields from orbital measurements. One involves direct mapping using data se-

lected from a sequence of orbits that cross the region of interest (Hood et al.,

1981, 2001), resulting in maps of the field at the spacecraft altitude, while

the other involves developing a global spherical harmonic model of the scalar

potential field (see Appendix B) and using it to produce maps at arbitrary alti-

tudes (Purucker and Nicholas, 2010). The spherical harmonic models are well

suited to global mapping and have the advantages of automatically accounting

for varying spacecraft altitudes and guaranteeing that the mapped field is a

potential field. To date, the best available spherical harmonic models extend

to degree 170, corresponding to a horizontal wavelength of ⇠ 64 km (Purucker
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and Nicholas , 2010). However, because we are interested in small-scale swirl

morphology, we instead employ a direct mapping technique similar to that

of Hood et al. (2001), allowing us to map features at wavelengths compara-

ble with the spacecraft altitude (as low as ⇠ 18 km). As discussed by Hood

(2011), the direct mapping approach is suitable for regional mapping and has

several advantages including that it allows us to perform model fitting directly

to the minimally processed magnetometer measurements rather than to a de-

rived field model. While we focus here on direct mapping, we did compare

our maps against maps we derived from the Purucker and Nicholas (2010)

model coefficients. We found that in the latter, crustal anomaly fields appear

morphologically similar to the same features in our maps, but are typically

broader in horizontal extent and exhibit lower field strength.

Each of our maps incorporates data from a sequence of consecutive orbits

that cross the anomaly of interest. The polar orbiting spacecraft obtained

global coverage twice each lunation, with consecutive orbits spaced ⇠ 1 degree

in longitude (⇠ 30 km at the equator) and with along-track measurements

recorded at 5-second intervals, corresponding to ⇠ 8 km spacing in latitude.

In order to capture the undisturbed signal of the crustal magnetic anomalies,

avoiding times when the field is distorted by the impinging solar wind (Kurata

et al., 2005; Purucker , 2008), we use only those magnetometer measurements

collected when the Moon was protected from solar wind while passing through

the Earth’s magnetotail (excluding times when the field was disturbed by the

plasma sheet) or when the Moon was in the solar wind but the spacecraft was

in the lunar wake (on the dark side of the Moon and away from the terminator

by at least 20°). We examined data from the lowest (< 50 km) altitude phase

of the mission, between February and July 1999 (the final six months of the
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Lunar Prospector Data for Airy
Day(s) of

1999
Solar wind
condition

Minimum
solar zenith

angle (°)

Mean
altitude
(km)

Number of
Measure-

ments

Orbit
segments

35,36,37 wind 56 27.5 734 15

49,50 wake 131 18.7 772 15

63,64 wind 29 28.3 759 14

76,77,78 wake 150 18.5 615 12

90,91 tail 9 28.3 610 11

104,105 wake 151 18 678 13

117,118 tail 26 28.3 776 14

131,132 wake 134 34.4 782 14

145,146 wind 52 38.5 838 15

158,159 wake 111 34.3 627 12

172,173 wind 77 38.6 824 15

186,187 wind 88 35.9 660 12

199,200 wind 102 37 785 14

131,132 wake 136 34.4 48 4

91,118 tail 15 28.4 82 7

49,50,77,104 wake 134 18.5 130 12

Table 2.1: Lunar Prospector data used for Airy. The upper part of the table lists the
13 orbit sequences (each consisting of segments of between 11 and 15 consecutive
orbits) we examined in a 15° × 15° window centered on the anomaly. The solar
wind condition column indicates whether the spacecraft was exposed directly to the
solar wind (wind), or protected from it by being either in the lunar wake (wake)
or the Earth’s magnetotail (tail). The last three rows of the table show the 260
measurements retained after discarding data collected outside of wake and tail times,
after combining like-altitude orbit sequences, and after cropping to a 3.25° × 4° study
area.

mission). The upper portions of Tables 2.1 and 2.2 list the 13 orbit sequences

we examined for each of the Airy and Reiner Gamma anomalies, respectively.

In each case, of the 13 orbit sequences we examined, 5 took place in the lunar

wake and 2 in the Earth’s magnetotail.

We examined orbit segments spanning 15° of latitude approximately cen-

tered on each anomaly. Having eliminated measurements taken outside of

wake and tail times, we assume that any remaining external fields are steady
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Lunar Prospector Data for Reiner Gamma
Day(s) of

1999
Solar wind
condition

Minimum
solar zenith

angle (°)

Mean
altitude
(km)

Number of
Measure-

ments

Orbit
segments

40,41 wind 51 27.7 820 15

54,55 wake 139 19 769 14

67,68 wind 24 28.5 832 15

81,82 wake 162 18.6 795 15

95,96 wind 3 28.6 834 16

108,109 wake 158 18.3 634 12

122,123 wind 29 28.5 833 15

136,137 wake 135 34.8 703 13

149,150 tail 56 39.3 817 15

163,164 wind + wake 109 34.5 798 15

177,178 wind + tail 82 39.4 842 15

190,191 wind 83 36.3 838 15

204,205 wind 107 37.7 769 14

150 tail 57 39.7 48 4

136,163,164 wake 110 34.3 79 7

54,81,82,109 wake 141 18.3 118 10

Table 2.2: Lunar Prospector data used for Reiner Gamma. The upper part of the
table lists the 13 orbit sequences (each consisting of segments of between 12 and 16
consecutive orbits) we examined in a 15° × 15° window centered on the anomaly. The
solar wind condition column indicates whether the spacecraft was exposed directly
to the solar wind (wind), or protected from it by being either in the lunar wake
(wake) or the Earth’s magnetotail (tail). The last three rows of the table show the
245 measurements retained after discarding data collected outside of wake and tail
times, after combining like-altitude orbit sequences, and after cropping to a 3.25° ×
4° study area.
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over these 15° of latitude and that fields from isolated crustal sources span no

more than a few degrees. After subtracting the mean background field, we

assume the remaining fields are due to crustal sources. We then convert the

spacecraft position into selenographic spherical coordinates, taking the Lunar

Orbiter Laser Altimeter reference radius of 1737.4 km (Smith et al., 2010) as

zero altitude, and transform the magnetometer measurements into local east,

north, and radial components. We next combine data from consecutive orbits

to produce magnetic field maps by fitting regular square meshes to the data

using Delaunay triangulation. In order to capture the structure of the signal,

the grid cells must be no larger than half the spacecraft altitude, which can

be as low as ⇠ 18 km. We therefore use 0.25° × 0.25° (about 7.6 km × 7.6 km

at the equator) as the grid spacing when fitting to the Lunar Prospector mag-

netometer (LP MAG) data. This grid resolution is also finer than the spacing

between the observations (⇠ 8 km in latitude, up to ⇠ 30 km in longitude)

meaning that no observed signal variations are lost in the gridding process.

Using still finer resolution has no effect on the resulting linearly interpolated

surface and is undesired as it increases computation time unnecessarily. Con-

versely, using a larger (more coarse) grid spacing leads to undesired smoothing

in latitude, and as cell size approaches 1°, undesired smoothing occurs in longi-

tude as well. Despite our efforts to remove external fields and avoid times with

significant field distortion, portions of some of the orbit sequences still appear

to be contaminated by transient signals and are therefore discarded. In order

to obtain maps with improved spatial coverage, we combine measurements

from different orbit sequences if the observation altitudes are sufficiently sim-

ilar (differing by less than ⇠ 1 km). Since the spacecraft altitude varies only

slightly (< 1 km) over the scale of our maps (> 120 km), we do not perform
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upward or downward continuation of the signal to some fixed altitude. In-

stead, our maps represent the magnetic field at the slowly varying spacecraft

altitude. Finally, we define study areas within the boundaries of the processed

data: the Airy study area is illustrated in the left panels of Figure 2.2 while

the Reiner Gamma study area is illustrated in the right panels of Figure 2.2.

As summarized in the lower portions of Table 2.1 and Table 2.2, this results

in Airy study area maps at altitudes of ⇠ 18 km, ⇠ 28 km, and ⇠ 34 km, using

a total of 260 LP MAG measurements, and Reiner Gamma study area maps

at altitudes of ⇠ 18 km, ⇠ 34 km, and ⇠ 40 km, using a total of 245 LP MAG

measurements (only the lowest altitude maps are presented here).

2.2.2 Clementine Reflectance Mosaics

Our study uses Version 2 Clementine 750 nm reflectance mosaics produced

by the USGS (United States Geological Survey) map-a-planet service (ma-

paplanet.org). Compared with the Version 1 (V1) maps, the Version 2 (V2)

maps use a newer geodetic control network (Archinal et al., 2006), refining

the horizontal registration by as much as 10 km in some locations. We have

manually adjusted the V2 reflectance values to match those of the V1 maps,

which have been more carefully controlled to represent true reflectance.

2.3 Observations

We focus our discussion here on two specific examples: Airy and Reiner

Gamma. The Airy anomaly exhibits a magnetic field resembling the case

illustrated in Figure 2.1a while the Reiner Gamma anomaly field resembles

the case illustrated in Figure 2.1b. The distinct orientations of these two
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anomalies reveal different aspects of the relationship between magnetic field

direction and swirl morphology.

2.3.1 Airy

First described by Blewett et al. (2007), the Airy swirl is found near Airy

crater in the lunar nearside highlands. At the Lunar Prospector spacecraft al-

titude, the magnetic field lines tend to point inward toward the middle of the

anomaly, becoming increasingly vertical and downward pointing at the center

(Figure 2.2a), consistent with a source magnetization that is pointed mainly

downward. This inferred magnetization direction is based on examination of

the vector components and is supported by the models described in section 2.4.

Here, contour maps of the total magnetic field strength illustrate only that

the albedo anomaly is approximately centered on the magnetic anomaly (Fig-

ure 2.2b). However, maps of the horizontal field alone (Figure 2.2c) reveal

structure that is more closely related to albedo morphology. For example, the

dark lane through the center of the albedo anomaly forms an approximate

plane of symmetry in the observed horizontal magnetic field map. Even more

striking is the alignment between the dark lane in the center of the anomaly

and the line representing zero east-west magnetic field strength (dashed white

line in Figure 2.3). The brightest parts of the swirl are organized into two

roughly parallel lobes on either side of the dark lane. The center-to-center

horizontal distance between the lobes is approximately 8-10 km. Peaks in the

horizontal field strength are also organized into two lobes on either side of the

dark lane but with a peak-to-peak separation of roughly 30 km (Figure 2.2c).

As illustrated in Figure 2.1c, a closer spacing of horizontal field strength peaks
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Figure 2.2: Magnetic field maps derived from Lunar Prospector magnetometer data
over Clementine 750 nm reflectance maps at the Airy (left panels) and Reiner Gamma
(right panels) anomalies. Panels (a) and (d) show the direction of field lines at the
spacecraft altitude (⇠ 18 km in both cases), with arrow lengths showing relative
horizontal field strength. Panels (b) and (e) show contours of the total magnetic
field strength and panels (c) and (f) show contours of the horizontal component
alone. The Airy maps shown here are derived from LP MAG data collected on days
49-50, 77, and 104 of 1999 while the Reiner Gamma maps are derived from data
collected on days 54, 81-82, and 109 of 1999.
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Figure 2.3: East-west component of magnetic field as measured by Lunar Prospector
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field strength in the east-west direction. The map is derived from LP MAG data
collected on days 49-50, 77, and 104 of 1999.

is expected at lower altitudes, potentially allowing for better alignment with

the swirl’s bright lobes.

2.3.2 Reiner Gamma

Reiner Gamma, the type example for lunar swirls, is found in Oceanus Procel-

larum near the western limb of the lunar nearside. At the Lunar Prospector

spacecraft altitude, the magnetic field lines are south pointing (Figure 2.2d),

consistent with a source magnetization that is mainly horizontal and north

pointing. This inferred magnetization direction is based on examination of

the vector components, is supported by the models described in section 2.4,

and is in agreement with Kurata et al. (2005). Contour maps of total magnetic

field strength, seen here (Figure 2.2e) and elsewhere (e.g. Hood et al. (2001)),

illustrate only that the albedo anomaly is approximately co-located with the

magnetic anomaly; there is no clear relationship between total field strength
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and the morphology of the albedo anomaly. However, contour maps of the

horizontal component alone (Figure 2.2f) show that regions of high horizon-

tal field strength correspond well with the bright swirl. Based on SELENE

magnetometer data, Shibuya et al. (2010) have reported similar findings for

Reiner Gamma and other anomalies. Patches of high albedo tend not to occur

where fields are weak, or where fields are strong but lack a large horizontal

component. This observation is consistent with the hypothesis that darkening

due to solar wind ion bombardment will be minimized where magnetic fields

are strongly horizontal.

We tested the degree to which magnetic field direction is related to re-

flectance by measuring the correlation between reflectance and the angle the

field makes with the vertical. Figure 2.4 plots reflectance versus magnetic field

direction using data points gathered from all six retained sets of LP MAG mea-

surements. Since the field strength varies with altitude, values were normalized

to the maximum total field strength for each map before being combined into

the set of 245 data points used to generate the scatter plot. Figure 2.5 illus-

trates the locations of the data points and corresponding reflectance values

used to make the scatter plot. The reflectance map in Figure 2.5 has been

smoothed by a 0.25° × 0.25° window moving average filter in order to reduce

its effective resolution to be comparable to the LP MAG data resolution. This

removes the high frequency component of the albedo signal that could not pos-

sibly be captured in the lower frequency magnetic field data. The data points

in Figure 2.4 are color-coded according to normalized total field strength. Cool

colors represent weak fields and warm colors represent strong fields. A blue

regression line is fit to the weakest third of the data points and illustrates that,

as expected for weak fields, reflectance values are low regardless of magnetic
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Figure 2.4: Correlation between magnetic field direction and reflectance at Reiner
Gamma. ‘Angle from vertical’ is 90° where field lines are horizontal. Data points are
color-coded by total field strength with cool colors representing weak fields and warm
colors representing strong fields. Blue and red regression lines are fit to the weakest
and strongest thirds of the data points, respectively, demonstrating that magnetic
field direction becomes increasingly important with increasing field strength.

field direction. A red regression line is fit to the strongest third of the data

points and illustrates that, for stronger fields, reflectance values are low where

field lines are vertical and high where field lines are horizontal. Dashed lines

are used to show 95% confidence intervals on the estimated slopes, indicat-

ing that the observed differences in slope are statistically significant. These

trends are precisely what we would expect if the albedo anomalies owe their

brightness to magnetic deflection of solar wind.

2.3.3 Discussion

The examples of Airy and Reiner Gamma illustrate distinct aspects of the

solar wind deflection phenomenon: the Airy case shows that dark lanes may

be associated with vertical magnetic fields (Figures 2.2a–c and Figure 2.3),

while the Reiner Gamma example demonstrates that bright areas may be

associated with strongly horizontal fields (Figures 2.2d–f and Figure 2.4). In
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Figure 2.5: Locations of the 245 LP MAG data points (green circles) used to generate
Figure 2.4. Background is a Clementine 750 nm reflectance mosaic with resolution
reduced to be comparable with the LP MAG data resolution.

principle, however, both of these effects should be present at both locations.

That is, we should expect to see alignment between the bright lobes of Airy

and peaks in horizontal magnetic field strength and we should expect to see

vertical field lines over the dark lanes of Reiner Gamma. But as discussed in

section 2.1.2, we expect the near-surface field patterns to dominate solar wind

deflection and we do not yet have observations at sufficiently low altitudes

to map the near-surface field directly. However, we can use source models to

determine whether the near surface field pattern we predict (horizontal over

bright areas and vertical over dark lanes) is consistent with the observational

constraints we do have.

2.4 Source Modeling

Using a combination of techniques, including a genetic search algorithm, we

developed subsurface magnetization source models to gain insight into the pos-

sible distribution of source material at the Airy and Reiner Gamma anomalies.

We use these models to support our interpretation of the observations discussed
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above and to allow us to further test the plausibility of our hypothesis—that

areas of high albedo should coincide with dominantly horizontal near-surface

magnetic fields.

2.4.1 Lunar Prospector Data Fitting

As a first step, we use the Lunar Prospector magnetometer (LP MAG) mea-

surements to determine the most probable characteristics of the magnetic

source (the approximate distribution of magnetic material as well as the mag-

netic moment magnitude and orientation). The results are spatially coarse as

the data are insensitive to variations on scales smaller than the observation

altitudes. The results are also inherently non-unique as trades can be made

between depth and magnetic moment magnitude, for example. Previous stud-

ies have modeled the source of the central part of the Reiner Gamma anomaly

as a single dipole (Kurata et al., 2005) or as a grid of dipoles (Nicholas et al.,

2007) using inversion techniques (Von Frese et al., 1981; Purucker et al., 1996;

Dyment and Arkani-Hamed , 1998; Parker , 2003) to obtain models that best

fit the LP MAG data in a least-squares sense. Here, we employ an alternative

approach involving iterative forward modeling to identify the characteristics of

the best-fitting solutions. Our approach demonstrates that a range of differ-

ent solutions can deliver similarly good results. Throughout our modeling, we

make the simplifying assumption that the source material is coherently mag-

netized in a single direction; much larger remanent magnetizations would be

required to produce the observed fields if the source materials were not unidi-

rectionally magnetized, and the inferred values are already large (as discussed

in section 2.5.1).
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2.4.1.1 Airy Single Dipole Model

We begin with a single dipole model to find the magnetic moment direction

that best fits, in a least squares sense, the 260 LP MAG measurements of

the Airy study area. We define the ‘effective error’ at each data point as the

maximum of the three vector component residuals. The least squares solution

thus minimizes residuals in all three vector components simultaneously. We

vary the burial depth from 0 to 20 km in 1-km increments and the magnetic

moment magnitude from 0 to 8⇥ 1012 Am2 in increments of 5⇥ 1011 Am2. We

vary the inclination (angle positive downward from the horizontal) from -90° to

+90° and the declination (angle positive clockwise from north) through 360°,

each with 1° resolution. We find the measurements are well accommodated by a

dipole buried between 10 and 20 km below the surface, with magnetic moment

magnitude between 4⇥1012 Am2 and 7⇥1012 Am2, inclination between 79° and

81° and declination between -14° and +29° (i.e., pointed steeply downward and

slightly to the north). Since this method delivers equally good solutions over

a wide range of depths and magnetic moment magnitudes, we do not attempt

to constrain depth and magnitude at this stage. In any case, because we are

assuming a single dipole, the model fit overestimates the true source depth.

2.4.1.2 Reiner Gamma Single Dipole Model

For Reiner Gamma, we again begin with a single dipole oriented so that it best

fits, in a least squares sense, the 245 LP MAG measurements at the Reiner

Gamma study area. Using the ‘effective’ error metric described for the Airy

model above, we search for the least squares best fit by varying the burial

depth from 0 to 20 km in 1-km increments, the magnetic moment magnitude
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from 0 to 2⇥ 1013 Am2 in increments of 1012 Am2, the inclination from -90° to

+90° and the declination through 360°, with 1° resolution for both inclination

and declination. We find that the measurements are well accommodated by a

dipole that is buried between 8 and 15 km below the surface with magnetic

moment between 9 ⇥ 1012 Am2 and 16 ⇥ 1012 Am2, inclination between -6°

and +5° and declination between -18° and -3° (i.e., lying approximately in the

plane of the lunar surface and pointing slightly west of north). For comparison,

Kurata et al. (2005) modeled this part of the anomaly as a single dipole buried

11.1 km below the surface with magnetic moment 11.3⇥ 1012 Am2, inclination

+1.3° and declination -11°. Once again, depth and magnitude are not well

constrained by the data and are overestimated by this single dipole model.

2.4.1.3 Genetic Search Algorithm

Next, for each of the two anomalies, we expand the parameter space by re-

placing the single dipole with a grid of dipoles, separated by 0.25° in both

latitude and longitude (a distance comparable with half the minimum space-

craft altitude), resulting in a total of 208 dipoles. We allow each of the 208

dipoles’ magnitudes to vary independently. We allow the burial depth of the

grid to vary as a whole but burial depth does not vary between dipoles and

we do not allow the dipoles to be above the lunar surface. Likewise, we allow

the magnetization direction to vary as a whole but direction does not vary

between dipoles. This opens a parameter space that is too large to explore

completely, even with coarse resolution. Instead, we employ a heuristic search

technique known as a “genetic algorithm” that iteratively adjusts each of the

211 independent parameters (208 independent dipole moment magnitudes plus

depth of the grid, inclination and declination), gradually progressing toward
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improving least-squares solutions.

Genetic algorithms have a diverse range of applications (Holland , 1992;

Goldberg , 1989) including large-scale optimization problems such as ours: to

find a source model (defined by 211 parameters) that produces minimal error

between predicted and observed magnetic fields. Genetic algorithms employ

concepts borrowed from gene-centered biological evolution (Dawkins, 1976) in

order to iteratively (i.e., over many generations) progress towards solutions

with increasing degrees of ‘fitness’. In our case, this ‘fitness’ is a measure of

how well the magnetic field produced by the source model matches the Lunar

Prospector magnetometer (LP MAG) observations.

Our algorithm begins by generating a population of individual source mod-

els with randomly distributed characteristics. The characteristics of each in-

dividual source model are defined by its ‘genes’, with each individual having

all 211 distinct genes (208 dipole moment magnitudes plus depth of the grid,

inclination and declination). At each iteration, or generation, the individual

members of the population are evaluated according to how well they predict

the magnetic field at each of the LP MAG observation points. We compute

the error between the prediction and the observation using the ‘effective error’

metric described above (maximum of the three vector component residuals).

We then rank the individuals from lowest to highest sum of squared effective

errors. The individuals with the lowest errors are then selected as the ‘par-

ents’ of the next generation. The next iteration begins by generating a new

population to replace the previous generation. Each individual in the new

generation is formed by setting each of its 211 genes equal to the correspond-

ing gene from one of its parents in a process known as crossover (analogous

to chromosomal crossover). For example, an individual’s gene for inclination
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will match the inclination gene of one of its parents (chosen at random from

among the parents). Because only the best-performing individuals contribute

their genes to the next generation, individuals of each new generation tend

to inherit the best characteristics of the previous generation. We then apply

random mutations (i.e., randomly adjust several isolated genes). This step en-

sures variation in the population and allows for the possibility of introducing

advantageous genes not possessed by the parents. Finally, members of the new

generation are evaluated and their best performers are selected as the parents

of the next generation. With each generation, genes that result in large model

errors tend to be discarded while genes that result in smaller model errors tend

to be retained. Inheritance and selection lead the gene pool to be increasingly

rich in genes that form good source models while crossover and mutations en-

sure variation, allowing for innovations that can lead offspring to outperform

their parents. The result is that the population progresses gradually towards

optimality in terms of minimum model error.

While this explanation captures the essence of the algorithm, our imple-

mentation includes additional details such as gene mutation rate (the prob-

ability that any given gene will mutate) and how “random” mutations are

distributed (i.e., it is not useful to have sudden changes in burial depth on the

order of 1000 km, for example, so mutations must be limited to reasonable

adjustments according to some distribution). We experimented with various

population sizes and numbers of parents selected at each generation (there

must be at least two parents but more than two is also allowed). For com-

putational efficiency, a small population size is preferred. The algorithm was

found to operate effectively with a population of just 10 individuals in which

the top-performing 3 contribute their genes to the next generation. We allow
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mutations to occur with a probability of 0.1 and when they do occur, the

gene is adjusted from its current value according to a normal distribution with

some pre-defined standard deviation (which depends on whether the gene has

units of kilometers, degrees or Am2). We also apply smaller mutations with a

higher probability in order to ensure a measurable degree of variation in the

population. The initial population is generated based on a seed model; each

individual in the initial population is formed by applying normally distributed

adjustments to each of the genes in the seed model. While the choice of seed

model and parameter settings influences the efficiency of the algorithm (i.e.,

how quickly it reaches a good solution), the end results tend to be very similar

across a wide range of parameters and initial conditions. The algorithm was

allowed to iterate through 600 generations (Figure 2.6). Based on the trends

in error evolution (Figure 2.7), we would not expect additional iterations to

yield substantial improvements.

2.4.1.4 Airy Dipole Grid Model

For the Airy dipole grid model, we initiate the genetic search algorithm with a

downward pointing magnetization in accord with the best fitting single dipole

(80° inclination, 8° declination) and an arbitrary burial depth of 10 km. Again,

the genetic search algorithm attempts to find a solution that minimizes the

sum of squares over the ‘effective’ error at each of the 260 LP MAG data

points. The dipoles in the final model grid have inclination 79°, declination

20° and a total magnetic moment of 4.7 ⇥ 1012 Am2 distributed as shown in

Figure 2.8. The final grid has a burial depth of ⇠ 650meters, but again, depth

is not well constrained by the LP MAG data as it can be traded against mag-

netic moment magnitude and the lateral extent of the source; an equally good
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Figure 2.6: Snapshots at generations 1, 100, 300, and 600 during the evolution of the
dipole grid source models for Airy (left panels) and Reiner Gamma (right panels).
Each panel shows the distribution of magnetic moments from the best-performing
model of the specified generation.
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Figure 2.7: Evolution of dipole grid source model error over 600 generations for Airy
(left panel) and Reiner Gamma (right panel). The error shown is the sum of squared
‘effective’ errors (as described in section 2.4.1.1) over all LP MAG data points for
the best-performing model in each generation.

fit could be obtained with a source that is deeper, stronger and more horizon-

tally concentrated. Although the model is spatially coarse, the distribution

of magnetic moments appears to be consistent with a source structure that is

centered on the anomaly and elongated in a north-south direction. Figure 2.9

shows that the resulting model field compares very well with the observed

field. The magnetization direction is close to that of the hypothetical field

illustrated in Figure 2.1a, indicating that the intra-swirl dark lane may well

coincide with vertical field lines at the surface.

2.4.1.5 Reiner Gamma Dipole Grid Model

As with the Airy model, we replace the single dipole model with a grid of

208 dipoles and use the genetic algorithm to find a solution that best fits the

245 LP MAG data points. The final model dipole grid is magnetized with

inclination +4° and declination -12° at a depth of 1.6 km (but again, depth is

not well constrained by the LP MAG data), and has total magnetic moment
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Figure 2.8: The Airy source model obtained via the genetic search algorithm de-
scribed in section 2.4.1.3. In the left panel, each square represents a single dipole
covering 0.25° × 0.25° (roughly 5.5⇥ 107m2) with the color indicating each dipole’s
total magnetic moment (typical values in the center are ⇠ 1.25 ⇥ 1011Am2 per
dipole). The right panel shows the same information as contours over Clementine
albedo, suggesting approximate agreement between the source structure’s longitudi-
nal axis and that of the swirl’s dark lane.

⇠ 1.4 ⇥ 1013 Am2 distributed as shown in Figure 2.10. The source model is

spatially coarse but is consistent with a source structure that is elongated

in the east-west direction and is most intense in the brightest part of the

albedo anomaly. Figure 2.11 shows that the resulting model field compares

well with the observed field. For comparison, Nicholas et al. (2007) modeled

the Reiner Gamma source as a grid of dipoles separated by 0.1° and placed

at the surface, coincident with the albedo anomaly. Those authors assumed a

northward magnetization and solved for the magnitude and sign at each of the

dipoles, obtaining the distribution of magnetization illustrated in Figure 2.12.

In spite of the very different methods employed, the two results resemble one

another, predicting strong magnetization in the brightest parts of the anomaly.
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Figure 2.9: Comparison of the observed field at ⇠ 18 km over Airy (left panels;
derived from LP MAG data collected on days 49-50, 77, and 104 of 1999) and the
model field (right panels; obtained by fitting a grid of dipoles to the LP MAG data
using the genetic search algorithm).
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Figure 2.10: The Reiner Gamma source model obtained via the genetic search algo-
rithm described in section 2.4.1.3. In the left panel, each square represents a single
dipole covering 0.25° × 0.25° (roughly 5.7 ⇥ 107m2) with the color indicating each
dipole’s total magnetic moment (typical values in the center are ⇠ 3.4⇥1011Am2 per
dipole). The right panel shows the same information as contours over Clementine
albedo.

2.4.2 Albedo Pattern Matching

The results of the genetic search algorithm suggest that the distribution of

the underlying source material coincides roughly with the shape of the albedo

anomaly: a north-south distribution for Airy and an east-west distribution for

Reiner Gamma. Here, we refine our source models by applying the constraint

that the near-surface field be structured according to our hypothesis: strongly

horizontal over the brightest parts of swirls and vertical in the intra-swirl dark

lanes. This allows for greatly improved spatial resolution since Clementine

reflectance mosaics are available at 256 pixels/degree whereas LP MAG data

are limited to ⇠ 1�4 pixels/degree. If our hypothesis is correct, source models

constrained by the albedo pattern should produce fields that are consistent

with the LP MAG observations made at higher altitudes. Below, we show

that even simple source models are sufficient to accomplish this, suggesting

that our models are highly plausible.
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Figure 2.11: Comparison of the observed field at ⇠ 18 km over Reiner Gamma (left
panels; derived from LP MAG data collected on days 54, 81-82, and 109 of 1999)
and the model field (right panels; obtained by fitting a grid of dipoles to the LP
MAG data using the genetic search algorithm).
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Figure 2.12: Distribution of source magnetization at Reiner Gamma as estimated
by Nicholas et al. (2007) assuming the source layer is 40 km thick. The contour
interval is 0.1 A/m with warm colors positive, cool colors negative and the dashed
white contour representing zero magnetization. The contours are superimposed over
Clementine V1 750 nm reflectance. Note: our study instead uses Clementine V2
mosaics, which differ in horizontal registration by ⇠ 7 km in the vicinity of Reiner
Gamma.

2.4.2.1 Airy Model

Given the downward-pointing magnetization at Airy (section 2.4.1.4) and the

associated field pattern (Figure 2.1c), the morphology of the Airy swirl sug-

gests a roughly linear source structure following the dark lane. In order to

be consistent with our hypothesis, the vertically magnetized source material

cannot substantially underlie the bright lobes since this would mean vertical

field lines in bright areas. We therefore replace the grid of dipoles described in

section 2.4.1.4 with an array of 32 dipoles arranged as a two-segmented linear

feature following the dark lane (Figure 2.13, left panel). In cross-section, the

field pattern from such a line source resembles the pattern from a single dipole

(illustrated in panels a and c of Figure 2.1). However, for a linear source,

the peaks in the horizontal field profile are shifted outward slightly such that

the peak-to-peak separation is 2/√3 times the altitude above the source rather

than being equal to the altitude above the source (details are given in Ap-
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pendix B). If we assume the two bright lobes at Airy (separated by ⇠ 9 km)

are aligned with peaks in the surface horizontal magnetic field profile, then the

depth of this line source must be ⇠ 7.8 km. Because we assume an infinitely

narrow source, this represents the maximum possible source depth consistent

with the hypothesis that the bright lobes align with peaks in the horizontal

magnetic field profile. The LP MAG data are too spatially coarse to constrain

the distribution of magnetic moments within the source structure so we assign

equal strength to each of the 32 dipoles in the array. With the depth fixed

and the dipole moment magnitudes set to be equal, the parameter space is

reduced to three dimensions (total magnitude, inclination, and declination),

allowing for a complete search (varying magnitude in increments of 1011 Am2

and inclination and declination in 1° increments) to find the solution that best

fits, in a least squares sense, the LP MAG data. The resulting best-fit solution

has the dipoles pointed steeply downward (inclination 75°, declination -20°)

with total magnetic moment 3.8 ⇥ 1012 Am2 (Table 2.3). This source model

produces a magnetic field pattern at the surface that mimics the morphology

of the albedo anomaly, with the field being strongly horizontal in high albedo

areas and vertical in the intra-swirl dark lane (Figure 2.13). Remarkably, this

same simple source model produces a field pattern at the spacecraft altitude

that substantially resembles the LP MAG observations (Figure 2.14).

2.4.2.2 Reiner Gamma Model

The Airy model (2.4.2.1) suggests that the dark lane is aligned with a cusp

between two peaks in the horizontal magnetic field profile. Based on the Airy

example, we may view the two dark lanes at Reiner Gamma as suggestive

of cusps in the near-surface horizontal magnetic field profile (see Harnett and
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Figure 2.13: Left panel: Airy study area showing Clementine albedo map with red
circles indicating the locations of the source model’s 32 dipoles; Right panel: resulting
horizontal magnetic field strength predicted at the surface. White arrows indicate
where field lines become vertical in the intra-swirl dark lane. Figure 2.14 compares
the model field predicted at the spacecraft altitude with the LP MAG observations.

Albedo Pattern-Based Model for Airy
Latitude (°N) Longitude (°E) Latitude (°N) Longitude (°E)

-17.489 2.826 -17.906 3.322

-17.512 2.862 -17.951 3.330

-17.534 2.899 -17.996 3.338

-17.557 2.935 -18.041 3.347

-17.579 2.972 -18.087 3.355

-17.602 3.008 -18.132 3.363

-17.624 3.044 -18.177 3.372

-17.647 3.081 -18.223 3.380

-17.669 3.117 -18.268 3.389

-17.692 3.153 -18.313 3.397

-17.714 3.190 -18.359 3.405

-17.737 3.226 -18.404 3.414

-17.759 3.263 -18.449 3.422

-17.782 3.299 -18.494 3.430

-17.815 3.305 -18.540 3.439

-17.860 3.313 -18.585 3.447

Table 2.3: Final dipole array model for Airy as described in section 2.4.2.1 (Fig-
ure 2.13). The model consists of 32 dipoles at the indicated latitudes and longitudes,
all buried 7.8 km below the surface. The total magnetic moment is 3.8⇥ 1012Am2.
All dipoles in the array have inclination 75°, measured positive downward from the
horizontal and declination -20°, measured positive clockwise from north.
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Figure 2.14: Comparison of the observed field at ⇠ 18 km over Airy (left panels;
derived from LP MAG data collected on days 49-50, 77, and 104 of 1999) and the
model field (right panels; obtained as described in 2.4.2.1). Figure 2.13 shows the
horizontal component of the model field predicted at the surface.
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Winglee (2003) for a related discussion). As illustrated in Figure 2.1d, a

horizontally magnetized source will produce strongly horizontal fields directly

above the source while producing cusps (where the horizontal field strength

drops to zero) on either side of the source. This suggests that the horizontally

magnetized source material underlies the brightest parts of the Reiner Gamma

albedo feature and that the dark lanes may be aligned with the cusps. The

appearance of the two dark lanes and the relatively bright material between

them may be explained by a superposition of two sources (see Figure 2.15 and

compare with Figure 2.1).

As with the case illustrated in Figure 2.1 panels b and d, the field il-

lustrated in Figure 2.15 is strongly horizontal at any altitude over the two

horizontally magnetized sources. However, in this case there is an additional

region of elevated horizontal field strength where the side lobes interfere con-

structively between the two sources. Taking this pattern as a cue, we replace

the grid of dipoles described in section 2.4.1.5 with an array of 55 dipoles ar-

ranged as curvilinear structures beneath the three brightest parts of the swirl

(Figure 2.16, left panel). In cross-section, the field pattern from the two ap-

proximately linear sources adjacent to the dark lanes resembles the pattern

from the two-dipole case illustrated in Figure 2.15, but the cusps in the hor-

izontal magnetic field profile are shifted outward slightly such that they are

displaced laterally (in this case to the north and south) from the center of the

sources by a distance equal to the altitude above the source rather than 1/√2

times the altitude above the source (details are given in Appendix B). If we

assume the dark lanes at Reiner Gamma (which are displaced ⇠ 5 km from the

centers of the bright lobes) are aligned with the cusps in the surface horizontal

magnetic field profile, then the depth of the source must be ⇠ 5 km. Because
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we assume infinitely narrow source structures, this represents the maximum

possible source depth consistent with the hypothesis that the dark lanes align

with cusps in the horizontal magnetic field profile. The LP MAG data are too

spatially coarse to constrain the distribution of magnetic moments within the

source structure so we assign equal strength to each of the 55 dipoles in the

array. As with the Airy case, we perform a complete search to find the solution

that best fits, in a least squares sense, the LP MAG data. The resulting best-

fit solution has the dipoles pointed with inclination +2° and declination -8°

(i.e., pointed nearly horizontally and slightly west of north) and total magnetic

moment 1.0 ⇥ 1013 Am2 (Table 2.4). This source model produces a magnetic

field pattern at the surface that mimics the morphology of the albedo anomaly,

with the field being strongly horizontal in high albedo areas and vertical in

the intra-swirl dark lanes (Figure 2.16). Remarkably, this same source model

produces a field pattern at the spacecraft altitude that agrees with the Lunar

Prospector observations (Figure 2.17).

2.5 Discussion

2.5.1 Magnetization

The models described in section 2.4.1 suggest that the source material is con-

centrated under the central parts of the albedo anomalies. Based on the source

material distributions illustrated in Figures 2.8 and 2.10, we can compute the

implied magnetizations at Airy and Reiner Gamma for various assumed layer

thicknesses. Figure 2.18 illustrates that even when the magnetized layer is

assumed to be 10 km thick, typical magnetizations at the Reiner Gamma
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Figure 2.15: Upper panel: magnetic field lines due to a pair of dipoles separated
by 15 km and oriented horizontally in the plane of the page; Lower panel: profiles
of the horizontal component of the magnetic field shown at the various altitudes
represented by dashed lines in the upper panel. Each of the dipoles has a magnetic
moment of 1012Am2.
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Albedo Pattern-Based Model for Reiner Gamma
Latitude (°N) Longitude (°E) Latitude (°N) Longitude (°E)

7.649 301.460 7.073 301.143

7.673 301.418 7.056 301.079

7.693 301.371 7.043 301.014

7.710 301.320 7.035 300.949

7.723 301.264 7.031 300.884

7.731 301.205 7.031 300.820

7.735 301.144 7.035 300.759

7.735 301.080 7.043 300.700

7.731 301.015 7.056 300.644

7.723 300.950 7.073 300.593

7.710 300.885 7.093 300.546

7.693 300.821 7.117 300.504

7.673 300.759 7.542 301.774

7.649 300.700 7.538 301.819

7.622 300.645 7.543 301.878

7.592 300.593 7.555 301.943

7.559 300.546 7.573 302.001

7.525 300.505 7.593 302.043

7.488 300.469 7.612 302.062

7.451 300.439 7.628 302.056

7.315 301.525 7.636 302.024

7.278 301.495 7.637 301.973

7.241 301.459 7.629 301.910

7.207 301.418 7.615 301.847

7.174 301.371 7.596 301.794

7.144 301.319 7.576 301.759

7.117 301.264 7.557 301.749

7.093 301.205

Table 2.4: Final dipole array model for Reiner Gamma as described in section 2.4.2.2
(Figure 2.16). The model consists of 55 dipoles at the indicated latitudes and
longitudes, all buried 5 km below the surface. The total magnetic moment is
1.0 ⇥ 1013Am2. All dipoles in the array have inclination 2°, measured positive
downward from the horizontal and declination -8°, measured positive clockwise from
north.
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Figure 2.16: Left panel: Reiner Gamma study area showing Clementine albedo map
with red circles indicating the locations of the source model’s 55 dipoles; Right
panel: resulting horizontal magnetic field strength predicted at the surface. White
arrows indicate where field lines become vertical in one of the intra-swirl dark lanes.
Figure 2.17 compares the model field predicted at the spacecraft altitude with the
LP MAG observations.

anomaly are on the order of 1A/m. If the magnetized layer is only 1 km

thick, the implied magnetization approaches 10A/m at Reiner Gamma. For

comparison, Nicholas et al. (2007) predict a minimum magnetization of 1A/m

for a layer 1 km thick at Reiner Gamma and Wieczorek et al. (2012) calculate

⇠ 2A/m for the same layer thickness assuming an anomaly that produces a

10 nT field at 30 km altitude. Terrestrial mid-ocean ridge basalts can have

magnetizations of ⇠ 1� 6A/m (Pariso and Johnson, 1991) and the magnetic

lineations in the Martian southern highlands require rock magnetization of

⇠ 20A/m (Connerney , 1999), suggesting that our lower bounds for magneti-

zation at the Airy and Reiner Gamma anomalies are reasonable. However, if

we suppose the source structures are further horizontally concentrated, as the

albedo-pattern-constrained models of section 2.4.2 suggest (Figures 2.13 and

2.16), the magnetizations would have to be even greater.
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Figure 2.17: Comparison of the observed field at ⇠ 18 km over Reiner Gamma (left
panels; derived from LP MAG data collected on days 54, 81-82, and 109 of 1999) and
the model field (right panels; obtained as described in 2.4.2.2). Figure 2.16 shows
the horizontal component of the model field predicted at the surface.
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Figure 2.18: Rock magnetization implied by source models illustrated in Figures 2.8
and 2.10 versus assumed layer thickness. Solid lines are based on the maximum
individual dipole moments found in those models (⇠ 2.1 ⇥ 1011Am2 for Airy, ⇠
6.5⇥ 1011Am2 for Reiner Gamma) and the dashed lines are based on characteristic
values of 1.25⇥ 1011Am2 for Airy and 3.4⇥ 1011Am2 for Reiner Gamma.

2.5.2 Magnetizing Field

The strong magnetizations at the Airy and Reiner Gamma anomalies could

be the result of the source material having cooled in a long lasting global

magnetic field, perhaps generated by a core dynamo (Garrick-Bethell et al.,

2009; Dwyer et al., 2011; Le Bars et al., 2011; Shea et al., 2012). As we have

shown here, however, the Airy anomaly (located at approximately 17°S, 3°E)

is magnetized with a steep downward inclination while the Reiner Gamma

anomaly (located at approximately 7°N, 59°W) is magnetized with almost

zero inclination and points approximately toward the north. If these two

anomalies acquired their magnetizations by cooling in a dipolar dynamo field,

they could not have formed contemporaneously. Instead, the two anomalies

may have formed during different global field orientation epochs. Alternatively,

the Moon’s dynamo field may have had substantial higher order components
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(i.e., beyond dipolar).

Another possibility that avoids the difficulties associated with inconsistent

magnetization directions is that, rather than being the thermal remanent mag-

netization signatures of an extinct core dynamo, the Moon’s crustal magnetic

anomalies may instead be the result of shock remanent magnetization that oc-

curs following basin-forming impact events when magnetohydrodynamic shock

waves converge near the basin antipode producing strong transient fields and

potentially magnetizing iron-rich ejecta materials (Hood et al., 2001; Halekas

et al., 2001; Richmond et al., 2005; Hood and Artemieva, 2008).

2.6 Conclusions

Our examination of swirls at Airy and Reiner Gamma, two magnetic anoma-

lies with dissimilar orientation, suggests that magnetic field direction and swirl

morphology are related in the way we predict based on the solar wind deflection

hypothesis: the Reiner Gamma case delivers evidence that swirls are bright-

est where magnetic field lines are dominantly horizontal and the Airy case

demonstrates a connection between dark lanes and vertically oriented field

lines. These findings support the solar wind deflection model for swirl forma-

tion, implying that differential solar wind darkening is largely responsible for

creating the albedo anomalies. Although our source models do not represent

unique solutions, they agree with observational constraints while plausibly ac-

counting for the alternating bright and dark bands at both Airy and Reiner

Gamma. Our model results suggest that swirl morphology could potentially

be used to infer small-scale structure in the near-surface magnetic field as well

as the layout and burial depth of the magnetic source material. For Airy and
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Reiner Gamma, we infer maximum source burial depths of ⇠ 8 km and ⇠ 5 km,

respectively, and horizontally concentrated sources with strong magnetizations

(⇠ 10A/m or greater for a layer 1 km thick). Examination of additional swirls

may help to further our understanding of how magnetic field direction relates

to swirl morphology, but ultimately, very near-surface magnetic field and solar

wind flux measurements (i.e., from altitudes of hundreds of meters or less) will

be required to confirm our predictions.
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Chapter 3

Latitudinal Variation in Spectral

Properties of the Lunar Maria and

Implications for Space Weathering

This chapter is a modified version of Hemingway, D. J., I. Garrick-Bethell, and

M. A. Kreslavsky (2015), Latitudinal Variation in Spectral Properties of the

Lunar Maria and Implications for Space Weathering, Icarus (in press).

Abstract

Space weathering alters the optical properties of exposed surfaces over time,

complicating the interpretation of spectroscopic observations of airless bodies

like asteroids, Mercury, and the Moon. Solar wind and micrometeoroids are

likely the dominant agents of space weathering, but their relative contributions

are not yet well understood. Based primarily on Clementine mosaics, we report

a previously unrecognized systematic latitudinal variation in the near-infrared
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spectral properties of the lunar maria and show that the characteristics of this

latitudinal trend match those observed at ’lunar swirls’, where magnetic fields

alter local solar wind flux without affecting the flux of micrometeoroids. We

show that the observed latitudinal color variations are not artifacts of phase

angle effects and cannot be accounted for by compositional variation alone.

We propose that reduced solar wind flux, which should occur both at swirls

and toward higher latitudes, is the common mechanism behind these color

variations. This model helps us quantify the distinct effects of solar wind and

micrometeoroid weathering and could aid in interpreting the spectra of airless

bodies throughout the solar system.

3.1 Introduction

’Space weathering’ refers to the processes by which the optical properties of

airless bodies change due to exposure to solar wind and micrometeoroid im-

pacts. However, the difficulties of reproducing space-weathering conditions in

the laboratory, or returning weathered samples to Earth, make it challeng-

ing to determine precisely how space weathering operates (Pieters et al., 2000;

Hapke, 2001; Vernazza et al., 2009; Pieters et al., 2012; Domingue et al., 2014).

Remote sensing measurements, studies of lunar samples, and laboratory exper-

iments have established that solar wind ion and micrometeoroid bombardment

weaken spectral absorption features and cause the lunar surface to darken and

redden (increase in spectral continuum slope in the visible and near-infrared)

with time. These changes appear to be due to some combination of the for-

mation of impact glasses and agglutinates (Adams and McCord , 1971), the

regolith’s disintegration into increasingly finer soils (Pieters et al., 1993), and
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the accumulation of nanophase iron (Hapke, 2001; Sasaki et al., 2001; Noble

et al., 2007). Larger impacts also expose fresh material, which then gradually

matures until the reflectance spectrum reaches a steady state, which we call

’equilibrium color’ for simplicity.

The equilibrium color varies considerably across the lunar surface, due

primarily to differences in mineralogy. This is most obvious in the dichotomy

between the bright, anorthositic highlands and the darker basaltic maria. How-

ever, as we will argue, the presence of ’lunar swirls’ suggests that equilibrium

color may also be influenced by the flux of weathering agents, rather than just

their total accumulation (see sections 3.3.1 and 3.4). If this is the case, then

equilibrium color may also vary with latitude. Both solar wind and microm-

eteoroids originate primarily from within the ecliptic plane, which is inclined

from the Moon’s equator by just 1.5°. Hence maximum flux of these weath-

ering agents occurs near the equator, with flux decreasing as incidence angle

increases towards the poles.

This paper’s central observation is that, when we examine imagery from

across the lunar surface, we find that the equilibrium color does vary systemat-

ically with latitude. In section 3.3.2, we show that this latitudinal color trend

persists across a range of distinct compositions and that it is not an artifact

of phase angle biases in the Clementine mosaics. Interestingly, the spectral

properties of the latitudinal color trend match the characteristic color varia-

tion found at lunar swirls. In section 3.3.1, we quantify the characteristics of

the swirl-related color variation and, in section 3.3.2, we show that it is sta-

tistically equivalent to the observed latitudinal color trends, with a transition

toward higher latitudes being attended by the same color change that occurs

towards brighter parts of swirls. Finally, in section 3.4, we argue that the best
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candidate for a common mechanism behind these color variations is altered

solar wind flux. We present a qualitative empirical model illustrating how this

hypothesis comports with the observations and we discuss the possible impli-

cations with respect to the interpretation of spectral data, particularly at high

latitudes.

3.2 Data Sources

In this study, we primarily use mosaics based on imagery from the 750 nm

and 950 nm channels of the Clementine UVVIS (ultraviolet-visible) experi-

ment (Nozette et al., 1994; Eliason et al., 1999), available from the USGS

(www.mapaplanet.org). As a point of comparison, we also examine 1064 nm

reflectance from the Lunar Orbiter Laser Altimeter (LOLA) experiment on

board the Lunar Reconnaissance Orbiter (LRO) (Lucey et al., 2014). In dis-

cussing the observed trends in the Moon’s spectral properties, we may use the

word ’color’ in a general sense to refer to combinations of albedo and the ratio

between 950 nm and 750 nm reflectance (e.g., as a proxy for continuum slope).

Parts of our analysis require isolating portions of the lunar surface ac-

cording to composition and/or topographic roughness. For composition, we

use results from the Lunar Prospector Gamma Ray Spectrometer (Lawrence

et al., 2002; Prettyman et al., 2006), specifically in order to identify FeO and

TiO
2

content in the regolith. The topographic roughness metric we use is the

interquartile range of the along-profile second derivative of elevation, at 1.8-km

baseline (Kreslavsky et al., 2013), derived from Lunar Orbiter Laser Altimeter

(LOLA) data. The latter is used to distinguish between the smooth maria and

the rougher highlands.
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3.3 Analysis

Before discussing the observed latitudinal color variation, we revisit the charac-

teristic color signature observed at swirls, developing a new parameterization

that will allow for a quantitative comparison between swirls and the newly

observed latitudinal trends.

3.3.1 Color Variation at Lunar Swirls

Lunar swirls are enigmatic collections of sinuous bright markings, often inter-

posed with narrow dark lanes, that are co-located with many of the Moon’s

crustal magnetic anomalies (Figure 3.1A). The bright parts of swirls superfi-

cially resemble optically immature surfaces such as fresh impact craters (Lucey

et al., 2000a; Wilcox et al., 2005; Blewett et al., 2011). However, it has been

shown (Garrick-Bethell et al., 2011) that swirls exhibit spectral trends that are

distinct from those associated with impact-related brightening (Lucey et al.,

2000a). The two trends can be distinguished from one another, using Clemen-

tine UVVIS (ultraviolet-visible) mosaics (Nozette et al., 1994; Eliason et al.,

1999), by plotting 750 nm reflectance against the 950 nm to 750 nm reflectance

ratio (Garrick-Bethell et al., 2011; Blewett et al., 2011), the former representing

albedo and the latter serving as a proxy for both the near-infrared continuum

slope and the 1 mm absorption feature found in iron-bearing silicate minerals.

Both the swirl- and impact-related color variations involve changes in both

albedo and the 950 nm/750 nm band ratio, but the impact-related variation is

accompanied by a proportionally greater change in the 950 nm/750 nm band

ratio (Figure 3.1B), as originally reported by Garrick-Bethell et al. (2011).

In order to establish a quantitative basis for comparison with the latitu-

53



0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.180.7

0.75

0.8

0.85

0.9

0.95

1

750nm Reflectance

95
0n

m
−t

o−
75

0n
m

 R
ef

lec
ta

nc
e 

Ra
tio

swirl trend, slope m
1

background 
equilbirium color

swirl 
equilibrium 

color

im
pact trend, slope m

2

Longitude (degrees E)

La
titu

de
 (d

eg
re

es
 N

)

 

 

300 300.5 301 301.5 302 302.5 3036

6.5

7

7.5

8

8.5

9

Cl
em

en
tin

e V
1 7

50
nm

 R
efl

ec
tan

ce

0.09

0.1

0.11

0.12

0.13

0.14

0.15

increasing `

increasing _

BA

10km

Longitude (degrees E)

La
titu

de
 (d

eg
re

es
 N

)

 

 

300 300.5 301 301.5 302 302.5 3036

6.5

7

7.5

8

8.5

9

Al
ph

a

0.7

0.71

0.72

0.73

0.74

0.75

0.76

Longitude (degrees E)

La
titu

de
 (d

eg
re

es
 N

)

 

 

300 300.5 301 301.5 302 302.5 3036

6.5

7

7.5

8

8.5

9

Be
ta

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3
DC

Figure 3.1: (A) 750 nm reflectance (albedo) at the Reiner Gamma swirl. (B) Spectral
characteristics (albedo versus 950 nm/750 nm band ratio) of pixels sampled from
the five rectangular boxes, with corresponding colors, in (A). The red point cloud
corresponds to a representative background region whereas the dark blue point cloud
corresponds to the brightest part of the swirl. Each of the point clouds displays a
steep trend that follows the progression from fresh impact craters (lower right part of
each point cloud) to darker background soils (upper left part of each point cloud); the
dashed black line is a best fit through the red point cloud and, averaging over three
separate mare swirl areas, has a slope of m2 = �5.7±0.5. The black circles represent
the steady state (equilibrium) colors reached with maximum optical maturity in each
rectangle (since the majority of pixels are likely near saturation maturity, we take
the median point in each cluster to represent the equilibrium color). The solid black
line is a best fit through the centroids (black circles) of each cluster and has a slope
of m1 = �1.6±0.2, averaged over the three separate mare swirl areas. (C) and (D)
are maps of the ↵ and � parameters, defined according to equations (3.1) and (3.2),
respectively.
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Figure 3.2: (A) 750 nm reflectance at the Ingenii swirl. (B) Spectral characteristics
(albedo versus 950 nm/750 nm band ratio) of pixels sampled from the five rectangular
boxes, with corresponding colors, in (A). (C) and (D) are maps of the ↵ and �
parameters, defined according to equations (3.1) and (3.2), respectively.
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Figure 3.3: (A) 750 nm reflectance at the Marginis swirl. (B) Spectral characteristics
(albedo versus 950 nm/750 nm band ratio) of pixels sampled from the five rectangular
boxes, with corresponding colors, in (A). (C) and (D) are maps of the ↵ and �
parameters, defined according to equations (3.1) and (3.2), respectively.
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dinal trends we discuss in section 3.3.2, we parameterize the color variations

that are characteristic of swirls, averaging over three different mare swirl ar-

eas: Reiner Gamma in western Oceanus Procellarum, Mare Ingenii on the

farside, and Mare Marginis on the eastern limb. In each case, in the albedo

versus band ratio diagrams, we found similar steep trends associated with

the transition between impact craters and background soils, and shallower

trends associated with the transition between dark and bright parts of swirls

(Figure 3.1B, Figure 3.2B, Figure 3.3B), in accord with Garrick-Bethell et al.

(2011). The distinct color variations associated with impacts and swirls allow

us to define parameters that clearly separate the two trends (Figure 3.1C and

D). The impact-related progression from bright craters to the more mature

background soils can be characterized by an impact maturity parameter

↵ = R750 �
✓
R950

R750

◆
/m1 (3.1)

where R750 and R950 are the Clementine 750 nm and 950 nm reflectances,

respectively, and where

m1 = �1.6±0.2

is the slope of the swirl-related trends (±1�), averaged from the three separate

mare swirl areas. The swirl-related trend slope is used in equation (3.1) so that

impact maturity (↵) is not affected by swirl-related color variations. Equa-

tion (3.1) resembles previously developed optical maturity parameters (Lucey

et al., 2000a; Wilcox et al., 2005) except that here, the goal is explicitly to iso-

late the impact-related color variation from that associated with swirls, and so

the constants are different. Similarly, we can represent the swirl-related color
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variation, which we regard as distinct from optical maturity, as

� = R750 �
✓
R950

R750

◆
/m2 (3.2)

where

m2 = �5.7±0.5

is the typical slope of the impact-related trends (±1�). The impact-related

trend slope is used in equation (3.2) so that � is not affected by impact-related

color variations.

Although the ↵ and � values vary according to local composition, the slopes

of the impact- and swirl-related trends do not vary significantly across differ-

ent mare regions. The values given here for m1 and m2 are therefore largely

composition independent, at least within the maria. The ↵ parameter is de-

signed to have constant values along the swirl-related trends such that swirl

features do not influence the value of ↵ and so maps generated for the ↵ pa-

rameter show impact features but not swirl features (Figure 3.1C). Conversely,

the � parameter is designed to have constant values along the impact-related

trends such that maps of the � parameter highlight swirl features while muting

impact features (Figure 3.1D).

3.3.2 Latitudinal Color Variation

When we examine imagery from across the lunar surface, we find that the

reflectance spectra vary systematically with latitude. The effect is not obvious

when we examine the Moon as a whole, likely because the spectra are so

strongly affected by composition, which varies considerably across the surface.
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However, when we account for variations in composition, the latitudinal trends

emerge. As we will show, the latitudinal trends are especially pronounced

within the maria, and may help to account for the unusually high albedo of

Mare Frigoris—the highest latitude mare region.

Color anomalies have been identified previously in polar regions (Yokota

et al., 2011; Zuber et al., 2012) and latitudinal variation in space weathering has

been considered previously (Yokota et al., 2011; Hendrix et al., 2012), however,

this is the first observation of a broad systematic latitudinal color trend that

is visible across the lunar maria. Moreover, the spectral characteristics of

this trend match those found at lunar swirls (section 3.3.1), suggesting a link

between the two phenomena that may be helpful for understanding space

weathering (see section 3.4).

In addition to controlling for composition, below we examine the possible

contributing effects of highland contamination in the maria and phase angle

biases in the Clementine mosaics; we show that the observed latitudinal trends

cannot be artifacts of such effects.

3.3.2.1 Effect of Composition

Because surface color is strongly affected by composition, we separate the

data into bins according to TiO
2

and FeO content (as measured by the Lu-

nar Prospector Gamma Ray Spectrometer (Lawrence et al., 2002; Prettyman

et al., 2006)), and examine the spectral characteristics separately for each

compositional bin. Figure 3.4A shows, in the same parameter space we used

to characterize swirls, that pixels sampled from higher latitudes tend to have

higher albedo (750 nm reflectance) and lower 950 nm to 750 nm band ratios,

than those sampled from lower latitudes.
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Figure 3.4: Color variation as a function of latitude. (A) Spectral characteristics of
pixels sampled from regions with between 15 and 17 wt% FeO and between 1 and 2
wt% TiO

2

. Points are color-coded according to cosine latitude, illustrating that the
optical characteristics of the surface vary systematically with latitude. Equatorial
regions (red points) tend to have lower albedo and higher 950 nm/750 nm reflectance
ratios than regions farther from the equator (blue points). The black trend line
represents a least squares best fit through the data points. The solid black circle
corresponds to the color predicted by the best-fit line at the equator and the white
circle represents the color predicted at latitudes of ±70°. (B) Compilation of the 59
latitudinal trends we examined (grey lines), one for each compositional bin, compared
with the trends discussed in section 3.3.1: the solid red, green and blue lines represent
the swirl-related color trends observed at Reiner Gamma, Ingenii, and Marginis,
respectively; the dashed lines represent the impact-related color trends observed at
each of those swirls.
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While Figure 3.4A shows just one illustrative example, we examined all

combinations of FeO and TiO
2

content using bins of 2 wt% width in FeO

and 1 wt% width in TiO
2

, set at half bin width increments (see Figure 3.5

for additional examples). Because the latitudinal trend can only emerge if

pixels are sampled from a wide range of latitudes, we discard compositional

bins whose pixels do not reach latitudes of at least ±50° or do not span at

least 50 total degrees of latitude. To ensure that slopes are estimated from

robust samples only, we also discard bins whose pixels cover less than 0.25%

of the lunar surface. Finally, to avoid artifacts in the Clementine mosaics

that are related to severe illumination conditions at high latitudes, we also

discard data within 20° of the poles. After applying these selection criteria, 59

compositional bins were retained for analysis. Figure 3.4B shows a summary

of all 59 latitudinal trend lines (grey lines) along with the swirl- and impact-

related trends discussed in section 3.3.1.

The effect of iron content is apparent when the trend lines are color-coded

by weight % FeO, as determined by the Lunar Prospector Gamma Ray Spec-

trometer (Lawrence et al., 2002) (Figure 3.6). Lower iron regions (pale orange

lines) tend to plot farther up and to the right in Figure 3.6, in accord with

Wilcox et al. (2005), whereas high iron regions (dark lines) plot farther down

and to the left. This means that both ↵ and � tend to be larger for low iron

regions (in section 3.3.2.5, we discuss the implications of this observation with

respect to highland contamination).

Although the latitudinal trend slopes are largely similar across different

compositional bins, they become less consistent when iron content is very

low, such as in the highlands. This is not surprising given that several studies

suggest that the production of nanophase iron plays an important role in space
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Figure 3.5: Latitudinal color variation across 12 distinct compositional bins. Equa-
torial regions (red points) tend to have lower albedo and higher 950 nm/750 nm
reflectance ratios than regions farther from the equator (blue points). Each of the
black trend lines represents the best-fit color variation between the equator (solid
black circle) and latitudes of ±70° (white circle). Although only 12 are shown here,
we examined 59 compositional bins in total.
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Figure 3.6: Compilation of latitudinal trend lines for all 59 compositional bins, color-
coded by iron content (Lawrence et al., 2002). Dark trend lines correspond to high
iron bins while pale trend lines correspond to low iron bins. For comparison, the
swirl- and impact-related trends are also shown: the solid red, green and blue lines
represent the swirl-related color trends observed at Reiner Gamma, Ingenii, and
Marginis, respectively; the dashed lines represent the impact-related color trends
observed at each of those swirls.

weathering (Hapke, 2001; Sasaki et al., 2001; Noble et al., 2007). A paucity of

iron in the highlands may prevent a clear appearance of the type of latitudinal

trends we observe in the maria. In order to obtain as clear a signal as possible,

we therefore focus our subsequent analysis on the maria.

3.3.2.2 Isolation of the Maria

Because the latitudinal trends are most consistent within the maria, and be-

cause we are interested in comparing these trends with the spectral character-

istics we analyzed for three mare-based swirls (section 3.3.1), we restrict the

remainder of our analysis to the lunar maria.

As previously discussed, we use Lunar Prospector Gamma Ray Spectrom-

eter (GRS) data to determine both iron and titanium content in the soils we

examine. Unfortunately, in comparison to the Clementine data, the relatively

63



coarse resolution of the GRS data (the effective footprint is roughly 45 km wide

(Lawrence et al., 2002)) means that we cannot use GRS-based iron estimates

to isolate the maria—choosing a conservatively high threshold for iron content

would result in the exclusion of significant portions of the maria, while choos-

ing a low threshold would result in the inclusion of highland pixels. Inclusion

of low-iron highland pixels is undesired as it could artificially skew the spectral

characteristics towards higher 750 nm reflectance and higher 950 nm/750 nm

reflectance ratios (see Figure 3.6 and section 3.3.2.5).

We cannot isolate the maria using iron estimates obtained from Clementine-

based spectral techniques (e.g., (Lucey et al., 2000b; Wilcox et al., 2005)) be-

cause these techniques rely on the same parameter space we use in our own

spectral analysis, namely 750 nm reflectance versus the 950 nm/750 nm re-

flectance ratio. Attempting to isolate the maria according to such spectral-

based iron estimates would necessarily bias our results, artificially altering the

slope of the best-fit latitudinal trends shown in Figure 3.4.

To distinguish mare from highland terrain, we instead adopt an inde-

pendent metric that characterizes topographic roughness at 1.8-km baseline

(Kreslavsky et al., 2013). A histogram of the topographic roughness (Fig-

ure 3.7) shows a bimodal distribution, reflecting the dichotomy of kilometer-

scale roughness between smoother maria and rougher highlands, with maria

peaking at a roughness value of 2.3m/km2 and highland terrain peaking at a

roughness value of approximately 19m/km2. We identify mare terrain as ar-

eas exhibiting roughness values below 5m/km2. After applying a de-speckling

filter, designed to remove isolated features less than approximately one degree

in diameter, we obtain a mask that we use to exclude non-mare pixels from our

subsequent analysis. Figure 3.8 illustrates the boundaries of our mare mask.
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old below which we consider pixels to belong to the lunar maria; pixels above the
threshold are discarded in our subsequent analysis.
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Figure 3.9: (A) Clementine 750 nm reflectance profile across the lunar maria (as
identified by surface roughness, see Figure 3.8). (B) Profile of LOLA 1064 nm
reflectance for the same region. In both profiles, reflectance tends to be lowest near
the equator and higher towards higher northern and southern latitudes. The black
lines and grey bands represent the mean and standard deviation at each latitude.

After excluding data from the lunar highlands, a clear latitudinal trend

emerges in the Clementine 750 nm reflectance profile (Figure 3.9A): mare

surfaces are darkest near the equator and become increasingly bright towards

higher latitudes, with the profile being approximately symmetric about the

equator. This is a straightforward visualization of the latitudinal trend and

allows for simple comparison with different datasets (e.g., reflectance from the

Lunar Orbiter Laser Altimeter; see section 3.3.2.6 and Figure 3.9B), but in

order to facilitate comparison with the swirl-related spectral trends, we now

return to plots of 750 nm reflectance versus the 950 nm/750 nm reflectance

ratio.

3.3.2.3 Comparison with Swirl Trends

After excluding the highlands, 28 of the original 59 compositional bins survive

the selection criteria we described in section 3.3.2.1. Figure 3.10 illustrates not

only that the latitudinal color trends persist across a range of different compo-
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Figure 3.10: Summary of latitudinal trend lines (grey lines) for the 28 compositional
bins that correspond to the maria. The solid red, green and blue lines represent
the swirl-related color trends observed at Reiner Gamma, Ingenii, and Marginis,
respectively. The dashed lines represent the impact-related color trends observed at
each of those swirls. The latitudinal trends have slopes of �1.5 ± 0.3, whereas the
swirl-related trends have slopes of �1.6± 0.2.

sitions, but also that these trends are remarkably similar to those associated

with lunar swirls. That is, low latitude regions tend to have lower albedo and

higher 950 nm/750 nm band ratios when compared with high latitude regions,

and these changes occur in the ratio m3 = –1.5± 0.3, a slope that is indistin-

guishable from the swirl-related slope, m1 = –1.6± 0.2, at the one-sigma level

(Figure 3.11). Figure 3.12 further demonstrates this result by showing that

a transition to higher latitudes is attended by the same type of color change

that occurs towards brighter parts of swirls (Figure 3.1D)—that is, increasing

�.

3.3.2.4 Mare Frigoris

Mare Frigoris, spanning much of the near side at roughly 60°N, is the highest

latitude and visibly brightest mare region, meaning that it makes a significant

contribution to the latitudinal trend we observe (Figure 3.12). The high �
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Figure 3.11: Latitudinal trend slopes (crosshairs) compared with swirl trend (pale red
band) and impact trend (pale green band) slopes (with ±1� variability illustrated
by the width of each band). All 28 mare-based slope estimates (the same trends
illustrated in Figure 3.10) are shown versus the FeO bins (A) and the TiO

2

bins (B).
In each case, the crosshairs show the width of the FeO or TiO

2

bin and the ±1�
uncertainty on the estimated slope.
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Figure 3.12: (A) Map of �, computed according to equation (3.2), over the lunar
maria (as identified by surface roughness, see section 3.3.2.2). (B) Latitudinal profile
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(high albedo and low 950 nm/750 nm band ratio) of Mare Frigoris could be

attributed in part to its low FeO and TiO
2

content (Lucchitta, 1978; Pieters,

1978; Staid and Pieters , 2000). However, the FeO and TiO
2

abundances typ-

ical of Mare Frigoris (14±2 wt% FeO; 0.9±0.4 wt% TiO
2

, see crosshairs in

Figure 3.13A) are also found in lower latitude mare regions, which, by com-

parison, appear darker and have higher 950 nm/750 nm band ratios (and

therefore lower �). The albedo and band ratio of Mare Frigoris differ signif-

icantly from those of low-latitude maria of equal composition (Figure 3.13B,

see also lower left panel in Figure 3.5).

Given that Mare Frigoris is apparently compositionally unexceptional, its

spectral characteristics cannot be attributed merely to low FeO and TiO
2

con-

tent. While it remains possible that they are the result of anomalous surface

contamination (see section 3.3.2.5), our results suggest that the high albedo

and low 950 nm/750 nm band ratio of Mare Frigoris are better understood as

part of the broad latitudinal trend we observe across the lunar maria. Although

Mare Frigoris accounts for an important component of the observed latitudinal

trend, the analysis is not significantly affected by its removal (Figure 3.14).

After manually removing those mare pixels belonging to Mare Frigoris, five

of the original 28 compositional bins must be excluded from analysis due to

their reduced area and latitudinal span, leaving a total of 23 bins. After Mare

Frigoris is removed, fewer high latitude pixels are included. Nevertheless, the

latitudinal trends remain, and the estimated latitudinal trend slope is unaf-

fected (m3 = –1.5 ± 0.3 with or without Mare Frigoris). Hence, anomalous

spectral characteristics of Mare Frigoris alone cannot account for the latitu-

dinal color trend, but the latitudinal color trend can account for the spectral

characteristics observed at Mare Frigoris.
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Figure 3.13: (A) FeO and TiO
2

content (based on Lunar Prospector Gamma Ray
Spectrometer data (Lawrence et al., 2002; Prettyman et al., 2006)) of Mare Frigoris
(blue points) compared to other mare regions (red points). The black crosshairs
illustrate the mean and standard deviation FeO and TiO

2

abundances for Mare
Frigoris (14±2 wt% FeO; 0.9±0.4 wt% TiO

2

). (B) Pixels from Mare Frigoris (blue
points) have higher albedo and lower band ratio than low latitude mare regions (red
points, restricted to within ±15° of the equator) of equal composition. The mean
and standard deviation of each cluster is marked with crosshairs.
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Figure 3.14: Comparison of latitudinal trends with and without pixels from Mare
Frigoris. (A) Summary of all 28 mare-based latitudinal trend lines, including data
from Mare Frigoris. (B) Summary of the 23 mare-based latitudinal trend lines that
remain after Mare Frigoris pixels are excluded. The mean slope differs by less than
0.04 between the two cases (much less than 1� = 0.3). In both cases, the swirl- and
impact-related trends are shown for comparison as solid and dashed lines, respec-
tively.
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3.3.2.5 Highlands Contamination

Diffusive contamination near mare/highland boundaries and contamination

from major crater rays could be partly responsible for the latitudinal trends

we observe if, by chance, such contamination occurs preferentially at higher

latitudes, and if it produces the same relative changes in albedo and the

950 nm/750 nm band ratio. Here, we examine these factors and conclude

that their contributions to the observed latitudinal trend are not significant.

Impact-induced diffusive mixing of highland and mare materials occurs

near the mare/highland boundaries, and may be significant within 10–20 km

of the boundary (Mustard et al., 1998). The edges of the maria may therefore

be relatively bright compared with other mare regions of similar underlying

composition. If the morphology of high latitude mare regions is such that their

perimeter length to surface area ratios tend to be larger (e.g., Mare Frigoris is

narrow compared with Mare Imbrium), the amount of highland contamination

may be relatively greater at high latitudes, potentially contributing to the

latitudinal color trends we observe. If true, this would imply that the color

variation we observe for any given compositional bin (e.g., Figure 3.4A) is, to

some extent, a function of each pixel’s distance from the nearest highlands,

with pixels close to the highlands being brighter than pixels that are farther

from the highlands, where contamination is weaker.

We test this hypothesis in two ways. First, we restrict our latitudinal

color trend analysis to mare regions that are at least 50 km from the nearest

highlands. Mustard et al. (1998) show that diffusive mare-highland mixing is

significant only within <10 km of the mare-highland boundary and they find

no evidence for mixing beyond 40 km from the boundary. We use the great-
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circle distance (in kilometers) from the center of each mare pixel to the center

of its nearest highland neighbor pixel, where mare/highland surfaces are identi-

fied according to our topographic roughness metric (see section 3.3.2.2). After

excluding mare regions within 50 km of the nearest highlands, and again ap-

plying the selection criteria described in section 3.3.2.1, only 13 compositional

bins remain. The surface area coverage is considerably more limited than in

our full-mare analysis (Figure 3.10), but the resulting latitudinal trend slopes

(-1.2 ±0.3) are not significantly different (see Figure 3.15A and B and compare

with Figure 3.4). Note that the 50-km threshold we use here is also larger than

the Lunar Prospector Gamma Ray Spectrometer footprint (⇠ 45 km), helping

to improve the compositional accuracy of the bins.

As a further test, we once again plot 750 nm reflectance versus the 950

nm/750 nm reflectance ratio, except that in this case, we color-code points

not by cosine latitude, but instead by each pixel’s distance from the high-

lands, from 50 km up to 100 km (Figure 3.15C). No significant color trend is

obvious in Figure 3.15C and a least squares best fit line through the data (black

line) predicts only a slight tendency for pixels 50 km from the mare/highland

boundary (white circle) to be brighter than pixels 100 km from the boundary

(black circle). This is not to say that mare pixels are not typically brighter

near mare/highland boundaries, only that (within a given compositional bin)

this effect is relatively small compared to the effect of varying latitudes (Fig-

ure 3.15A). While Figure 3.15C shows just one illustrative example, we re-

peated this analysis for each of the 13 compositional bins described above.

The resulting highland-distance trends do not resemble the latitudinal trends

and, in some cases, even oppose them (Figure 3.15D). Across the 13 bins, the

highland-distance color trends are often poorly determined (large uncertain-
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Figure 3.15: Color variation of mare surfaces that are at least 50 km from the nearest
highlands (compare with Figure 3.4, which characterizes the entire lunar surface).
(A) Spectral characteristics of pixels sampled from regions with between 15 and
17 wt% FeO and between 1 and 2 wt% TiO

2

. Points are color-coded according
to cosine latitude, as in Figure 3.4. (B) Compilation of latitudinal trends across
the 13 compositional bins compared to the swirl- and impact-related trends (red,
green, and blue lines). (C) Spectral characteristics of the same pixels as in (A),
except that points are color-coded according to distance from the highlands: blue
points correspond to locations that are 50 km from the mare/highland boundary
whereas red points correspond to locations that are 100 km or more from the nearest
highlands (pixels within 50 km of the nearest highlands are excluded). The black
trend line represents a least squares best fit through the data points with the end
points indicating the color predicted by the best-fit line at locations 50 km (white
circle) and 100 km (black circle) from the mare/highland boundary. (D) Compilation
of the 13 highland-distance trend lines (grey lines) compared to the swirl- and impact-
related trends (red, green, and blue lines).
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ties), inconsistent (slopes are highly variable, with standard deviation ±3.9),

and generally weak (most of the trend lines are relatively short). For example,

the average change in 750 nm reflectance between 50 km and 100 km away from

the mare/highland boundary is 0.001 ± 0.004, whereas the average change in

750 nm reflectance between the equator and latitudes of ±70° is 0.05 ± 0.01

(ranges are 1�). Although the effects of highland contamination cannot be

said to make no contribution whatsoever, we conclude that they cannot be

responsible for the stronger and more consistent latitudinal trends we observe

(Figures 3.4, 3.10, 3.14, 3.15A and 3.15B).

Ray systems from major young impacts could also contribute to the high

albedo of Mare Frigoris and other high latitude maria, however, ray systems

similarly cross the low latitude mare regions and should have similar effects

there. For example, rays from Copernicus, Aristarcus, and Kepler all extend

across low latitude mare regions. The young crater Anaxagoras (⇠ 50 km in

diameter) is the main contributor to contamination of Mare Frigoris but lies

more than 300 km from its edge, at the closest point. Significant brightening

associated with the similarly young, but larger, Copernicus crater (⇠ 100 km

in diameter) is limited to within ⇠ 300 km, suggesting that Anaxagoras con-

tamination is unlikely to dominate the spectra of Mare Frigoris. Moreover,

although contamination from crater ray systems may affect the spectra of cer-

tain parts of the maria, there is no reason to expect such contamination to

vary systematically with latitude in such a way as to create the latitudinal

trends we report here. Werner and Medvedev (2010) found no concentration

of rayed craters at high latitudes and, due to the present impact rate inho-

mogeneity (Le Feuvre and Wieczorek , 2011), we would actually expect less

contamination from young crater ejecta at high latitudes. Crater ray contam-
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ination could be substantially responsible for the trends we observe only if

such contamination favors high latitudes by chance. Although we cannot rule

out this possibility, we regard it as unlikely, especially given the symmetry of

the latitudinal trends (Figure 3.9) and the consistency of their slopes across a

range of different compositions (Figure 3.10, Figure 3.14, Figure 3.15B).

Finally, even if highland contamination were to have a significant effect

on the observed spectral characteristics, the effect would more likely involve

an increase (rather than a decrease) in the 950 nm/750 nm reflectance ratio.

As illustrated in Figure 3.6, low-iron regions, such as the highlands, tend to

plot farther up and to the right compared with high-iron regions, such as the

maria, meaning that spectral trends due to highland contamination should

have a positive slope, unlike the negative latitudinal trend slopes we observe

(m1 = �1.5).

3.3.2.6 Phase Angle Biases and LOLA Reflectance

The Clementine spacecraft imaged the lunar surface over a range of phase an-

gles (sun-surface-spacecraft angle), from typically less than 25° at the equator,

to as high as ⇠ 100 ° at high latitudes. The Clementine mosaics are photo-

metrically normalized and calibrated such that they provide an estimate of

reflectance reduced to standard illumination conditions (Eliason et al., 1999),

but the imperfect calibration and imperfect knowledge of photometric behav-

ior, leave small but systematic errors in the mosaics. In particular, the 950 nm

reflectance mosaics exhibit artificially low reflectance values when based on im-

agery collected at relatively high phase angles (imperfections in the 750 nm

reflectance mosaics are insignificant by comparison). This can be seen by

comparing adjacent parts of the mosaic that are based on imagery collected
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at differing phase angles (Figure 3.16). From equation (3.2), and bearing in

mind that m2 is negative, it follows that this has the effect of making rela-

tively higher phase angle areas artificially low in � (and therefore appearing

less like the bright parts and more like the dark parts of swirls). Because

the high latitude Clementine data correspond to systematically higher phase

angles, � therefore tends to be underestimated at high latitudes. This is the

opposite of the trend we observe, indicating that the reported latitudinal effect

on color must be even stronger than it appears in Figure 3.4, Figure 3.10 and

Figure 3.12.

The conclusion that phase angle biases are not the source of the observed

latitudinal color variation is further supported by examination of an indepen-

dent dataset obtained from the Lunar Orbiter Laser Altimeter (LOLA). LOLA

was recently used to measure lunar surface reflectance at 1064 nm (Lucey et al.,

2014). Because LOLA uses its own laser light source to illuminate the sur-

face, reflectance estimates are obtained at a constant phase angle of nearly

zero. Figure 3.9B shows LOLA 1064 nm reflectance across the lunar maria,

confirming that, independent of phase angle, higher latitude maria appear to

exhibit higher reflectance, as seen in the Clementine data.

3.4 Discussion

The latitudinal color variation we observe is unlike the color trends associ-

ated with impacts but statistically equivalent to those observed at swirls (Fig-

ure 3.10, Figure 3.11), suggesting a common mechanism. It has been proposed

that the swirl-related color trend could be the result of magnetic and/or elec-

tric field-related alteration of the regolith microstructure (Pieters et al., 2014),
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Figure 3.16: Phase angle effects on 950 nm reflectance mosaics and derived �. Left
panels show a low-latitude region in Mare Tranquillitatis. Right panels show a high-
latitude region in Mare Frigoris. Top panels show the phase angle corresponding to
the imagery collected across the regions. The middle panels show Clementine 950 nm
reflectance, illustrating a bias toward lower reflectance values for imagery collected
at relatively higher phase angles. The bottom panels show the derived parameter
�, illustrating that the phase angle bias means that � is underestimated for higher
phase angle imagery.
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electrostatic sorting of fine dust (Garrick-Bethell et al., 2011), or similar mix-

ing of compositionally distinct materials (Blewett et al., 2011). However, it is

not clear how such mechanisms could also produce the latitudinal color vari-

ation we report here. Instead, we propose that reduced solar wind flux is

the most likely common mechanism behind the latitudinal and swirl-related

color trends. Solar wind flux is reduced both with increasing latitude (due to

the increasing incidence angle), and very likely at swirls, where strong mag-

netic fields may be partially shielding the surface from the impinging solar

wind (Hood and Schubert , 1980; Hood and Williams , 1989; Hemingway and

Garrick-Bethell , 2012). Micrometeoroid flux, in contrast, varies with latitude

but should be unaffected by magnetic fields (Richmond et al., 2003) and there-

fore cannot account for the color variations observed at swirls.

The observed latitudinal and swirl-related variations in spectral charac-

teristics (i.e., those described by the � parameter) suggest a dependence on

average flux rather than on the total accumulation of solar wind ions. A single

grain saturates after only ⇠ 100, 000 years (Hapke, 2001) such that even a sur-

face shielded by as much as 90% would saturate after only ⇠ 1 million years.

Consistent with this constraint, swirls often exhibit diffuse morphologies, with

gradual transitions from the bright parts to darker background soils. In these

regions, mean solar wind flux could vary smoothly between the bright parts

of swirls and the darker background soils. Hence, if swirls are the result of

locally altered solar wind weathering, their color must be controlled not by

total accumulation of solar wind ions, but instead by some flux-dependent

equilibrium—for instance between regolith gardening and solar-wind-induced

alteration of exposed grain surfaces.

These observations lead us to propose a new model of how space weath-
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ering operates for solar wind and micrometeoroids. Over length scales of a

few kilometers, the surface exhibits considerable variability in ↵, owing to the

appearance of fresh craters (low ↵) among the darker background soils (high

↵), whereas variability in � is low (Figure 3.1B, Figure 3.2B, Figure 3.3B).

Our interpretation is that the equilibrium � is reached so rapidly that we do

not observe variability in its value over ⇠ kilometer scales, whereas the evolu-

tion of ↵ occurs gradually, as impact craters transition into mature soils over

longer timescales. We propose a model in which fresh impact craters begin

with high albedo and low 950 nm/750 nm band ratios (the hypothetical "hy-

perfresh" point illustrated in Figure 3.17, which should depend only on local

mineralogy), then rapidly evolve to an equilibrium value of � (controlled by so-

lar wind flux), and finally follow the steeper progression towards larger values

of ↵, as they gradually mature toward the local equilibrium color. Both the

rapid weathering to a solar wind flux-dependent � and the gradual weathering

toward the local saturation level of ↵ involve decreases in albedo and increases

in the 950 nm/750 nm band ratio. However, the initial rapid weathering pro-

cess (change in �) has a proportionally greater effect (by a factor of ⇠ 3.6 )

on albedo (Figure 3.17). In this model, the trends are parallel, as the soil

matures toward distinct solar wind flux-dependent equilibrium colors, rather

than converging to a common point, contrary to expectations for a simple

mixing process (see also (Staid and Pieters , 2000; Wilcox et al., 2005)).

The differences in optical effects may reflect differences in the way so-

lar wind and micrometeoroid bombardment affect lunar soils. For example,

the darkening may be due primarily to the accumulation of nanophase re-

duced iron (Hapke, 2001; Noble et al., 2007) generated both by solar wind

and micrometeorites, whereas the increased 950 nm/750 nm band ratio, which
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Figure 3.17: Inferred optical evolution process. For a given composition, all impact
craters large enough to excavate fresh material should begin with the same charac-
teristic color (the hypothetical "hyperfresh" point at right). In this model, following
the impact event, the freshly exposed material experiences rapid weathering until it
reaches an equilibrium value of �, controlled by solar wind flux. This rapid color
change occurs primarily in albedo, but is accompanied by a small change in the
950 nm/750 nm band ratio. Subsequently, the crater material matures gradually
(increases in ↵) until it reaches the local saturation maturity level of the surround-
ing, well-developed soils. This gradual maturation involves additional darkening,
but is also accompanied by a proportionally greater band ratio increase than during
the initial mode of rapid weathering.
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reflects both suppression of spectral features and increased continuum slope,

may also be influenced by impact vitrification (Adams and McCord , 1971) and

the soil’s impact-induced disintegration into increasingly finer grains (Pieters

et al., 1993), neither of which depend on solar wind.

In spite of the uncertainties regarding the precise mechanism for the ob-

served latitudinal trends, our results help to quantify the effects of latitude-

dependent space weathering, which may need to be accounted for when in-

terpreting spectral measurements at different latitudes (Zuber et al., 2012;

Cohen et al., 2014). The production and retention of hydroxyl (OH) groups,

for instance, reportedly varies with latitude (Clark , 2009; Pieters et al., 2009;

Sunshine et al., 2009; McCord et al., 2011; Hendrix et al., 2012) as well as

at swirls (Kramer et al., 2011). The latitudinal variation in space weathering

effects we report here may influence the interpretation of the spectral obser-

vations behind such findings.

Our results also suggest that it may be possible to use variations in surface

color to quantify the reduction in solar wind flux at swirls. For example,

the magnitude of color variation at the Reiner Gamma swirl is approximately

equivalent to the color variation observed between the equator and 60° latitude,

suggesting that this magnitude of color variation corresponds to a ⇠ 50%

reduction in solar wind flux. This type of analysis, in conjunction with other

methods, may in turn help in estimating the strength of surface fields at swirls

and in making predictions that can eventually be tested with near surface

magnetic field and solar wind flux measurements.
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3.5 Conclusions

Our analysis reveals a systematic latitudinal variation in the near-infrared

spectral properties of the lunar surface, and in particular, across the maria.

Specifically, low latitude mare regions tend to be darker and have higher

950 nm/750 nm reflectance ratios than high latitude mare regions, such as the

noticeably bright Mare Frigoris. This latitudinal trend persists across a range

of distinct compositions, confirming that it is not an artifact of the fact that

regions with the highest iron and titanium content happen to be concentrated

at low latitudes. Our analysis also shows that the trends are not significantly

affected by contamination from the highlands, nor can they be artifacts of

phase angle biases, as confirmed by our comparison with the constant phase

angle LOLA reflectance data. Furthermore, the spectral characteristics of the

latitudinal color trend are statistically equivalent to those observed at lunar

swirls; higher latitude regions appear more like the bright parts of swirls. We

propose that reduced solar wind flux, which should occur both at swirls and

toward higher latitudes, is the common mechanism behind the observed color

variations. We suggest a process by which freshly exposed materials initially

experience rapid changes in color until reaching a solar wind flux-dependent

equilibrium, followed by a more gradual period of optical maturation driven

mainly by micrometeoroid impacts. If correct, this model could help quantify

the distinct effects of solar wind versus micrometeoroid weathering and may

be important for the interpretation of spectral observations made at different

latitudes on the Moon and other airless bodies throughout the solar system.
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Chapter 4

A Rigid and Weathered Ice Shell

on Titan

This chapter is adapted from Hemingway, D., F. Nimmo, H. Zebker, and L. Iess

(2013), A rigid and weathered ice shell on Titan, Nature, 500 (7464), 550–552,

doi:10.1038/nature12400.

Abstract

Several lines of evidence suggest that Saturn’s largest moon, Titan, has a

global subsurface ocean beneath an outer ice shell 50 to 200 kilometers thick

(Béghin et al., 2010; Bills and Nimmo, 2011; Iess et al., 2012; Tobie et al.,

2006). If convection is occurring (Mitri and Showman, 2008; Tobie et al.,

2005), the rigid portion of the shell is expected to be thin; similarly, a weak,

isostatically-compensated shell has been proposed to explain the observed to-

pography (Choukroun and Sotin, 2012; Nimmo and Bills , 2010). Here we

report a strong inverse correlation between gravity (Iess et al., 2012) and to-
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pography (Zebker et al., 2012) at long wavelengths that are not dominated by

tides and rotation. We argue that negative gravity anomalies (mass deficits)

produced by crustal thickening at the base of the ice shell overwhelm positive

gravity anomalies (mass excesses) produced by the small surface topography,

giving rise to this inverse correlation. We show that this situation requires a

substantially rigid ice shell with an elastic thickness exceeding 40 kilometers,

and hundreds of meters of surface erosion and deposition, consistent with re-

cent estimates from local features (Moore et al., 2013; Neish et al., 2013). Our

results are therefore not compatible with a geologically active, low-rigidity ice

shell. After extrapolating to wavelengths that are controlled by tides and ro-

tation, we suggest that Titan’s moment of inertia may be even higher (that is,

Titan may be even less centrally-condensed) than is currently thought (Iess

et al., 2010).

4.1 Introduction

Combined studies of gravity and topography can yield useful information about

the near-surface interior structure of solid planetary bodies (Wieczorek , 2007).

In particular, the ratio between the gravity and topography at a particular

wavelength, known as the spectral admittance, is generally a function of the

thickness of the lithosphere and the degree to which the topography is compen-

sated by subsurface density anomalies. For example, small admittances arise

when topography is compensated isostatically such that the additional gravity

associated with surface topography is offset by the reduced gravity associated

with the corresponding low-density isostatic roots. Conversely, large admit-

tances usually indicate incomplete isostatic compensation. Large admittances
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are typical at short wavelengths, for which elastic flexure of the lithosphere is

an effective means of supporting the topography. The wavelength at which the

primary support mechanism transitions from flexural to isostatic is generally

a function of the effective elastic layer thickness, which, in turn, tells us about

the thermal structure of the lithosphere.

In the case of Titan, our limited knowledge of the gravity field restricts our

analysis to the longest of wavelengths (mainly degrees 2 and 3). The degree-

2 gravity field is well determined, but is dominated by the effects of tidal

and rotational distortion. The gravitational effects of isostatically supported

topography at degree 2 are small by comparison and, in any case, difficult

to distinguish from the tidal and rotational effects. In this analysis, we will

therefore focus on the degree-3 gravity and topography. The degree-3 signal

is useful because, although it is small compared to those at degrees 2 and

4, it is not directly affected by tides, rotation, or tidal heating (Nimmo and

Bills , 2010). Though our analysis will focus primarily on degree 3, we will also

discuss the implications of extrapolating our results to degree 2.

Titan is thought to consist of a large, rocky inner core, surrounded by

layers of H
2

O in various phases, and covered by a dense nitrogen atmosphere.

The outer-most layer of the H
2

O mantle is thought to consist primarily of ice-I

and estimates for its thickness range from 50 to 200 km (Béghin et al., 2010;

Bills and Nimmo, 2011; Iess et al., 2012; Tobie et al., 2006). The surface is

geomorphologically varied, with seas of liquid hydrocarbons, dendritic river

networks, and large fields of sand dunes. Several surface features have been

described as icy volcanoes, suggesting ongoing geologic activity in the ice shell.

However, evidence for such “cryovolcanism” is not entirely conclusive and there

is considerable disagreement about the present level of geologic activity on
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Titan. Obtaining constraints on the loading history and elastic thickness of

the ice shell will help in understanding the evolution of Titan’s surface and

the likely level of ongoing geologic activity (Moore and Pappalardo, 2011).

Section 4.2 describes the observed gravity and topography, as well as the

implied admittance. In section 4.3, we describe our model and use it to in-

terpret the observed admittance, leading to estimates for the ice shell’s elas-

tic thickness and the magnitude of surface erosion that has taken place. In

section 4.4, we discuss the implications of our results before concluding in

section 4.5.

4.2 Observations

4.2.1 Gravity Field

The description of Titan’s gravitational field is given by Iess et al. (2012) as

non-normalized, dimensionless potential coefficients Cg

lm

, Sg

lm

such that the

gravitational potential at the reference radius (R) can be written

U(✓,�) = �GM

R

1X

l=0

lX

m=0

(Cg

lm

cosm�+ Sg

lm

sinm�)P
lm

(cos ✓)

where P
lm

(cos ✓) are the non-normalized associated Legendre functions, ✓ is

colatitude, � is longitude and Cg

lm

and Sg

lm

are non-normalized spherical har-

monic coefficients of degree l and order m. In terms of the non-normalized

coefficients, the radial component of the gravitational acceleration at the ref-
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erence radius (R) can be written

g
r

(✓,�) =
GM

R2

1X

l=0

lX

m=0

(l + 1) (Cg

lm

cosm�+ Sg

lm

sinm�)P
lm

(cos ✓)

In our admittance analysis (section 4.2.3), we will use fully normalized,

dimensionalized gravitational acceleration coefficients, C̄g

lm

, S̄g

lm

, such that

g
r

(✓,�) =
1X

l=0

lX

m=0

�
C̄g

lm

cosm�+ S̄g

lm

sinm�
�
P̄
lm

(cos ✓)

where P̄
lm

(cos ✓) are the fully normalized associated Legendre functions (see

Appendix A). The fully normalized and dimensionalized gravity coefficients,

C̄g

lm

, S̄g

lm

, are related to the non-normalized, dimensionless potential coeffi-

cients Cg

lm

, Sg

lm

by

�
C̄, S̄

 
g

lm

=

✓
(2� �0m)(2l + 1)

(l �m)!

(l +m)!

◆� 1
2

(l + 1)
GM

R2
{C, S} g

lm

(4.1)

where the square root term does the normalization, the (l + 1) term arises

from the differentiation associated with converting from potential to gravity,

the GM

R

2 term generates dimensional coefficients (which we will express in terms

of mGal = 10�5 ms�2), and where �0m is the Kronecker delta.

Three solutions for Titan’s low-order gravity field have been obtained via

radio tracking of the Cassini spacecraft (Iess et al., 2010, 2012), with the re-

sults being well constrained up to spherical harmonic degree 3. In the first

two (SOL1a and SOL1b), results from six Cassini gravity flybys were ana-

lyzed separately and then combined into multi-arc solutions. Whereas SOL1a

attempts to model the gravity field only up to degree 3, SOL1b attempts to
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model the field up to degree 4, but only as a means of verifying the robust-

ness of the degree-3 solution. It is found that the degree-3 solution differs

only modestly between SOL1a and SOL1b. For the last solution (SOL2), a

global model extending to l = 3 was derived using Pioneer and Voyager data

and satellite ephemerides in addition to Cassini observations. In spite of the

different approaches, the SOL2 field closely resembles the SOL1a field. The

SOL1b solution matches less closely, likely because it also attempts to include

the degree-4 component of the field. Although all three solutions give a con-

sistent estimate of the periodic (tidal) k2 Love number (with a central value

of 0.6), the static part of the degree-4 field is currently not well constrained

due to the limited nature of the observations. Our calculations will be based

primarily on the SOL1a gravity field.

4.2.2 Topography

Titan’s topography is likewise described by Zebker et al. (2012) in terms of

non-normalized spherical harmonic coefficients Ch

lm

, Sh

lm

and can be written as

H(✓,�) =
1X

l=0

lX

m=0

�
Ch

lm

cosm�+ Sh

lm

sinm�
�
P
lm

(cos ✓)

where, again, P
lm

(cos ✓) are the non-normalized associated Legendre functions,

✓ is colatitude, � is longitude and Ch

lm

and Sh

lm

are non-normalized spherical

harmonic coefficients of degree l and order m. To convert from non-normalized

coefficients to fully normalized coefficients, C̄h

lm

, S̄h

lm

, we write

�
C̄, S̄

 
h

lm

=

✓
(2� �0m)(2l + 1)

(l �m)!

(l +m)!

◆� 1
2

{C, S}h
lm

(4.2)
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and the topography is described (in meters) by

H(✓,�) =
1X

l=0

lX

m=0

�
C̄h

lm

cosm�+ S̄h

lm

sinm�
�
P̄
lm

(cos ✓)

where P̄
lm

(cos ✓) are the fully normalized associated Legendre functions (see

Appendix A).

The topography models are derived from a combination of radar altimetry

and analysis of the overlapping regions of radar images, in a technique known as

SARtopo (Zebker et al., 2009; Stiles et al., 2009; Zebker et al., 2012), and were

used to derive shape solutions up to l = m = 11. Several distinct solutions were

produced, depending on where the harmonic expansion was truncated. We

denote these solutions Deg4-exp, Deg5-exp, ... Deg11-exp, where the number

indicates the highest degree and order used to fit the observations.

Due to the large gaps in Cassini radar coverage (Figure 4.1), topography

models with power beyond degree 6 are not adequately constrained unless

an a priori restriction is applied (e.g., minimize rms deviation from best-fit

sphere). Even when a priori constraints are applied, the coefficients tend to

be less stable when the model’s expansion limit exceeds degree 6 (Figure 4.2).

For our purposes, we prefer to use the highest resolution data available

without requiring a priori constraints in the model fits. We therefore primarily

use the Deg6-exp model (Zebker et al., 2012) in our analysis, the coefficients

for which are given in Table 4.1.
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Figure 4.1: Cassini radar-derived elevation data for Titan. Elevation is given relative
to the 2575-km reference sphere.
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Figure 4.2: Degree-3 normalized topography model (Zebker et al., 2012) coefficients
(with 1-� error bars) as a function of the maximum spherical harmonic degree allowed
when fitting the data.
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Table 4.1: Fully normalized Deg6-exp topography model (Zebker et al., 2012) coef-
ficients (in meters).

Term Estimate 1� error

C00 2574750.0 6.0

C10 0.0 5.8

C11 23.1 5.2

S11 18.5 5.8

C20 -169.5 4.5

C21 -17.8 5.4

S21 31.8 7.0

C22 120.8 4.6

S22 20.1 4.6

C30 -4.9 3.8

C31 2.8 3.7

S31 -21.3 5.6

C32 -8.8 5.9

S32 -2.9 5.9

C33 0.0 7.2

S33 14.3 7.2

C40 -39.3 3.7

C41 22.1 3.2

S41 75.9 4.2

C42 4.5 4.5

S42 -26.8 4.5

C43 16.7 0.0

S43 -50.2 0.0

C44 0.0 0.0

S44 -47.3 0.0

Term Estimate 1� error

C50 28.6 3.3

C51 -26.9 2.3

S51 -14.0 4.7

C52 37.1 6.2

S52 -12.4 6.2

C53 0.0 0.0

S53 0.0 0.0

C54 0.0 0.0

S54 0.0 0.0

C55 0.0 0.0

S55 0.0 0.0

C60 -2.5 3.1

C61 8.9 2.5

S61 -61.0 3.8

C62 -24.1 0.0

S62 0.0 0.0

C63 0.0 0.0

S63 0.0 0.0

C64 0.0 0.0

S64 0.0 0.0

C65 0.0 0.0

S65 0.0 0.0

C66 0.0 0.0

S66 0.0 0.0
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4.2.3 Observed Admittance

When we compare the degree-3 gravity and topography signals, a striking

negative correlation is apparent (Figure 4.3). We quantify this relationship by

employing an admittance analysis (McKenzie, 1994; Wieczorek , 2007), which

measures the gravity-to-topography ratio in a way that is not biased by un-

correlated signals in the gravity data. The degree-l admittance, Z (l), is given

by

Z(l) =
D

hg

(l)

D
hh

(l)
(4.3)

where D
ij

(l) represents the cross-power spectrum between fields i and j and

is given by

D
ij

(l) =
lX

m=0

�
C i

lm

Cj

lm

+ Si

lm

Sj

lm

�
(4.4)

The correlation between the two signals is given by

�(l) =
D

hg

(l)p
D

hh

(l)D
gg

(l)
(4.5)

If some fraction of the gravity signal is not correlated with the surface to-

pography, then the coherence (�2) will be less than one. However, the crucial

advantage of equation (4.3) is that any such gravity noise does not affect the

estimated admittance, Z. For the case of Titan, contributions to gravity from

deeper interfaces (such as the silicate interior) are likely to be important, while

contributions to the surface topography from these processes are likely negli-

gible. An approach like that embodied in equation (4.3), which is unaffected

by noisy gravity, is essential for interpreting the limited observations available

at Titan.

For each of the three gravity models, we computed admittances based on
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(a)

(b)

Figure 4.3: Titan’s degree-3 gravity and topography. (a) Gravity field derived from
the potential coefficients of the SOL1a gravity field representation of Iess et al. (2012)
(multi-arc analysis, 3⇥3 gravity field). (b) Spherically referenced topography based
on degree-6 harmonic expansion (Zebker et al., 2012). The two signals display a
strong negative correlation (with correlation coefficient � = �0.61) and give rise to
an admittance of �32mGal/km, based on a Monte Carlo analysis accounting for the
uncertainty in the two signals. Maps are shown in Mollweide projection, centered
on the anti-Saturnian point (180° longitude).
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Topography Degree−3 Admittance (mGal/km) Gravity

SOL1a−24±9 (−0.51)

Deg4−exp SOL1b−13±10 (−0.30)

SOL2−22±10 (−0.43)

SOL1a−19±8 (−0.45)

Deg5−exp SOL1b−8±9 (−0.21)

SOL2−15±8 (−0.33)

SOL1a−32±11 (−0.61)

Deg6−exp SOL1b−16±12 (−0.34)

SOL2−27±12 (−0.49)

−40 −20 0 +20

Figure 4.4: Admittance estimates for nine sets of gravity and topography data.
Three distinct gravity models (Iess et al., 2012) and three distinct topography models
(Zebker et al., 2012) (truncated at harmonic degrees 4, 5 and 6) were used to produce
a total of nine separate admittance estimates. Each estimate is based on a Monte
Carlo analysis in which the admittance was computed for each of 100,000 distinct sets
of gravity and topography coefficients, distributed according to the 1� uncertainties
in the model coefficients. For each Monte Carlo analysis, diamonds are plotted
at the mean admittance estimate, and 1� error bars are shown to represent the
distribution. To the right of the error bars are the mean ± standard deviation
of the admittance estimates in milligals per kilometer (mGal/km), followed by the
correlation coefficients (�) in parentheses.
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three separate topography models (Figure 4.4). The admittance and correla-

tion estimates in Figure 4.4 were obtained through a Monte Carlo analysis.

For each gravity/topography combination, the results were obtained from a

distribution of 100,000 distinct admittance and correlation estimates, each of

which was based on gravity and topography coefficients that were generated

randomly and distributed according to the 1-� uncertainties in the model co-

efficients. Individual correlations and admittance estimates were computed

according to equations (4.3) and (4.5). In spite of the variability between

the estimates, the degree-3 admittance appears to be substantially negative,

and the Monte Carlo analysis shows that this result is robust to the model

uncertainties (Figure 4.4).

The admittance estimated based on the Monte Carlo analysis will have a

slightly smaller magnitude than the admittance estimated directly from the

coefficients (i.e., when uncertainties are ignored). This is because, as long as

there is uncertainty in the topography coefficients, the mean of the distribution

of D
hh

(see equation 4.4) will always be greater than the value of D
hh

obtained

directly from the estimated topography coefficients (because if x is normally

distributed, then E(x2) > [E(x)]2). For example, if uncertainties are ignored,

the admittance computed directly from the SOL1a gravity (Iess et al., 2012)

coefficients and the Deg6-exp topography (Zebker et al., 2012) coefficients is

�39mGal/km, whereas when uncertainties are accounted for using a Monte

Carlo analysis, the mean estimated admittance is �32mGal/km. We adopt

the latter value because it is more conservative—more negative admittances

would require higher magnitudes of erosion and/or larger elastic thicknesses

(see section 4.3.2).
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4.3 Model and Results

The negative correlation we observe between the gravity and topography sig-

nals (section 4.2.3) is surprising—negative admittances are rare. They can

occur in convecting systems with strong viscosity stratification (Richards and

Hager , 1984), but it is unclear why Titan’s ice shell would have such layering,

and the shell is sufficiently thin that—as for Enceladus (Roberts and Nimmo,

2008)—convective features should have much shorter horizontal length scales

than degree 3. Below we construct a model that allows for negative admit-

tances under certain conditions.

4.3.1 Admittance and Flexure Model

Here, we will assume that the topography is supported by some combination

of shell thickness variations (Airy isostasy, e.g., Nimmo and Bills (2010)) and

elastic flexure. An admittance model requires that we describe how the gravity

(g) is affected by topography (h).

Gravity Anomalies

The gravity anomaly at degree l due to a thin surface layer of amplitude h
l

and density ⇢
c

is given by (Jeffreys, 1976)

�gt
l

=
(l + 1)

(2l + 1)
4⇡Gh

l

⇢
c

(4.6)
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and similarly, the gravity anomaly due to a thin layer (a "root") of thickness

r
l

and density contrast �⇢ = ⇢
m

� ⇢
c

at the base of the shell, is given by

�gb
l

= � (l + 1)

(2l + 1)
4⇡Gr

l

�⇢

✓
1� d

R

◆
l+2

(4.7)

where the mean thickness of the shell is d, the radius of the body is R, and ⇢
m

is the density of the material underlying the shell (i.e., the subsurface ocean).

In the short-wavelength limit (l � 1), equation (4.6) reduces to the usual

flat-plate formula, as required.

When the net gravity anomaly and the surface topography (h
l

) are known,

the theoretical admittance is given by

Z
l

=
�gt

l

+�gb
l

h
l

(4.8)

In the remainder of this development, we drop the subscripts from both h

and r and take it as understood that these parameters correspond to a specific

wavelength.

In practice, it will be difficult to observe r and therefore to compute �gb
l

according to equation (4.7). Instead, we would like to find an expression for r

in terms of h, which can be more readily observed. This is generally possible

because, for a finite elastic thickness, there will be a balance between the

overburden pressure of positive surface topography (⇢
c

gh), the buoyancy of

the root (�⇢gr), and the restoring forces due to flexure.
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Lithospheric Deflection, Cartesian case

If the deflection of the initial ice shell is w, in a Cartesian system, and if geoid

undulations are neglected for the moment, this pressure balance can be written

as

Dr4w = �⇢gr � ⇢
c

gh (4.9)

Here, D represents flexural rigidity and is given by

D =
ET 3

12(1� ⌫2)
(4.10)

where T is the effective elastic thickness, E is Young’s modulus and ⌫ is

Poisson’s ratio. We treat w as positive upward bending, h as positive upward

relief above the reference ice shell surface, and r as positive downward relief

from the base of the ice shell. The relationship between r and h depends on

the elastic properties of the shell and the thickness of loads applied at the top

(d
t

) and bottom (d
b

) of the shell (Figure 4.5); d
t

is the thickness of material

added at the surface (a negative value would indicate erosion), and d
b

is the

thickness of material added at the base of the ice shell (a positive value would

indicate basal freezing, a negative value, basal melting). Our model represents

the equilibrium state achieved after the lithosphere has finished deflecting in

response to the applied load(s). The model also assumes that the ice shell

properties do not change over time.

Our formulation is similar to those of Turcotte et al. (1981) and McGovern

et al. (2002), however, our sign convention differs slightly and, for simplicity,

we assume that material added at the top or bottom of the shell is also of

density ⇢
c

. Our formulation also differs in that we handle top and bottom loads
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simultaneously with w being the total deflection resulting from the combined

effects of top and bottom loading.

dt

db

w

w

d

h

r

Figure 4.5: Illustration of the influence of top loading (pale pink material, d
t

) and
bottom loading (pale blue material, d

b

) on ice shell flexure (w), surface relief (h) and
root thickness (r).

From Figure 4.5, we have

h = w + d
t

(4.11)

r = d
b

� w (4.12)

Then, assuming the loads are periodic and in-phase, we can solve (4.9) for

w, obtaining

w =
�⇢d

b

� ⇢
c

d
t

⇢
m

+ µ
(4.13)

Here, we have introduced a parameter, µ, which has units of density and

will serve as a shorthand for the flexural rigidity at a particular wavelength

and gravity. In a Cartesian system,

µ(k) =
ET 3k4

12(1� ⌫2)g
(4.14)
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where k is a wavenumber. The advantage of using this shorthand will become

clear when we move from a Cartesian to a spherical system.

It is useful to define a compensation function, C(⇢), that expresses the

degree of compensation under flexural support compared with the case of pure

isostasy. This can be defined as the ratio of the deflection, w, according to

(4.13) to the zero-rigidity deflection, w0, obtained from (4.13) when µ = 0.

That is, C = w/w0, or

C(⇢) =
1

1 + µ

⇢

(4.15)

When the elastic thickness, T , is zero, C = 1 (fully compensated). The

parameter ⇢ is the density contrast that is resisting the flexure (i.e., related

to buoyancy, overburden pressure, or both). In the isostatic limit, �⇢r =

⇢
c

h, whereas in the top loading case, �⇢r = ⇢
c

hC(�⇢), while in the bottom

loading case, C(⇢
c

)�⇢r = ⇢
c

h, as we will see. The theoretical value of C = 0

corresponds to the zero compensation case which occurs when the ice shell

is infinitely rigid (i.e., as µ ! 1). In this case, deflection (w) becomes zero

(equation 4.13) and so, from (4.11) and (4.12), h = d
t

and r = d
b

. In this

scenario, h and r are independent of one another and so both d
t

and d
b

must

be specified in order to predict admittance. However, as long as C > 0, there

will be some finite deflection and it will be possible to obtain r as a function

of h.

If C > 0 and both h and d
t

are specified, then from (4.11), (4.12), (4.13)

and (4.15), it can be shown that

r =
⇢
c

h

�⇢

"
1� dt

h

C(⇢
c

)
+

d
t

h

#
(4.16)
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We have factored out ⇢
c

h/�⇢ in order to facilitate direct comparison with

the isostatic case and because it will be convenient to do so when calculating

admittance using (4.6), (4.7) and (4.8). In the case where no material has been

added to the surface (i.e., d
t

= 0, so that loading is purely from the bottom),

this expression reduces to

C(⇢
c

)�⇢r = ⇢
c

h (4.17)

Similarly, if C > 0 and only h and d
b

are specified, it can be shown that

r =
⇢
c

h

�⇢

"
db
h

C(⇢
c

)
� d

b

h
+ 1

#
C(�⇢) (4.18)

In the case where no material has been added to the base (i.e., d
b

= 0, so

that loading is purely from the top), this expression reduces to

�⇢r = ⇢
c

hC(�⇢) (4.19)

Lithospheric Deflection, spherical case

The foregoing gives correct values for r in the Cartesian case, which is an

appropriate approximation for short wavelength loads. However, in order to

interpret admittance at very long wavelengths, we must consider the spherical

case. Assuming the icy crust behaves as a thin elastic shell of radius R,

equation (4.9) becomes

Dr6w + 4Dr4w + ETR2r2w + 2ETR2w

= R4 (r2 + 1� ⌫) (�⇢gr � ⇢
c

gh+ ⇢
m

gh
g

)

(4.20)
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where D is as in (4.10). Here, we have adopted a modified version of the

approaches of Turcotte et al. (1981) and McGovern et al. (2002), which them-

selves follow the earlier derivation of Kraus (1967). The final term in (4.20)

accounts for the elevation or depression of the geoid (h
g

, which we treat as

positive upward) that occurs with loading of the ice shell. Here, we adopt an

approximation in order to obtain h
g

, namely, we assume that
�
1� d

R

�
l+2 ⇡ 1,

and that the geoid and gravitational acceleration do not change with depth

in the shell (as has been pointed out by Belleguic et al. (2005), this was an

implicit assumption of Turcotte et al. (1981)).

Having obtained h
g

, and using (4.11) and (4.12), we rewrite (4.20) as

2

4
✓
1� 3⇢

m

(2l + 1)⇢

◆�1
ET

R2g

0

@
T

2(r6+4r4)
R

212(1�⌫

2) +r2 + 2

r2 + 1� ⌫

1

A+ ⇢
m

3

5w = �⇢d
b

� ⇢
c

d
t

where ⇢ is the mean density of the body. If w is expressed in spherical harmon-

ics, we can replace r2 with �l(l+1) (e.g., Turcotte et al. (1981), equations 17

and 18) and solve for w, recovering equation (4.13),

w =
�⇢d

b

� ⇢
c

d
t

⇢
m

+ µ

but with the flexural rigidity parameter now being

µ(l) =

✓
1� 3⇢

m

(2l + 1)⇢

◆�1
ET

R2g

0

@
T

2[l3(l+1)3�4l2(l+1)2]
R

212(1�⌫

2) + l(l + 1)� 2

l (l + 1)� (1� ⌫)

1

A (4.21)

For a spherical system, it is also necessary to account for the ratio of

surface areas at the top and bottom of the shell (since the buoyancy of the

root depends on its volume, not its thickness). This effect complicates the
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derivations but it can be shown that, if d
t

and h are specified, then the surface

area correction leads to

r =
⇢
c

h

�⇢

"
1� dt

h

C(⇢
c

)
+

d
t

h

#✓
1� d

R

◆�2

(4.22)

If d
b

is specified rather than d
t

, we obtain

r =
⇢
c

h

�⇢

"
db
h

C(⇢
c

)
� d

b

h
+ 1

#
C

 
�⇢

✓
1� d

R

◆2
!✓

1� d

R

◆�2

(4.23)

As required, both of these expressions reduce to the Cartesian equivalents

as R ! 1. This correction also partially relaxes the simplifying assumption

we made to obtain the geoid height so that we now assume
�
1� d

R

�
l ⇡ 1 rather

than
�
1� d

R

�
l+2 ⇡ 1.

Having obtained an expression for r as a function of h (which is possible

as long as C > 0), we can now substitute (4.22) into (4.7) and combine with

(4.6) and (4.8) to get an expression for admittance that depends on h and d
t

,

but not r

Z(l) =
(l + 1)

(2l + 1)
4⇡G⇢

c

"
1�

 
1� dt

h

C(⇢
c

)
+

d
t

h

!✓
1� d

R

◆
l

#
(4.24)

Equation (4.24) implicitly accounts for the root thickness (r), bottom load

thickness (d
b

), and mantle density (⇢
m

), such that these terms do not appear

in the final expression. Model admittance is sensitive to mantle density only

insofar as the ratio ⇢
m

/⇢ influences the geoid, the effect of which is captured

in C(⇢
c

) via (4.21) and (4.15).

If d
b

is specified rather than d
t

, we instead substitute (4.23) into (4.7) and
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obtain

Z(l) =
(l + 1)

(2l + 1)
4⇡G⇢

c

"
1�

 
db
h

C(⇢
c

)
� d

b

h
+ 1

!
C

 
�⇢

✓
1� d

R

◆2
!✓

1� d

R

◆
l

#

(4.25)

When C = 1 (pure isostasy), both of these expressions reduce to

Z(l) =
(l + 1)

(2l + 1)
4⇡G⇢

c

"
1�

✓
1� d

R

◆
l

#
(4.26)

and admittance will always be positive since (1� d/R)l must always be less

than 1.

Finally, in the limit of an infinitely rigid shell (C = 0), for which we must

specify both d
t

and d
b

, it can be shown that the admittance is

Z(l) =
(l + 1)

(2l + 1)
4⇡G⇢

c

"
1� d

b

�⇢

d
t

⇢
c

✓
1� d

R

◆
l+2
#

(4.27)

In general (i.e., when 0 < C < 1), admittance depends on topography (h),

the amount of top and/or bottom loading (d
t

and/or d
b

), as well as the elastic

thickness, T , and the mean shell thickness, d. For a given wavelength, mean

shell thickness (d), elastic thickness (T ), and a fixed, positive h, admittance

is a positive linear function of d
t

(Figure 4.6) and crosses zero when d
t

=

h

✓
1�

⇣
1

C(⇢c)
� 1
⌘�1 ⇣�

1� d

R

��l � 1
⌘◆

. When both top and bottom loading

have taken place, and if h is known, admittance may be either positive or

negative, and is uniquely defined if either d
t

or d
b

is specified.

Based on equation (4.25), it can be shown that, when loading occurs purely

from the top (i.e., d
b

= 0), admittance is independent of surface relief, h, and
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is given by

Z(l) =
(l + 1)

(2l + 1)
4⇡G⇢

c

"
1� C

 
�⇢

✓
1� d

R

◆2
!✓

1� d

R

◆
l

#
(4.28)

which is necessarily positive, since both C and (1� d/R)l are always less than

1. Based on (4.24), when loading occurs purely from the bottom (i.e., d
t

= 0),

admittance is, again, independent of surface relief, h, and is given by

Z(l) =
(l + 1)

(2l + 1)
4⇡G⇢

c

"
1� 1

C(⇢
c

)

✓
1� d

R

◆
l

#
(4.29)

which is positive as long as C(⇢
c

) > (1� d/R)l. For degree 3, this is always

true for the parameters given in Table 4.2.

Hence, from Figure 4.6, we see that degree-3 admittance may be negative

only if d
t

/h is negative (i.e., when erosion has occurred at topographic highs)

or if substantially different parameter values are adopted. To obtain a negative

degree-3 admittance with pure bottom loading would require an increase of

⇠ 30% in the ratio of Young’s modulus to the ice shell density (E/⇢
c

). It is

also possible to obtain a negative admittance without erosion for sufficiently

large elastic thicknesses and sufficiently short wavelengths (e.g., for l = 6 when

T > 350 km, or for l = 9 when T > 200 km).

4.3.2 Interpretation

Having developed our admittance model, and having seen that negative top

loading (that is, erosion at topographic highs) is required in order to give rise

to negative admittance at degree 3, we can now use equation (4.24) to see how

admittance varies as a function of top load (d
t

) and the elastic layer thickness
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Figure 4.6: Admittance as a function of top load (d
t

, where negative d
t

indicates
erosion) when h = 66m, T = d = 200 km and assuming the properties listed in
Table 4.2.

Table 4.2: Parameter values assumed for admittance calculations

Parameter Symbol Assumed Value
Poisson’s ratio for ice ⌫ 0.25
Young’s modulus for ice E 9GPa
Crustal (ice shell) density ⇢

c

920 kg/m3

Mantle (subsurface ocean) density ⇢
m

1000 kg/m3

Titan’s mean density ⇢ 1880 kg/m3

Titan’s radius R 2575 km
Acceleration due to gravity at the surface g 1.35m/s2
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(T ). This allows us to constrain the relationship between elastic thickness and

the amount of erosion/deposition that must have taken place. Figure 4.7a

illustrates the admittance corresponding to Figure 4.3 and shows that more

than 100 m of surface erosion is required even for very large (⇠ 400 km) elastic

thicknesses. If the elastic thickness is less than 40 km, more than ⇠ 1 km of

erosion is required. Figure 4.7b plots combinations of d, T and d
t

that satisfy

the observed admittance. For an ice-shell thickness of 200 km, for example,

more than 200 m of erosion are required.

Our results suggest that the negative admittance we observe at degree-3

is the result of negative gravity anomalies from large roots dominating over

the positive gravity anomalies from the associated topography. We tested

this scenario by computing, everywhere over the surface of Titan, the gravity

anomaly implied by the observed topography and then comparing the result

with the observations (Figure 4.8c). The gravity anomaly is obtained by mul-

tiplying the observed degree-3 topography (Figure 4.8a) by equation (4.24),

assuming T = d = 200 km and a degree-3 erosion amplitude of 293m (i.e,

293m of erosion at the topographic peaks and 293m of deposition in the val-

leys). This is the amount of erosion required to produce �39mGal/km, the

admittance obtained directly (i.e., neglecting uncertainties) from the SOL1a

gravity (Iess et al., 2012) and the Deg6-exp topography (Zebker et al., 2012)

(see section 4.2.3). Figure 4.8b shows the resulting gravity anomaly, computed

everywhere over the surface. The gravity field predicted through this proce-

dure resembles the observed field (compare panels (b) and (c) in Figure 4.8).

Assuming the mantle density given in Table 4.2, the implied root thickness

amplitude is ⇠ 1.4 km.

As illustrated in Figure 4.6, admittance is approximately a direct linear
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Figure 4.7: Model predictions of admittance and erosion. (a) Degree-3 admittance
predicted by our model for various combinations of elastic thickness T and top load
d
t

, here assuming that T equals the shell thickness d. Larger values of T correspond
to smaller values of C (that is, less compensation). Negative top load indicates ero-
sion at topographic highs and deposition at topographic lows. The solid black line
indicates the admittance corresponding to Figure 4.3 (�32mGal/km); the dashed
lines indicate the 1� uncertainty on that estimate. Whereas the rheology of ice
implies that T < 0.5d (section 4.4.1), assuming that T ⇡ d leads to conservative
estimates of erosion. (b) Top load amplitude, d

t

, required to produce the observed
degree-3 admittance for various combinations of total shell thickness d and elastic
thickness T . Dashed white lines highlight the likely range of Titan’s ice shell thick-
ness, 50–200 km. Both (a) and (b) were generated assuming a degree-3 topographic
amplitude h of 66 m.
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(a)

(b)

(c)

Figure 4.8: Degree-3 topography and gravity maps: (a) Deg6-exp topography (Ze-

bker et al., 2012); (b) gravity computed as described in section 4.3.2 (assuming
T = d = 200 km and 293m of erosion); (c) SOL1a gravity (Iess et al., 2012).
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function of top load (d
t

). Conversely, the top load required to produce a given

admittance can be obtained by solving equation (4.24) for d
t

:

d
t

= h

 
1�

✓
1

C(⇢
c

)
� 1

◆�1
"✓

1� Z(l)

4⇡G⇢
c

(2l + 1)

(l + 1)

◆✓
1� d

R

◆�l

� 1

#!

(4.30)

Based on (4.30), Figure 4.9 shows how the implied erosion (negative d
t

)

varies with the estimated admittance given various combinations of shell thick-

ness (d) and elastic thickness (T ). The dashed black line corresponds to

Z(3) = �32mGal/km, the admittance estimate obtained from the Monte

Carlo analysis (i.e., accounting for uncertainties) based on the SOL1a gravity

(Iess et al., 2012) field and the Deg6-exp topography (Zebker et al., 2012) so-

lution. This is also the admittance assumed in generating Figure 4.7b. The

±11mGal/km uncertainty in that admittance estimate (Figure 4.4) translates

to ±81m uncertainty in the erosion estimate when T = d = 200 km. Different

combinations of T and d lead to slightly different uncertainties, but roughly

±30% is typical.

Although, as we will argue in section 4.4.1, the ice shell is not likely to be

entirely elastic, adopting T = d leads to more conservative estimates of the

magnitude of erosion. For example, the magnitude of erosion required to give

rise to Z(3) = �32mGal/km is ⇠ 241m when we assume T = d = 200 km

and ⇠ 577m when we assume T = 100 km, d = 200 km.
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Figure 4.9: Magnitude of implied erosion as a function of admittance given several
combinations of mean shell thickness (d) and elastic thickness (T ). Negative top
loads correspond to surface erosion. The dashed black line indicates the mean admit-
tance estimate obtained from the Monte Carlo analysis based on the SOL1a gravity
(Iess et al., 2012) and the Deg6-exp topography (Zebker et al., 2012) (�32mGal/km).

4.4 Discussion

4.4.1 Ice Shell Structure and Rigidity

Throughout our analysis, we assume the ice shell to be in an equilibrium state

where the various forces (flexure within the elastic part of the shell, weight of

the overlying topography, and buoyancy of the root) are in balance. This is

reasonable because the vertical response time of the shell should be fast com-

pared with the loading timescale. The survival of large-impact basin rims and

other topographic features (Neish et al., 2013; Moore et al., 2013, 2014) rules

out erosion amplitudes greater than ⇠ 1 km, implying a shell elastic thickness

greater than 40 km (Figure 4.7). This high rigidity could be the result of a

cold (ammonia-rich) subsurface ocean (Moore and Pappalardo, 2011; Grasset
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et al., 2000) (section 4.4.1.1), a clathrate-rich shell (Tobie et al., 2006) or low

heat flux from the interior (section 4.4.1.2). The addition of a rigid shell would

slightly reduce the k2 tidal Love number, but not enough to conflict with the

measured value (Iess et al., 2012) (section 4.4.1.5). The implied elastic thick-

ness rules out a vigorously convecting shell, limits the potential for widespread

cryovolcanism (Moore and Pappalardo, 2011; Lopes et al., 2007), and permits

the survival of lateral shell thickness variations (section 4.4.1.4). To generate

the observed topography, our model requires shell thickness variations at de-

gree 3; possible sources include tidal heating in a laterally heterogeneous shell

(Běhounková et al., 2012), and redistribution of material via non-Newtonian

lateral flow (Nimmo, 2004) (section 4.4.1.3). A rigid conductive shell is also

only weakly dissipative, potentially helping to explain Titan’s high present-day

orbital eccentricity (Tobie et al., 2006; Nimmo and Bills , 2010).

4.4.1.1 Temperature Profile

Roughly speaking, ice will undergo a transition from elastic to viscous behavior

at temperatures in the range 160� 180K, depending on the exact strain rate

and grain size assumed (Nimmo et al., 2002). For a conductive ice shell with

basal temperature T
b

= 270K, the elastic thickness (T ) will then be 38-50%

of the total shell thickness (d), while if T
b

= 210K, then T will be 58-75% of

d. While the transition from elastic to viscous behavior will occur over some

finite region, that region will be thin because of the very strong variation in

viscosity with depth. Hence, a two-layer model is a good approximation.

In order to obtain conservative estimates for the elastic thickness and sur-

face erosion, we assumed T = d in parts of our analysis (e.g., Figure 4.7a).

Such a scenario would require that T
b

⇡ 180K, which may not be likely, but

113



is at least possible in the limit of an ammonia-water eutectic ocean, for which

the freezing point is ⇠ 176K.

4.4.1.2 Heat Flux

Assuming a heat flux of F ⇡ 4mW/m2 through Titan’s (conductive) ice shell

(Nimmo and Bills , 2010), and allowing thermal conductivity to vary with

temperature (Klinger , 1980), we can estimate the shell’s elastic thickness (T )

according to

T ⇡ 567

F
ln

✓
T
z

T
s

◆
(4.31)

where T
s

is the surface temperature and T
z

is the temperature at which the

shell transitions from elastic to viscous behavior. The resulting estimated

elastic thickness is T ⇡ 82� 98 km. Despite the highly approximate nature of

this analysis, it yields an elastic thickness that is consistent with our estimates

(Figure 4.7b). Larger elastic thicknesses are possible, but would correspond

to a lower heat flux.

4.4.1.3 Origin of Long-Wavelength Topography

Like any tidally locked satellite, Titan’s shape is primarily determined by

tidal and rotational distortion. Centrifugal forces from the rotation lead to

an equatorial bulge (flattening at the poles) and the permanent tide leads to

elongation along the Titan-Saturn axis. The degree-2 and degree-4 topography

will also be affected by variations in ice shell thickness that arise due to tidal

heating (Nimmo and Bills , 2010). As discussed below (section 4.4.1.4), non-

Newtonian flow within the lower part of the ice shell could cause degree-3

shell thickness variations to develop from a pattern that is initially confined to
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degrees 2 and 4. This may, in part, explain the source of the observed degree-3

topography. Since ongoing tidal heating will support the maintenance of shell

thickness variations at degrees 2 and 4, those variations could persist even as

lower crustal flow continues to generate shell thickness variations at degree 3.

Heterogeneities in the ice shell could also contribute to a departure from the

purely degree-2 and -4 pattern predicted from tidal heating and could thus be

responsible for part of the shell thickness variations, and therefore topography,

at degree 3.

4.4.1.4 Lateral Flow in the Ice Shell

Shell thickness variations lead to flow in the lowermost, low-viscosity part of

the shell, which will tend to smooth out any such variations. For a Newtonian

fluid, the timescale (⌧) for removal of variations is given by (Nimmo, 2004)

⌧ =
⌘
b

g�⇢�3k2
(4.32)

where ⌘
b

is the viscosity at the base of the shell, g is the acceleration due to

gravity, �⇢ is the density contrast between the shell and the fluid underneath, �

is the effective channel thickness in which flow occurs, and k is the wavenumber

(k = l/R, where l is spherical harmonic degree and R is the planetary radius).

Assuming a linear temperature gradient and a thermal conductivity (Klinger ,

1980) which goes as c/T , where c = 567W/m, the effective channel thickness

(�) is given by (Nimmo, 2004)

� =
R

g

T
b

d

Q ln (T
b

/T
s

)
(4.33)

where R
g

is the gas constant, d is the shell thickness, Q is the activation energy
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and T
b

and T
s

are the basal and surface temperatures, respectively. Finally,

the viscosity ⌘
b

is given by

⌘
b

= ⌘
ref

exp


Q

R
g

✓
1

T
b

� 1

T
ref

◆�
(4.34)

where the viscosity of ice is ⌘
ref

at a reference temperature T
ref

.

Table 4.3 gives ⌧ as a function of T
b

for spherical harmonic degree 3. Here,

we have assumed ⌘
ref

= 1014 Pa s at T
ref

= 273K, Q = 60 kJ/mol, T
s

= 90K,

d = 100 km, g = 1.35m/s2, �⇢ = 80 kg/m3 and R = 2575 km. For the

range of T
b

values explored, � = 3.4 km. Rheological parameters (Goldsby and

Kohlstedt , 2001) are subject to some uncertainty; nonetheless, the results of

Table 4.3 serve to illustrate the main conclusion, which is that flow is slow if

the ocean is sufficiently cold (T
b

. 220K). A temperature of 220K corresponds

to 25 wt% ammonia in a simple NH3 � H2O system (Kargel , 1998).

Table 4.3: Viscosity and timescale for removal of degree-3 ice shell thickness varia-
tions as a function of temperature.

T
b

(K) ⌘
b

(Pa s) ⌧ (Myr)
273 1.0⇥ 1014 0.55
250 1.1⇥ 1015 6.34
230 1.4⇥ 1016 77.6
210 2.8⇥ 1017 1491

In practice, the rheology of ice may be non-Newtonian, in which case our

flow timescales will be underestimates (Nimmo, 2004), permitting larger values

of T
b

. An important consequence of non-Newtonian flow is that mode-coupling

occurs: an initially degree-2 or degree-4 pattern (e.g., due to tidal heating) will

develop a degree-3 component as flow proceeds, thus potentially explaining the

observed degree-3 signal (see 4.4.1.3).
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Finally, we note that if tidal heating is indeed occurring, a balance may

develop wherein shell thickness variations are being generated by tidal heating

just as quickly as lateral flow is removing those variations. Such an equilibrium

situation could be stable even if the relaxation timescales are relatively short,

again permitting higher values of T
b

.

4.4.1.5 Effect on Tidal k2

The tidal Love number, k2, of Titan has been measured (Iess et al., 2012),

with a 2-� lower bound on k2 of 0.413-0.439. It is therefore important to check

that the kind of rigid elastic lid that we are proposing does not contradict

the observations. To do so, we constructed a highly simplified model for the

interior of Titan (Table 4.4).

Table 4.4: Simple model of Titan’s interior, used to determine the effect of a rigid
shell on the tidal Love number, k2.

Layer Outer
Radius
(km)

Rigidity
(GPa)

Viscosity
(Pa s)

Density
(kg/m3)

Solid Core 2110 3 1021 2600
High-Pressure Ice 2275 3 1021 1000

Ocean 2575� d 0 0 1000
Rigid Outer Shell 2575 3 1021 920

This model is not meant to be realistic, but suffices to demonstrate our

results. The density structure approximately satisfies the nominal moment

of inertia constraint, while the low rigidity in the inner layers is designed

to reproduce the observed k2. We followed Moore and Schubert (2003) in

calculating the model k2 values. For rigid shell thicknesses of d =5, 100 and

200 km we obtained k2 values of 0.568, 0.519 and 0.413, respectively. Hence,

adding a rigid shell of thickness 100 km or 200 km reduces k2 by 9% or 27%,
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respectively—not enough to contradict the observed k2 values (Iess et al.,

2012).

4.4.2 Erosion and Deposition

Our lower bound on the extent of erosion and deposition (200 m) over global

length scales is compatible with estimated local amounts based on impact

crater degradation (Neish et al., 2013; Moore et al., 2013, 2014), but somewhat

larger than estimates from fluvial incision (Black et al., 2012). The implied

vertical erosion/deposition rate is of the order of a meter per million years,

comparable to the lower end of aeolian deposition rates measured on Earth

(Patterson et al., 1999); erosion may be occurring by physical comminution,

dissolution or sublimation. Because Titan’s topography is high at the equator,

we predict maximum erosion occurring at the equator and sediment transport,

via fluvial or aeolian processes, predominantly towards the poles. An alterna-

tive possibility is transport in the vapor phase, if the mobile material has a

sublimation temperature close to that of the surface temperature.

4.4.3 Degree-2 Admittance and Fluid Love Number

Degree-2 admittance analysis of Titan’s ice shell is complicated by the fact

that the body is tidally and rotationally distorted. Tidal/rotational distortion

dominates the degree-2 gravity signal and also makes a large contribution to

the degree-2 topography. If we assume that basal freezing, uplift and erosion

processes act similarly at degrees 2 and 3, then ice shell thickness variations

should be responsible for a portion of the observed degree-2 gravity and to-

pography signals.
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Separating the degree-2 gravity and topography signals into their hydro-

static (i.e., tidal/rotational) and non-hydrostatic (i.e., due to ice shell thickness

variations) parts is necessarily an iterative process. We begin by estimating

Titan’s fluid Love number, h2f , from the observed degree-2 gravity signal (J2)

according to

h2f = 1 +
6

5

g

R!2
J2 (4.35)

where R is Titan’s mean radius, g is the mean surface gravity, and ! is the

angular frequency of rotation. Based on the observed gravity field (Iess et al.,

2012), we obtain h2f ⇡ 2.0 (moment of inertia factor ⇠ 0.34). This allows us

to predict the expected hydrostatic topography, h
T

according to

h
T

= h2f
R2!2

g


1

2

�
3 cos2 �+ 1

� �
1� cos2 ✓

�
� 5

6

�
(4.36)

which we then subtract from the observed topography to get the non-hydrostatic

topography, h
shell

(i.e., that which is due to variations in ice shell thickness).

We then multiply h
shell

by equation (4.24) to estimate the gravity signal due to

an ice shell with anomalously deep roots (the large root size will be forced im-

plicitly by our choices of C and d
t

, both of which will be a function of mean shell

thickness, d and elastic thickness, T ). Having obtained this gravity anomaly

due to ice shell thickness variations (�g
shell

), we conclude that the portion of

the gravity signal that is due to tidal distortion is �g
tidal

= �g
total

��g
shell

. Fi-

nally, we use the newly obtained tidal gravity field to get an updated estimate

for h2f , again using (4.35). After 3-4 iterations, our estimate for h2f con-

verges to the fourth decimal place, allowing us to separate, in a self-consistent

way, the tidal/rotational and ice shell thickness contributions to the degree-2
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gravity signal. The final estimate for h2f depends on the assumed mean shell

thickness (d) and elastic thickness (T ), as illustrated in Figure 4.10. If we

assume that T = 100 km and d = 200 km, then we obtain h2f t 2.15 (moment

of inertia factor ⇠ 0.36).
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Figure 4.10: Estimate for Titan’s fluid Love number, h2f , as a function of mean shell
thickness (d) and elastic thickness (T ).

Using this fluid Love number, we can estimate the non-hydrostatic portions

of the degree-2 topography and gravity signals. Figure 4.11 shows how the

observed degree-2 gravity field (a) compares with the predicted field (b), where

the predicted field is the sum of the estimated hydrostatic gravity (c), based

on h2f = 2.15, and the gravity anomaly expected from the estimated ice shell

thickness variations (d), assuming an erosion amplitude of 577m (obtained

from Figure 4.7b assuming T = 100 km and d = 200 km). The amplitude of the

estimated non-hydrostatic gravity is ⇠ 2mGal while the estimated hydrostatic

gravity amplitude is ⇠ 21mGal. This is one measure of Titan’s departure from

hydrostatic equilibrium.
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(a)

(b)

(c)

(d)

Figure 4.11: Degree-2 gravity maps centered on the sub-Saturnian point (180° lon-
gitude): (a) SOL1a gravity (Iess et al., 2012); (b) total predicted gravity signal; (c)
gravity signal caused by tidal/rotational distortion assuming h2f = 2.15; (d) gravity
signal caused by ice shell thickness variations assuming T = 100 km and d = 200 km,
and therefore 577m of erosion.
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4.4.4 Degree-4 Predictions

Assuming once again that the observed topography is the result of uplift due

to basal freezing and that the surface has experienced a similar magnitude of

erosion at degrees 3 and 4, we can predict the admittance at degree 4. We

first obtain the magnitude of degree-3 erosion (d
t

) over a range of values for T

and d from Figure 4.7b. Using this same value of d
t

for the degree-4 erosion

amplitude, we then use equation (4.24) to estimate the admittance over the

same range of values for T and d. Figure 4.12 illustrates that the degree-4

admittance should be negative if the elastic thickness, T , accounts for most of

the total shell thickness, d.

If, for example, T = d = 200 km, and we assume the same magnitude of

erosion at degrees 3 and 4 (in this case, 241m), then based on the observed

topography (Zebker et al., 2012) (Figure 4.13a), we obtain a degree-4 ad-

mittance of �5.1mGal/km and we can compute the implied degree-4 gravity

anomaly everywhere over the surface (Figure 4.13b). Although the ampli-

tudes are similar, our result is spatially unlike the reported degree-4 gravity

field (Iess et al., 2012) (Figure 4.13c). However, as noted in section 4.2.1, the

degree-4 gravity field is not currently regarded as reliable; future gravity flybys

are expected to improve the determination of the degree-4 field by a factor of

two, providing a better test of our prediction. Note that if we assume instead

that T = 100 km and d = 200 km (the corresponding erosion amplitude be-

ing 577m), the greater compensation leads to a muted gravity signal and an

admittance that approaches zero. Hence a weak degree-4 gravity signal, or a

degree-4 admittance that is positive or only weakly negative, may be an in-

dication that the elastic layer accounts for a smaller portion of the total shell
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thickness (Figure 4.12).
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Figure 4.12: Degree-4 admittance predicted for a range of elastic thicknesses (T )
and total shell thicknesses (d).

4.5 Conclusions

Titan’s degree-3 gravity and topography exhibit a strong inverse correlation

and, consequently, the degree-3 admittance is substantially negative, even

when model uncertainties are taken into account. Although negative admit-

tances are not common, our model predicts negative admittances at degree 3

under a particular set of conditions: when the ice shell is substantially rigid

(with an elastic thickness greater than ⇠ 40 km), when it has been loaded

primarily from below (e.g., due to basal freezing), and when some few hun-

dred meters of erosion has taken place at topographic highs. The conclusion

that the ice shell is rigid rules out vigorous convection and limits the potential

for widespread cryovolcanism. The substantial erosion required by our model

suggests a tendency for sediment to be transported from the high-standing
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(a)

(b)

(c)

Figure 4.13: Degree-4 topography and gravity maps centered on the sub-Saturnian
point (180° longitude): (a) Topography (Zebker et al., 2012); (b) Predicted gravity
signal caused by ice shell thickness variations assuming T = d = 200 km and therefore
241m of erosion; (c) SOL1b gravity (Iess et al., 2012) (not currently considered
reliable at degree 4).
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topography near the equator to the lower elevations found toward the poles.

If similar erosion and deposition processes are taking place at degree 2,

then the present-day degree-2 topography is smaller than what should be ex-

pected from tidal and rotational distortion alone. This would imply that the

observed degree-2 gravity signal is an underestimate of the hydrostatic gravity

and that, consequently, Titan’s fluid Love number has been underestimated.

This would indicate that Titan has a higher moment of inertia (and is thus

even less centrally condensed) than previously thought, reinforcing the need

to understand how so large a body could have accreted without undergoing

more complete differentiation. Our analysis suggests that, if the elastic thick-

ness exceeds half the total shell thickness, the degree-4 admittance will also be

negative. Future Cassini gravity fly-bys will improve the determination of the

degree-4 gravity field by a factor of two and will therefore provide a partial

test of this prediction. If a non-negative degree-4 admittance is observed, that

may be an indication that a smaller portion (less than half) of the ice shell is

elastic.
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Chapter 5

Internal Structure of Enceladus

This chapter details analysis I carried out, along with Francis Nimmo, in

support of Iess, L. et al. (2014), The Gravity Field and Interior Structure of

Enceladus, Science, 344 (6179), 78–80, doi:10.1126/science.1250551.

Abstract

With water-rich jets actively erupting from its South Polar Terrain (Spitale

and Porco, 2007), Saturn’s tiny moon Enceladus is one of the most compelling

exploration targets in the solar system. A subsurface liquid sea or ocean is of-

ten presumed to be the source of the jets. However, without better knowledge

of Enceladus’ gravity field, it has been difficult to constrain interior struc-

ture models sufficiently to confirm the presence of an internal ocean. Here we

combine the newly determined gravity field (Iess et al., 2014), obtained from

Doppler tracking of the Cassini spacecraft, with a shape model determined

from limb profile analyses (Nimmo et al., 2011), to constrain the interior struc-

ture of Enceladus, confirming that a subsurface ocean is likely. We employ an
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admittance analysis that self-consistently separates the hydrostatic and non-

hydrostatic components of the gravity and topography signals in a way that

allows us to determine both the moment of inertia for Enceladus and the depth

at which the topography may be compensated isostatically. The observations

are most easily accommodated by a differentiated Enceladus, with moment of

inertia ⇠ 0.335MR2, surrounded by an H
2

O mantle consisting of an outer ice

shell, 20�40 km thick, and a subsurface liquid ocean with an average thickness

> 15 km.

5.1 Introduction

Enceladus, embedded in Saturn’s E-ring, is a small (⇠ 250 km radius), but

distinctly geologically active world (Porco et al., 2006). In particular, its South

Polar Terrain (SPT) is cross-cut by four major fissures, known as the “Tiger

Stripes”, along which more than 100 distinct geysers have been identified.

The geysers spray water, rich in salts and organic compounds, out from the

small moon, resulting in a bright, “snow” covered surface, and a persistent

vapor plume that extends outward some 500 km (Porco et al., 2006; Spitale

and Porco, 2007). Shear heating (Nimmo et al., 2007) has been proposed as

a mechanism for the vapor production and a subsurface liquid sea or ocean,

although not directly observed, is considered to be likely (Spencer and Nimmo,

2013).

Reliable internal structure models have not previously been available to

help confirm or refute the existence of a subsurface ocean. Although good

shape models have been available for some time (Nimmo et al., 2011), deter-

mination of the gravity field, which requires dedicated flybys and modeling
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of unknown non-gravitational disturbances (e.g., from plume drag), has only

recently been completed (Iess et al., 2014). Below, we combine the shape mod-

els with the newly determined gravity field in order to construct an interior

structure model for Enceladus.

In Chapter 4, we used the spectral admittance, Z (l), to quantify the rela-

tionship between Titan’s gravity and topography, and used the result to draw

conclusions about the thickness and elastic behavior of the ice shell. Our anal-

ysis was focused mainly on the degree-3 admittance since analysis of degree-2

admittance is complicated by the effects of tidal and rotational distortion. In

the case of Enceladus, the gravity data are even more limited: the degree-

2 gravity field is well constrained, but determination of the degree-3 field is

limited to the zonal term (C30) alone. Here, we instead take on the task of de-

composing the degree-2 gravity and topography signals into their hydrostatic

and non-hydrostatic components. The hydrostatic components of the degree-2

signal are controlled by tidal and rotational distortion. The remainder of the

degree-2 gravity and topography signals are due to additional mass and shape

anomalies that may arise, for example, from an irregular core shape (Thomas

et al., 2007; McKinnon, 2013), or from lateral variations in the thickness of

the outer ice shell (Nimmo and Bills , 2010).

In section 5.2, we briefly describe the observed gravity and topography

and the degree to which the degree-2 terms deviate from the expectation for

a relaxed, hydrostatic body. In section 5.3, we review the relevant theoretical

tools for modeling the hydrostatic gravity and topography, for computing ad-

mittances under various conditions of isostasy and flexure, and for determining

the moment of inertia. In section 5.4, we discuss the results before concluding

in section 5.5.
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5.2 Observations

5.2.1 Gravity Field

The gravitational field of Enceladus is described by Iess et al. (2014) as non-

normalized, dimensionless potential coefficients Cg

lm

, Sg

lm

such that the gravi-

tational potential at the reference radius (R) can be written

U(✓,�) = �GM

R

1X

l=0

lX

m=0

(Cg

lm

cosm�+ Sg

lm

sinm�)P
lm

(cos ✓)

where P
lm

(cos ✓) are the non-normalized associated Legendre functions (see

Appendix A), ✓ is colatitude, � is longitude and Cg

lm

and Sg

lm

are non-normalized

spherical harmonic coefficients of degree l and order m.

Enceladus’ low-order gravity field was determined (Iess et al., 2014) via ra-

dio tracking of the Cassini spacecraft during three separate flybys in which the

spacecraft passed within 100 km of the moon, twice over the southern hemi-

sphere (E9, E19) and once over the northern hemisphere (E12). Doppler data

from the three flybys were analyzed separately and combined into a multi-arc

solution (Figure 5.1). Constraining the gravity field was especially challeng-

ing in the case of Enceladus due to its small size (⇠ 250 km radius) but also

due to non-gravitational effects including the spacecraft’s interaction with the

vapor plume, which causes appreciable drag in the ⇠ 20 seconds around clos-

est approach during passes over the southern hemisphere. Accounting for this

effect, Iess et al. (2014) were able to constrain the major degree-2 terms (Cg

20

and Cg

22) to 1% uncertainty along with the degree-3 zonal term (Cg

30) to 20%

uncertainty.
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Figure 5.1: Enceladus’ geoid with respect to the reference ellipsoid (see Appendix C).
Also shown are the Cassini ground tracks from the three gravity flybys: E9 (orange),
E12 (blue), and E19 (green).

5.2.2 Topography

Titan’s topography is described by Nimmo et al. (2011) in terms of fully nor-

malized spherical harmonic coefficients C̄h

lm

, S̄h

lm

, such that the topography at

any point on the surface is given by

H(✓,�) =
1X

l=0

lX

m=0

�
C̄h

lm

cosm�+ S̄h

lm

sinm�
�
P̄
lm

(cos ✓)

where P̄
lm

(cos ✓) are the fully normalized associated Legendre functions (see

Appendix A). To facilitate direct comparison with the non-normalized grav-

ity coefficients, we obtain the non-normalized coefficients Ch

lm

, Sh

lm

from the

normalized coefficients with

{C, S}h
lm

=

s

(2� �0m) (2l + 1)
(l �m)!

(l +m)!

�
C̄, S̄

 
h

lm

(5.1)

so that the topography is described by

H(✓,�) =
1X

l=0

lX

m=0

�
Ch

lm

cosm�+ Sh

lm

sinm�
�
P
lm

(cos ✓)

130



Longitude (degrees E)

L
a

tit
u

d
e

 (
d

e
g

re
e

s 
N

)

 

 

0 45 90 135 180 225 270 315 360
−90

−60

−30

0

30

60

90

T
o

p
o

g
ra

p
h

y 
(m

)

−1000

−500

0

500

1000

Figure 5.2: Enceladus’ topography for harmonic degrees 3 through 8.

where, again, P
lm

(cos ✓) are the non-normalized associated Legendre functions.

Enceladus’ topography was determined through analysis of limb-profiles

(Nimmo et al., 2011). 43 separate limb profiles were measured from images of

Enceladus, providing 43 arcs of topographic data, which were then combined to

constrain a global shape model up to spherical harmonic degree 8 (Figure 5.2).

The shape model’s uncertainty is less than 5% for Ch

20, about 2% for Ch

22, and

about 1% for Ch

30.

5.2.3 Deviation from Hydrostatic Equilibrium

For tidally-locked (synchronous) satellites, the degree-2 shape and gravity field

are dominated by rotational flattening and elongation due to the permanent

tide (see Appendix C). If the body is in hydrostatic equilibrium, its shape and

gravity field conform to the expectation for a body whose outer layer is an

inviscid fluid, in which case, only the C20 and C22 terms are significant, and

have the approximate ratio

�C20

C22
=

10

3
⇡ 3.33
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While this approximation is excellent in most cases, it is an overestimate

in the case of very fast-rotating bodies, such as Enceladus (Tricarico, 2014).

For Enceladus, a ratio of ⇠ 3.25 may be more appropriate (Mckinnon, 2015).

We will proceed here assuming the typical hydrostatic ratio of 10/3 but, for an

analysis that builds on ours while taking this effect into account, see Mckinnon

(2015).

For Enceladus, the gravity coefficients have the ratio

�Cg

20

Cg

22

⇡ 3.51±0.06

and the topography coefficients have the ratio

�Ch

20

Ch

22

⇡ 4.20±0.28

Whereas the topography deviates substantially from the hydrostatic ex-

pectation, the gravity field deviates only modestly. This is an indication that

the excess non-hydrostatic topography may be largely compensated by inter-

nal density anomalies, as would be expected for topography that is supported

isostatically. Perhaps the most conspicuous feature of the gravity field is the

negative gravity anomaly over the South Polar Terrain (Figure 5.1). Such a

gravity anomaly is expected given the large topographic depression in that

region (Figure 5.2), but the magnitude of the gravity anomaly in relation to

the magnitude of the topographic depression will be diagnostic of the degree

to which the topography is compensated isostatically.
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5.3 Theory

5.3.1 Separation of Hydrostatic Component

We begin by presuming that the gravity and topography coefficients can be

decomposed into their hydrostatic and non-hydrostatic parts as follows

Cg

lm

= Cg,hyd

lm

+ Cg,nh

lm

(5.2)

Ch

lm

= Ch,hyd

lm

+ Ch,nh

lm

(5.3)

where Cg,hyd

lm

and Ch,hyd

lm

are the hydrostatic components: the parts of the

signals that result from tidal and rotational distortion. The hydrostatic parts

of the gravity and topography signals are a function of the body’s moment of

inertia. If we make an assumption about the moment of inertia factor (↵), we

can obtain the fluid Love number, h2f , via the Radau-Darwin approximation

(Murray and Dermott , 1999)

↵ =
I

MR2
=

2

3

 
1� 2

5

s
5

h2f
� 1

!
(5.4)

The fluid Love number describes the degree to which a body deforms in

response to the tidal and rotational deforming potentials. Given the fluid

Love number and using the present-day rotation rate, we can estimate the

hydrostatic shape and gravity field (Appendix C). In terms of non-normalized

spherical harmonic coefficients, these are

Ch,hyd

20 = �5

6

R2!2

g
h2f (5.5)
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Ch,hyd

22 =
1

4

R2!2

g
h2f (5.6)

The change in shape, and therefore mass distribution, also produces a

corresponding change in the gravitational potential such that

Cg,hyd

20 = �5

6

R!2

g
(h2f � 1) (5.7)

Cg,hyd

22 =
1

4

R!2

g
(h2f � 1) (5.8)

Of course, we don’t yet know the moment of inertia (↵), so any such cal-

culation is only a guess. But if we make the key assumption that the non-

hydrostatic gravity-to-topography ratios should be equal (i.e., that the admit-

tance is isotropic), then the correct moment of inertia is the one that yields

Z20 = Z22

where the component-wise admittance is defined as

Z
lm

=
Cg,nh

lm

Ch,nh

lm

(5.9)

More specifically,

Z20 =
Cg

20 +
5
6
R!

2

g

(h2f � 1)

Ch

20 +
5
6
R

2
!

2

g

h2f

(5.10)

Z22 =
Cg

22 � 1
4
R!

2

g

(h2f � 1)

Ch

22 � 1
4
R

2
!

2

g

h2f

(5.11)

The task now becomes finding a value of h2f for which Z20 = Z22.
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5.3.2 Model Admittance

We already derived the model admittance in Chapter 4 (section 4.3.1). How-

ever, since we are now working with dimensionless gravitational potential co-

efficients rather than acceleration, admittance here has units of m�1, and we

must alter the equations slightly. Specifically, the admittances we use here

will be those of the previous chapter (and Hemingway et al. (2013)) divided

by GM(l+1)
R

2 = G4
3⇡R⇢̄ (l + 1).

Much of our analysis here will make use of the simple case in which we

assume that surface loads are compensated completely, for which the degree-l

admittance is simply (c.f. equation (4.26) and section 5.3.3)

Z (l) =
3⇢

c

(2l + 1)R⇢̄

 
1�

✓
1� d

R

◆
l

!
(5.12)

where R and ⇢̄ are, respectively, the radius and bulk density of Enceladus, ⇢
c

is the density of the surface load, which we take to be the same as the density

of the icy crust, and d is the compensation depth.

In the special case where we assume a surface load that is entirely uncom-

pensated (i.e., supported rigidly, see section 5.3.3), then

Z (l) =
3⇢

c

(2l + 1)R⇢̄
(5.13)

5.3.3 Elastic Flexure

More generally, we may need to account for the effects of elastic flexure (bend-

ing and membrane stresses) in the lithosphere. If the lithosphere is at least

partially elastic and is deflected downward by the addition of a surface load,
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then the degree-l admittance is given by (c.f. equation (4.28))

Z (l) =
3⇢

c

(2l + 1)R⇢̄

 
1� C

t

✓
1� d

R

◆
l

!
(5.14)

where C
t

is the degree of compensation assuming top-loading (where C
t

= 1

means complete isostatic compensation and C
t

= 0 means zero compensa-

tion, or perfectly rigid support). Similarly, if loading occurs purely from the

bottom (i.e., under-plating) then the degree-l admittance is given by (c.f.

equation (4.29))

Z (l) =
3⇢

c

(2l + 1)R⇢̄

 
1� 1

C
b

✓
1� d

R

◆
l

!
(5.15)

where C
b

is the degree of compensation assuming pure bottom-loading. The

compensation terms C
t

and C
b

become important when considering the effects

of elastic flexure (see Chapter 4, section 4.3.1 for the derivations) and are

defined as

C
b

=
1

1 + µ

⇢c

(5.16)

and

C
t

=
1

1 + µ

�⇢

�
1� d

R

��2 (5.17)

where �⇢ = ⇢
m

� ⇢
c

is the density contrast at the water/ice interface (⇢
m

is

the density of the subsurface ocean “mantle”), where µ describes the flexural

rigidity at a particular wavelength and gravity, and is defined in equation (4.21)

as

µ(l) =

✓
1� 3⇢

m

(2l + 1)⇢

◆�1
ET

R2g

0

@
T

2[l3(l+1)3�4l2(l+1)2]
R

212(1�⌫

2) + l(l + 1)� 2

l (l + 1)� (1� ⌫)

1

A (5.18)
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5.3.4 Moment of Inertia

For a simple, spherically symmetric, two-layer body, the moment of inertia is

given by

I =
8

15
⇡
�
⇢

o

R5 + (⇢
i

� ⇢
o

) (R� d)5
�

(5.19)

where the subscripts (i) and (o) refer to the inner and outer layers, respectively,

and where d is the thickness of the mantle so that the core radius is R
core

=

R� d. We will often discuss the normalized moment of inertia (also called the

moment of inertia factor), ↵ = I

MR

2 , which can be written

↵ =
2

5⇢̄

 
⇢

o

+ (⇢
i

� ⇢
o

)

✓
1� d

R

◆5
!

(5.20)

where ⇢̄ is the bulk density of Enceladus.

5.4 Results and Discussion

5.4.1 Admittance and Moment of Inertia

Considering a range of possible moments of inertia, we use equations (5.4),

(5.10), and (5.11) to compute the corresponding Z20 and Z22 admittances and

find that the two independent estimates converge at ⇠ 3.4 ⇥ 10�7 m�1 when

the moment of inertia factor is ⇠ 0.335 (Figure 5.3).

Because we also have the zonal part of the degree-3 gravity field (Cg

30), we

can compute Z30 and use it as an independent check on our admittance esti-

mate (note that the degree-3 terms have no hydrostatic component so Z30 is ob-

tained directly from equation (5.9) and does not depend on moment of inertia).

Because they reflect behavior at different wavelengths, however, the degree-3
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Figure 5.3: Region of 1� agreement (dark blue) and 2� agreement (pale blue) be-
tween the admittances estimated separately from the (2,0) (blue line), (2,2) (red
line), and (3,0) (green line) terms. The (3,0) term has been multiplied by 0.99
to obtain the equivalent degree-2 value (see text, section 5.4.1). The solid line at
⇠ 14 ⇥ 10�7m�1 represents the admittance expected for uncompensated (rigidly
supported) topography. The dashed horizontal lines near 2 and 4⇥ 10�7m�1 repre-
sent the admittances expected for fully compensated topography with compensation
depths (ice shell thicknesses) of 20 and 40 km, respectively.
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Table 5.1: Parameter values assumed for admittance calculations

Parameter Symbol Assumed Value
Poisson’s ratio for ice ⌫ 0.25
Young’s modulus for ice E 9GPa
Crustal (ice shell) density ⇢

c

920 kg/m3

Mantle (subsurface ocean) density ⇢
m

1000 kg/m3

Enceladus’ mean density ⇢ 1609 kg/m3

Enceladus’ radius R 252.1 km
Enceladus’ surface gravity g 0.114m/s2

admittance (Z30) cannot be compared directly with the degree-2 admittances

(Z20 and Z22). The relevant comparison is between the degree-2 estimates (Z20

and Z22) and the degree-3 estimate, scaled by the ratio Z (2) /Z (3), which we

obtain by evaluating equation (5.12) at both l = 2 and l = 3. Doing this cal-

culation requires assuming a compensation model. For simplicity, we assume

complete isostatic compensation (C = 1) and then we solve equation (5.12) for

d. Given that (ignoring uncertainties for the moment) Z30 = 3.003⇥10�7 m�1,

and assuming the parameters given in Table 5.1, we obtain d ⇡ 29 km. The

result is that Z(2)
Z(3) ⇡ 0.99 so that Z30

⇣
Z(2)
Z(3)

⌘
⇡ 2.973 ⇥ 10�7 m�1. This scaled

degree-3 admittance (green line in Figure 5.3) plots very close to the intersec-

tion of the Z20 and Z22 lines (blue and red lines, respectively). This result thus

provides an a posteriori check that the assumption of isotropic admittance is

appropriate. Table 5.2 lists the gravity and topography coefficients separated

into their hydrostatic and non-hydrostatic parts, along with the resulting ad-

mittances.

Taking uncertainties into account, agreement between the three estimates

occurs at the 1� level for normalized moments of inertia (↵ = I

MR

2 ) in the

range 0.333–0.338 and admittances in the range 2.4 � 3.6 ⇥ 10�7 m�1 (Fig-

ure 5.3). Agreement at the 2� level occurs in the range ↵ = 0.330� 0.340 and
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Table 5.2: Gravity and topography coefficients separated into their hydrostatic and
non-hydrostatic components, along with the resulting admittance estimate. A mo-
ment of inertia factor of ↵ = 0.335 is assumed in computing the hydrostatic gravity
and topography.

Coefficient Observed Hydrostatic Non-Hydrostatic Admittance
C

g
20 �5.435⇥ 10�3 �5.000⇥ 10�3 �0.436⇥ 10�3

Z20 = 3.411⇥ 10�7 m�1

C

h
20 �3, 846m �2, 569m �1, 277m

C

g
22 1.550⇥ 10�3 1.500⇥ 10�3 0.050⇥ 10�3

Z22 = 3.421⇥ 10�7 m�1

C

h
22 917m 771m 146m

C

g
30 0.115⇥ 10�3 0.115⇥ 10�3

Z30 = 3.003⇥ 10�7 m�1

C

h
30 384m 384m

Z (2) = 1.8� 4.2⇥ 10�7 m�1. The regions of agreement (blue shaded areas in

Figure 5.3) were obtained by performing a Monte Carlo analysis in which each

admittance value is calculated 100,000 times with the gravity and topography

coefficients being distributed randomly according to their formal uncertainties.

The regions in which there is overlap between the resulting 1� ranges of the

three separate admittance estimates (based on the Z20, Z22, and Z30 estimates)

is considered to be the region of agreement at the 1� level (dark blue shaded

area in Figure 5.3). The same procedure was carried out to determine the

region of agreement at the 2� level (pale blue shaded area in Figure 5.3).

5.4.2 Isostatic Compensation

Admittance is a function of the degree and depth of compensation (e.g., equa-

tion (5.14)), with large admittances indicating little compensation or very

large compensation depths, and small admittances indicating substantial (or

even complete) compensation and/or shallow compensation depths. The ob-

served degree-2 admittance, Z (2) ⇡ 3.4 ⇥ 10�7 m�1, is much smaller than

the admittance given by equation (5.13) for fully uncompensated (that is,

rigidly supported) topography, ⇠ 14 ⇥ 10�7 m�1, suggesting that the topog-
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raphy is highly compensated (Figure 5.3). If the topography is compensated

completely (C = 1), then we can use equation (5.12) to estimate the depth of

compensation. The observed admittance compares well with the expectation

for complete compensation at depths of roughly 20 � 40 km (dashed lines in

Figure 5.3).

5.4.3 Elastic Support

If there is some measure of elastic strength in the lithosphere, then our com-

pensation depth estimates must be altered. If we assume the ice shell has been

loaded from the top, we can use equation (5.14) to see how admittance varies

with compensation depth (d) and the elastic layer thickness (T ). Enceladus is

so small that, even a very thin elastic layer provides significant flexural support

and leads to large admittances (Figure 5.4a). To produce the admittance we

observe, for the case of top loading, the elastic layer must be less than ⇠ 25m

in thickness. If the topography is supported in part by elastic flexure, the

compensation depth must be even shallower than the 20�40 km we estimated

for the fully isostatic case.

Conversely, if the topography arises due to buoyant loads emplaced at the

base of the ice shell (bottom loading), larger elastic thicknesses require deeper

compensation depths in order to be compatible with the observed admittances

(Figure 5.4b). This is because bottom loading in the presence of an elastic

lithosphere leads to reduced buoyant uplift, leaving the low-density isostatic

roots to influence the gravity signal, reducing the admittance. If the ice shell

has appreciable elastic strength, and was loaded primarily from below, the

compensation depth must be greater than the 20 � 40 km we estimated for
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the fully isostatic case. Not all points in Figure 5.4b are possible, however,

because the maximum mantle thickness corresponding to the low end of the

admittance range is less than about 60 km (see Figure 5.5a). Consequently,

we can rule out elastic thicknesses larger than ⇠ 300m.

5.4.4 Internal Structure

The moment of inertia implied by the convergence illustrated in Figure 5.3,

⇠ 0.335MR2, indicates a substantial degree of differentiation. We approximate

Enceladus as a simple two-layer body: a silicate core surrounded by an H
2

O

mantle, with density somewhere between that of ice and liquid water. Given

the observed bulk density constraint, ⇢̄ = 1609 kg/m3, we use equation (5.20)

to obtain a mantle thickness of roughly 50 � 65 km (Figure 5.5a) and a core

density around 2250 � 2500 kg/m3 (Figure 5.5b). The low core density is an

indication that the (presumably silicate) core may be substantially hydrated.

5.5 Conclusions

In spite of the limited nature of the gravity observations, we have been able to

draw some useful conclusions. The combination of the large non-hydrostatic

topography and the modest non-hydrostatic gravity suggests substantial com-

pensation, consistent with lateral thickness variations in an ice shell that is

supported isostatically, i.e., “floating” in a subsurface liquid layer. We obtain

a self-consistent interior structure model, with an average compensation depth

of 20� 40 km, when we assume the moment of inertia is ⇠ 0.335MR2. Given

the known bulk density (1609 kg/m3), our results are consistent with an Ence-

ladus consisting of a hydrated silicate core of radius 185� 200 km and density
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Figure 5.4: Admittance as a function of compensation depth (d) and elastic layer
thickness (T ) assuming the topography arises from: (a) surfaces loads that deflect
the lithosphere downward; or (b) under-plating of the ice shell that deflects the
lithosphere upward. The dark blue bands correspond to the admittance estimates
within the 1� region of agreement while the pale blue bands correspond to the 2�
region. Because compensation takes place at the base of the ice shell, compensation
depth and shell thickness are equivalent.
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Figure 5.5: Mantle Thickness (a) and Core Density (b) as a function of Moment of
Inertia for two different assumed mantle densities. The dark blue bands illustrate
the moment of inertia factor within the 1� region of agreement while the pale blue
bands correspond to the 2� region (refer to Figure 5.3).
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2250� 2500 kg/m3, a subsurface ocean layer with mean thickness 15� 25 km,

and an outer ice shell 20� 40 km thick.
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Appendix A

Spherical Harmonics

Because several different conventions are in widespread use, I make my usage

and notations explicit here to avoid ambiguity. Much of this Appendix follows

Wieczorek (2007), although my notation differs slightly.

Any square-integrable function defined over the surface of a sphere, may be

represented by a linear combination of spherical harmonic functions as follows

F (✓,�) =
1X

l=0

lX

m=0

(C
lm

cosm�+ S
lm

sinm�)P
lm

(cos ✓) (A.1)

where ✓ is colatitude, � is longitude, P
lm

(cos ✓) are the associated Legendre

functions of degree l and order m, and where C
lm

and S
lm

are the corresponding

expansion coefficients. Equation (A.1) is sometimes written more compactly

as

F (✓,�) =
1X

l=0

lX

m=�l

f
lm

Y
lm

(✓,�) (A.2)

where f
lm

are the expansion coefficients, and where Y
lm

(✓,�) are the real
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spherical harmonic functions, defined by

Y
lm

(✓,�) =

8
>><

>>:

P
lm

(cos ✓) cosm� m � 0

P
lm

(cos ✓) sin |m|� m < 0

(A.3)

I will mainly use the former convention, but the latter will be especially

convenient for the derivations in Appendix C.

To ensure accurate computations, even across a range of spherical harmonic

degrees, it is often necessary to normalize the spherical harmonic functions.

When working with normalized spherical harmonics, I write

F (✓,�) =
1X

l=0

lX

m=0

�
C̄

lm

cosm�+ S̄
lm

sinm�
�
P̄
lm

(cos ✓) (A.4)

where P̄
lm

(cos ✓) are the normalized associated Legendre functions and where

C̄
lm

and S̄
lm

are the corresponding normalized expansion coefficients. The

more compact form is written

F (✓,�) =
1X

l=0

lX

m=�l

f̄
lm

Ȳ
lm

(✓,�) (A.5)

where f̄
lm

are the normalized expansion coefficients, and where Ȳ
lm

(✓,�) are

the normalized real spherical harmonic functions, defined by

Ȳ
lm

(✓,�) =

8
>><

>>:

P̄
lm

(cos ✓) cosm� m � 0

P̄
lm

(cos ✓) sin |m|� m < 0

(A.6)

Several different normalizations are in use, but I will discuss only two here.
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The first is the Schmidt semi-normalization, widely used in geomagnetism

P̄
lm

(µ) =

s

(2� �
m0)

(l �m)!

(l +m)!
P
lm

(µ) (A.7)

where �0m is the Kronecker delta. The second is what I may call the

geodesy 4⇡-normalization, or full normalization, which I use when working

with topography and gravity fields

P̄
lm

(µ) =

s

(2� �
m0) (2l + 1)

(l �m)!

(l +m)!
P
lm

(µ) (A.8)

The unnormalized associated Legendre functions are given by

P
lm

(µ) =
�
1� µ2

�m
2

dm

dµm

P
l

(µ) (A.9)

where P
l

(µ) is the degree-l Legendre polynomial, and is given by

P
l

(µ) =
1

2ll!

dl

dµl

�
µ2 � 1

�
l (A.10)

Note that caution is required when using the Matlab function legendre()

since its conventions differ from the above, and so appropriate corrections

must be made (carefully). For instance, the Matlab definitions also include the

Condon-Shortly phase factor, (�1)m. When requesting normalized associated

Legendre functions from Matlab, this is not an issue because the phase factor

appears both in the definition of P
lm

and in the normalization, such that they

cancel. For the Schmidt normalization, the normalized associated Legendre

functions obtained from Matlab are the same as in equation (A.7), but for the
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geodesy 4⇡ normalization, the Matlab result gives

�
P̄
lm

(µ)
�
Matlab

=

s✓
l +

1

2

◆
(l �m)!

(l +m)!
P
lm

(µ) (A.11)

Hence, we need the following adjustment when using the full (or geodesy

4⇡) normalization

P̄
lm

(µ) =
p
2 (2� �

m0)
�
P̄
lm

(µ)
�
Matlab

(A.12)

When using unnormalized associated Legendre functions from Matlab, the

following correction is required to account for the Condon-Shortly phase factor

P
lm

(µ) = (�1)m (P
lm

(µ))
Matlab

(A.13)

Finally, if the function F (✓,�) is known over ✓ and �, the fully normalized

expansion coefficients can be obtained via

f̄
lm

=
1

4⇡

ˆ
✓

ˆ
�

F (✓,�) Ȳ
lm

(✓,�) sin ✓d✓d� (A.14)
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Appendix B

Magnetic Potential and Source

Models

B.1 Magnetic Scalar Potential and Vector Mag-

netic Fields

Magnetic fields originating within a planetary body, and measured externally,

can be specified by a magnetic scalar potential, V , which satisfies Laplace’s

equation

r2V = 0

and can be represented as a linear combination of spherical harmonic functions

as

V (r, ✓,�) = a

1X

l=0

lX

m=0

⇣a
r

⌘
l+1

(C
lm

cosm�+ S
lm

sinm�)P
lm

(cos ✓)
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where r is the radius at which the potential is to be expressed, ✓ is colatitude,

� is longitude, P
lm

(cos ✓) are the associated Legendre functions of degree l and

order m, C
lm

and S
lm

are the corresponding expansion coefficients representing

the magnetic scalar potential at a reference radius a.

The vector magnetic field (also called magnetic flux density or magnetic

induction, with units of Teslas) outside the reference radius, a, is given by the

negative gradient of the scalar magnetic potential

B = �rV

In spherical coordinates, the magnetic field vector components are therefore

given by

B
r

= �@V
@r

=
1X

l=0

lX

m=0

(l + 1)
⇣a
r

⌘
l+2

(C
lm

cosm�+ S
lm

sinm�)P
lm

(cos ✓)

B
✓

= � @V

r@✓
= �

1X

l=0

lX

m=0

⇣a
r

⌘
l+2

(C
lm

cosm�+ S
lm

sinm�)
@P

lm

(cos ✓)

@✓

B
�

= � @V

r sin ✓@�
=

1

sin ✓

1X

l=0

lX

m=0

m
⇣a
r

⌘
l+2

(C
lm

sinm�� S
lm

cosm�)P
lm

(cos ✓)

Note that these expressions differ slightly from those of Connerney (2007)

due, I believe, to typographical errors in the latter.

B.2 Source Models

Here, we calculate the locations of the maxima and minima in the horizon-

tal magnetic field profiles due to both vertically and horizontally magnetized
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sources, as discussed in Chapter 2. We first consider the single dipole sources

illustrated in Figure 2.1 and then repeat the calculations for the line sources

discussed in section 2.4.

B.2.1 Single Dipole Source

If we take the horizontal and vertical positions in the top panels of Figure 2.1

to be the x and z coordinates, respectively, and if the magnetic dipoles are

each located at the origin with magnetic moment m (with units of Am2), then

the resulting magnetic field, B (with units of Teslas or N
Am), at a position,

r = xˆi+ yˆj+ zk̂, is given by

B =
µ0

4⇡

�
3(m · r)r�mr2

� 1

r5
(B.1)

Equation (B.1) is adapted from Blakely (1995), pp. 75. Here, we employ

SI units with µ0 being the magnetic permeability of free space (which has a

value of 4⇡ ⇥ 10�7 N
A2 ). For points in the x-z plane, the horizontal component

of the magnetic field (B
h

) is identical to the magnitude of the x-component

(B
x

) since, by symmetry, magnetic field lines cannot cross the x-z plane (i.e.,

cannot have a y-component).

Considering the case of the vertically oriented dipole (m =


0 0 m

�
T

),

the horizontal component of the magnetic field becomes

B
h

= |B
x

| = µ0

4⇡

 
3mzx

(x2 + z2)
5
2

!
(B.2)

Equation (B.2) demonstrates that field lines directly over a vertically ori-

ented dipole are vertical at any altitude because B
h

= 0 when x = 0 (this is
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also evident in Figure 2.1a). Differentiating equation (B.2) with respect to x

and setting the result to zero yields the positions of the peaks in the horizontal

field strength profile

x
Bhmax

= ±
1

2
z (B.3)

This means that the separation between peaks (2x) is equal to the altitude

above the source (z), which is evident in Figure 2.1c.

Considering the case of the horizontally oriented dipole (m =


m 0 0

�
T

),

and still being restricted to points in the x-z plane, the vertical (z) component

of the magnetic field becomes

B
v

= |B
z

| = µ0

4⇡

 
3mxz

(x2 + z2)
5
2

!
(B.4)

Equation (B.4) demonstrates that field lines directly over a horizontally

oriented dipole are horizontal at any altitude because Bz = 0 when x = 0

(Figure 2.1b). Again, starting from equation (B.1), and considering only points

in the x-z plane, the horizontal component of the magnetic field due to a

horizontally oriented dipole that is aligned with the x-axis becomes

B
h

= |B
x

| = µ0

4⇡

 
m (2x2 � z2)

(x2 + z2)
5
2

!
(B.5)

Setting equation (B.5) to zero shows that the horizontal field strength drops

to zero when

x
Bh=0 = ±

1p
2
z (B.6)

Hence, the cusps in the horizontal magnetic field profile are laterally dis-

placed from the source by a distance of 1/
p
2 times the altitude above the
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source (this is evident in Figure 2.1d).

B.2.2 Linear Source

Instead of a single dipole, consider a source that is a linear structure such as

a long, thin, uniformly magnetized cylinder. If this linear source is infinitely

long and coincident with the y-axis, and the magnetization per unit length is

m

0, then the magnetic field is given by

B =
µ0

4⇡

�
4(m0 · r)r� 2m0r2

� 1

r4
(B.7)

Equation (B.7) is adapted from Blakely (1995), pp. 96. Again, considering

only points in the x-z plane, the horizontal component of the magnetic field

due to the vertically magnetized line source becomes

B
h

= |B
x

| = µ0

4⇡

✓
4m0zx

(x2 + z2)2

◆
(B.8)

As with the dipole case, field lines directly over a vertically magnetized

line source are vertical at any altitude. Differentiating equation (B.8) with

respect to x and setting the result to zero yields the positions of the peaks in

the horizontal field profile

x
Bhmax

= ±
1p
3
z (B.9)

Considering the case of a horizontally magnetized line source, the vertical

(z) component of the magnetic field becomes

B
v

= |B
z

| = µ0

4⇡

✓
4m0xz

(x2 + z2)2

◆
(B.10)
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Hence, field lines directly over a horizontally magnetized linear source are

horizontal at any altitude. Again, starting from equation (B.7), and consider-

ing only points in the x-z plane, the horizontal component of the magnetic field

due to a linear source coincident with the y-axis and magnetization parallel to

the x-axis becomes

B
h

= |B
x

| = µ0

4⇡

✓
2m0 (x2 � z2)

(x2 + z2)2

◆
(B.11)

Setting equation (B.11) to zero shows that the horizontal field strength

drops to zero when

x
Bh=0 = ±z (B.12)

Hence, the cusps in the horizontal magnetic field profile are laterally dis-

placed from the line source by a distance equal to the altitude above the

source.
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Appendix C

Gravitational Potential and

Figures of Equilibrium

C.1 Gravitational Potential

If U is the work per unit mass done by an object’s gravitational field, then the

acceleration due to gravity is given by

g = �rU (C.1)

where U is the gravitational potential, or Newtonian potential, and is given

by

U (r) = �G

ˆ
V

⇢ (r0)

|r� r

0|dV
0 (C.2)

where the integral is performed over the object’s entire volume V , the density

at position r

0 is ⇢ (r0), and where G is the universal gravitational constant.

Everywhere outside the object, the gravitational potential satisfies Laplace’s
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equation (Kaula, 2000)

r2U(r) = 0 (C.3)

and the potential can be expressed as a linear combination of spherical har-

monic functions as

U(r, ✓,�) = �GM

r

1X

l=0

lX

m=�l

✓
R0

r

◆
l

Cg

lm

Y
lm

(✓,�) (C.4)

where r is the radius at which the potential is to be expressed, ✓ is colatitude,

� is longitude, and Cg

lm

are the degree-l and order-m spherical harmonic ex-

pansion coefficients representing the dimensionless gravitational potential at a

reference radius R0 (see Appendix A).

Following equation (C.1), to get the radial part of the gravitational accel-

eration, we differentiate with respect to r, obtaining

g
r

(r, ✓,�) =
GM

r2

1X

l=0

lX

m=�l

✓
R0

r

◆
l

(l + 1)Cg

lm

Y
lm

(✓,�) (C.5)

where we have followed the usual convention of making gravity positive down-

ward.

C.2 Tidal and Rotational Deforming Potentials

C.2.1 Tidal Deforming Potential

A satellite in synchronous orbit around its parent body will experience per-

manent tidal distortion due to the variation in potential caused by the nearby

tide-raising body. Following from Murray and Dermott (1999), the potential,
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V , at a point, P , is

V = �GM

d

where M is the mass of the tide-raising body and d is the distance between

P and the center of the tide-raising body. If the center-to-center distance

between the two bodies is a, the body’s radius is R, and P makes an angle  

with the centerline between the two bodies, then (by the cosine rule)

d2 = a2 +R2 � 2aR cos 

which can be written as

d = a

 
1 +

✓
R

a

◆2

� 2

✓
R

a

◆
cos 

!1/2

Expanding this, we obtain

V tid = �GM

a

"
1 +

✓
R

a

◆
cos +

✓
R

a

◆2 1

2

�
3 cos2  � 1

�
+ . . .

#
(C.6)

The first term in (C.6) is a constant and therefore does not contribute to

tidal distortion. The second term in (C.6) relates to circular motion of the

satellite around its parent body and therefore does not contribute to tidal

distortion. The tide-raising part of the potential begins with the third term.

Neglecting higher order terms, the tide-raising part of the potential is

V tid = �GMR2

a3
1

2

�
3 cos2  � 1

�
= �GMR2

a3
P2(cos )

If the tide-raising body is much more massive than the synchronous satellite

158



(M � m), and the angular frequency is !, then !2 = GM/a3. Hence

V tid = �!2R2P2(cos )

Assuming the tidal axis is perpendicular to the spin axis and converting to

coordinates of colatitude, ✓, and longitude, �, we have cos = cos� sin ✓, so

that

V tid = �!2R2P2(cos� sin ✓) (C.7)

This can be re-written in terms of the (non-normalized) spherical harmonic

functions, Y20 and Y22. First, we look at P2(cos� sin ✓)

P2 (cos� sin ✓) =
1

2

�
3 cos2 � sin2 ✓ � 1

�

which, after some manipulation, can be written

P2 (cos� sin ✓) =
3

4
cos 2�

�
1� cos2 ✓

�
� 1

4

�
3 cos2 ✓ � 1

�

But because Y20 = P2 (cos ✓) =
1
2 (3 cos

2 ✓ � 1) and Y22 = P22 (cos ✓) cos (2�) =

3 (1� cos2 ✓) cos (2�), we have

P2 (cos� sin ✓) =
1

4
Y22 �

1

2
Y20

Hence

V tid = !2R2


1

2
Y20 �

1

4
Y22

�
(C.8)
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C.2.2 Rotational Deforming Potential

For a body rotating with angular velocity !, the centrifugal acceleration is

a

cf = !2
x, where x = R sin ✓ is a vector pointed outward from, and perpen-

dicular to, the axis of rotation and reaching the surface at colatitude ✓. Since

a

cf = �rV cf, the centrifugal potential is thus

V cf = �1

2
!2R2 sin2 ✓

Because P2 (cos ✓) =
1
2 (3 cos

2 ✓ � 1), we can write this as

V cf =
1

3
!2R2 [P2(cos ✓)� 1] (C.9)

Since the last term in (C.9) is a constant, it does not contribute to rota-

tional distortion. The relevant part of the rotational potential is thus

V rot =
1

3
!2R2P2(cos ✓) (C.10)

This can be re-written simply in terms of Y20 = P2 (cos ✓) as

V rot =
1

3
!2R2Y20 (C.11)

C.2.3 Combined Deforming Potential

A body subjected to both tidal and rotation distortion will experience a total

disturbing potential V tot = V rot + V tid. Combining (C.7) and (C.10), we have

V tot = !2R2


1

3
P2(cos ✓)� P2(cos� sin ✓)

�
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Or, in terms of spherical harmonic functions, we combine (C.8) and (C.11)

to get

V tot = !2R2


1

3
Y20 +

1

2
Y20 �

1

4
Y22

�

where the first term is the result of rotation and the second and third terms

are due to the permanent tide. This simplifies to

V tot = !2R2


5

6
Y20 �

1

4
Y22

�
(C.12)

C.3 Equilibrium Figures and Potentials

A body subjected to a deforming potential, V , will deform to some degree,

depending on the body’s rigidity and internal mass distribution, attributes

reflected in the Love number h. In determining the equilibrium shape of a

relaxed hydrostatic body, we are concerned with the fluid Love number h
f

,

and the deformed shape is given by (Monk and MacDonald , 1960)

Hhyd (✓,�) = R� h
f

g
V (C.13)

The change in shape will result in a further change in the gravitational

potential, k
f

V , which defines the Love number k
f

, so that the non-central

parts of the body’s hydrostatic gravity are given by

Uhyd (✓,�) = k
f

V (C.14)

where, for a fluid body, h
f

= 1 + k
f

.

For a perfectly fluid body, we can relate the fluid Love number, h2f , to

161



the body’s normalized moment of inertia using the Radau-Darwin equation

(Murray and Dermott , 1999), which can be written

I

MR2
=

2

3

 
1� 2

5

s
5

h2f
� 1

!
(C.15)

C.3.1 Rotational Deformation

C.3.1.1 Hydrostatic Shape

A planet with no permanent tidal elongation will have an equilibrium shape

determined by rotational distortion. Here we treat the disturbing potential

as a degree-2 harmonic and so we are concerned with the degree-2 fluid Love

number h2f . Substituting equation (C.11) into equation (C.13), we obtain

Hhyd (✓,�) = R� !2R2

g
h2f


1

3
Y20

�
(C.16)

If the hydrostatic topography is represented in spherical harmonics as

Hhyd(✓,�) =
1X

l=0

lX

m=�l

Ch,hyd

lm

Y
lm

(✓,�)

then the non-zero coefficients for the hydrostatic shape are

Ch,hyd

00 = R (C.17)

Ch,hyd

20 = �1

3

R2!2

g
h2f (C.18)

Note that the ratio between the centrifugal and gravitational accelerations
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at the surface of the body is often written

q =
R!2

g
(C.19)

so we can also write

Ch,hyd

20 = �1

3
Rqh2f

The above hydrostatic shape (predicted based on rotational distortion, ac-

counting for the fluid Love number h2f ) is often defined by the semi-axes of an

ellipsoid (a = b > c). This is done simply by evaluating the above hydrostatic

shape at three locations: at the spin pole, when ✓ = 0 (gives the magnitude

of the c-axis), and at two points on the equator: when ✓ = ⇡

2 , � = ⇡

2 (b-axis),

and when ✓ = ⇡

2 , � = 0 (a-axis). The resulting semi-axes are

a = b = R

✓
1 +

1

6
qh2f

◆

c = R

✓
1� 1

3
qh2f

◆

From which we have
a� c

R
=

1

2
qh2f

C.3.1.2 Hydrostatic Gravity

Substituting equation (C.11) into equation (C.14), we obtain

Uhyd (✓,�) = !2R2k2f


1

3
Y20

�
(C.20)

If the hydrostatic gravitational potential is represented (at the reference
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radius) in spherical harmonics as

Uhyd(✓,�) = �GM

R

1X

l=0

lX

m=�l

Cg,hyd

lm

Y
lm

(✓,�)

where Cg,hyd

lm

are the dimensionless gravitational potential coefficients, then,

noting that the surface gravity is g = GM

R

2 , the only non-zero coefficient for the

hydrostatic gravitational potential is

Cg,hyd

20 = �1

3

!2R

g
k2f (C.21)

Again using q = R!

2

g

, and noting that the negative (2,0) coefficient is also

called J2, so we can write

J2 = �Cg,hyd

20 =
1

3
qk2f

C.3.1.3 Geoid

The geoid is the equipotential surface corresponding to the average potential at

a reference radius: U
ref

= GM/R. The shape of the geoid is a function of the

actual mass distribution within the body (captured in the potential coefficients,

Cg

lm

, and including rotational deformation) plus the effects of rotation on the

equipotential surface.

For a body with no permanent tide, the geoid is given by

Hgeoid (✓,�) = R +R

1X

l=2

lX

m=�l

Cg

lm

Y
lm

� 1

3

R2!2

g
Y20 (C.22)

Hence, the spherical harmonic coefficients for the geoid are equal to the

164



potential coefficients multiplied by R, with the exception of the (0,0) and

(2,0) coefficients, which are

Ch,geoid

00 = R

Ch,geoid

20 = R

✓
Cg

20 �
1

3

R!2

g

◆

C.3.1.4 Reference Ellipsoid

The C20 term, which arises primarily from rotational distortion, typically dom-

inates the geoid. To highlight those parts of the geoid that are caused by

mass anomalies rather than rotational distortion, the geoid is sometimes shown

with respect to a reference ellipsoid. In general, an ellipsoid is triaxial with

semi-axes a > b > c, but for a body subjected only to rotational distortion,

a = b > c (see section C.3.2.4 for the reference ellipsoid corresponding to

a synchronous satellite, which experiences both rotational and tidal distor-

tion). The reference ellipsoid is sometimes expressed as a degree-2 shape that

matches the geoid in its C20 term alone. That is

Href (✓,�) = R

✓
1 +

✓
Cg

20 �
1

3

!2R

g

◆
Y20

◆
(C.23)

which is evaluated at three locations to get the semi-axes of the “equivalent”

ellipsoid

a = Href

⇣⇡
2
, 0
⌘
= R

✓
1� 1

2
Cg

20 +
1

6

!2R

g

◆

b = Href

⇣⇡
2
,
⇡

2

⌘
= R

✓
1� 1

2
Cg

20 +
1

6

!2R

g

◆

c = Href (0, 0) = R

✓
1 + Cg

20 �
1

3

!2R

g

◆
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The ellipsoid’s surface is given by

Href (✓,�) =
abcq

(bc sin ✓ cos�)2 + (ca sin ✓ sin�)2 + (ab cos ✓)2
(C.24)

Strictly speaking, an ellipsoid has power at all even harmonics, meaning

that the reference ellipsoid given by equation (C.24) is not identical to the

purely degree-2 shape described by equation (C.23), except at the pole and at

the equator. Because we are usually working with spherical harmonics, equa-

tion (C.23) is easier to use and so the geoid with respect to the “reference ellip-

soid” is often obtained by subtracting equation (C.23) from equation (C.22).

That is

Hgeoid-ref (✓,�) = R
1X

l=2

lX

m=�l

Cg

lm

Y
lm

�RCg

20Y20 (C.25)

Hence, the spherical harmonic coefficients for the geoid with respect to

the “reference ellipsoid” are equal to the dimensionless gravitational potential

coefficients multiplied by R, with the exception of the (2,0) coefficient, which

is zero.

C.3.2 Tidal/Rotational Deformation

C.3.2.1 Hydrostatic Shape

A synchronous, or tidally-locked, satellite will have an equilibrium shape de-

termined by both tidal and rotational distortion. Since we are considering only

a degree-2 disturbing potential, we are concerned with the degree-2 fluid Love

number h2f . Substituting equation (C.12) into equation (C.13), we obtain

Hhyd (✓,�) = R +
!2R2

g
h2f


1

4
Y22 �

5

6
Y20

�
(C.26)
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If the hydrostatic topography is represented in spherical harmonics as

Hhyd(✓,�) =
1X

l=0

lX

m=�l

Ch,hyd

lm

Y
lm

(✓,�)

then the non-zero coefficients for the hydrostatic shape are

Ch,hyd

00 = R (C.27)

Ch,hyd

20 = �5

6

R2!2

g
h2f (C.28)

Ch,hyd

22 =
1

4

R2!2

g
h2f (C.29)

The ratio between the degree-2 coefficients is thus

Ch,hyd

20

Ch,hyd

22

= �10

3

Note also that, because Y20 = P2 (cos ✓) = 1
2 (3 cos

2 ✓ � 1) and Y22 =

P22 (cos ✓) cos (2�) = 3 (1� cos2 ✓) cos (2�), and using q = R!

2

g

, equation (C.26)

is sometimes written

Hhyd (✓,�) = R +Rqh2f


1

2

�
3 cos2 �+ 1

� �
1� cos2 ✓

�
� 5

6

�

The above hydrostatic shape (predicted based on tidal and rotational dis-

tortion, accounting for the fluid Love number h2f ) is often defined by the

semi-axes of a triaxial ellipsoid (a, b, c). This is done simply by evaluating the

above hydrostatic shape at three locations: at the spin pole, when ✓ = 0 (gives

the magnitude of the c-axis), and at two points on the equator: when ✓ = ⇡

2 ,
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� = ⇡

2 (b-axis), and when ✓ = ⇡

2 , � = 0 (a-axis). The resulting semi-axes are

a = R

✓
1 +

7

6
qh2f

◆

b = R

✓
1� 1

3
qh2f

◆

c = R

✓
1� 5

6
qh2f

◆

From which we have
a� c

R
= 2qh2f

and
a� c

b� c
= 4

C.3.2.2 Hydrostatic Gravity

Substituting equation (C.12) into equation (C.14), we obtain

Uhyd (✓,�) = !2R2k2f


5

6
Y20 �

1

4
Y22

�
(C.30)

If the hydrostatic gravitational potential is represented (at the reference

radius) in spherical harmonics as

Uhyd(✓,�) = �GM

R

1X

l=0

lX

m=�l

Cg,hyd

lm

Y
lm

(✓,�)

where Cg,hyd

lm

are the dimensionless gravitational potential coefficients, then,

noting that the surface gravity is g = GM

R

2 , the non-zero coefficients for the
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hydrostatic gravitational potential are

Cg,hyd

20 = �5

6

!2R

g
k2f (C.31)

Cg,hyd

22 =
1

4

!2R

g
k2f (C.32)

Note that, using the shorthand q = R!

2

g

, we can also write

J2 = �Cg,hyd

20 =
5

6
qk2f

The ratio between the degree-2 coefficients is

Cg,hyd

20

Cg,hyd

22

= �10

3

C.3.2.3 Geoid

The geoid is the equipotential surface corresponding to the average potential

at a reference radius: U
ref

= GM/R. The shape of the geoid is a function

of the actual mass distribution within the body (captured in the potential

coefficients, and including tidal and rotational deformation) plus the effects of

tides and rotation on the equipotential surface.

The synchronous satellite geoid is given by

Hgeoid (✓,�) = R +R
1X

l=2

lX

m=�l

Cg

lm

Y
lm

� 5

6

R2!2

g
Y20 +

1

4

R2!2

g
Y22 (C.33)

Hence, the spherical harmonic coefficients for the geoid are equal to the

dimensionless gravitational potential coefficients multiplied by R, with the
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exception of the (0,0), (2,0) and (2,2) coefficients, which are

Ch,geoid

00 = R

Ch,geoid

20 = R

✓
Cg

20 �
5

6

R!2

g

◆

Ch,geoid

22 = R

✓
Cg

22 +
1

4

R!2

g

◆

C.3.2.4 Reference Ellipsoid

The C20 and C22 terms, which arise primarily from tidal and rotational dis-

tortion, typically dominate the geoid. To highlight those parts of the geoid

that are caused by mass anomalies rather than tidal/rotational distortion, the

geoid is sometimes shown with respect to a reference ellipsoid. The reference

ellipsoid is a triaxial ellipsoid with semi-axes a > b > c. It is sometimes ex-

pressed as a degree-2 shape that matches the geoid in its C20 and C22 terms

only. That is

Href (✓,�) = R

✓
1 +

✓
Cg

20 �
5

6

!2R

g

◆
Y20 +

✓
Cg

22 +
1

4

!2R

g

◆
Y22

◆
(C.34)

which is evaluated at three locations to get the semi-axes of the “equivalent”

ellipsoid

a = Href

⇣⇡
2
, 0
⌘
= R

✓
1� 1

2
Cg

20 + 3Cg

22 +
7

6

!2R

g

◆

b = Href

⇣⇡
2
,
⇡

2

⌘
= R

✓
1� 1

2
Cg

20 � 3Cg

22 �
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The ellipsoid’s surface is given by

Href (✓,�) =
abcq

(bc sin ✓ cos�)2 + (ca sin ✓ sin�)2 + (ab cos ✓)2
(C.35)

Strictly speaking, an ellipsoid has power at all even harmonics, meaning

that the reference ellipsoid given by equation (C.35) is not identical to the

purely degree-2 shape described by equation (C.34), except along the three

Cartesian axes (where a, b, c are defined). Because we are usually working

with spherical harmonics, equation (C.34) is easier to use and so the geoid

with respect to the “reference ellipsoid” is often obtained by subtracting equa-

tion (C.34) from equation (C.33). That is

Hgeoid-ref (✓,�) = R
1X

l=2

lX

m=�l

Cg

lm

Y
lm

�RCg

20Y20 �RCg

22Y22 (C.36)

Hence, the spherical harmonic coefficients for the geoid with respect to the

“reference ellipsoid” are equal to the dimensionless gravitational potential co-

efficients multiplied by R, with the exception of the (2,0) and (2,2) coefficients,

which are zero.
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