Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Layer number identification of CVD-grown multilayer graphene using Si peak analysis.

Abstract

Since the successful exfoliation of graphene, various methodologies have been developed to identify the number of layers of exfoliated graphene. The optical contrast, Raman G-peak intensity, and 2D-peak line-shape are currently widely used as the first level of inspection for graphene samples. Although the combination analysis of G- and 2D-peaks is powerful for exfoliated graphene samples, its use is limited in chemical vapor deposition (CVD)-grown graphene because CVD-grown graphene consists of various domains with randomly rotated crystallographic axes between layers, which makes the G- and 2D-peaks analysis difficult for use in number identification. We report herein that the Raman Si-peak intensity can be a universal measure for the number identification of multilayered graphene. We synthesized a few-layered graphene via the CVD method and performed Raman spectroscopy. Moreover, we measured the Si-peak intensities from various individual graphene domains and correlated them with the corresponding layer numbers. We then compared the normalized Si-peak intensity of the CVD-grown multilayer graphene with the exfoliated multilayer graphene as a reference and successfully identified the layer number of the CVD-grown graphene. We believe that this Si-peak analysis can be further applied to various 2-dimensional (2D) materials prepared by both exfoliation and chemical growth.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View