- Main
Morphological work function dependence of rare-earth disilicide metal nanostructures
Abstract
The work functions of various DySi(2-x) nanostructures epitaxially grown on a Si(001) surface were correlated with the structure using high-resolution Kelvin probe force microscopy and scanning tunneling microscopy in ultrahigh vacuum. Dy adatoms induce a surface dipole on Si(001) that increases the surface potential from 0.26 to 0.42 eV with respect to 2 x 1 reconstructed Si(001). DySi(2-x) nanowires showed a 0.2-0.23 eV lower work function than DySi(2-x) nanoislands, which can be attributed to confinement of electrons along the surface normal that induces a surface dipole when the film thickness approaches the Fermi wavelength. The ability to tune the work function of metal nanostructures should be useful for understanding how electronic structure affects catalytic activity.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-