Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Intermediate step of cohesin’s ATPase cycle allows cohesin to entrap DNA

Abstract

Cohesin is a four-subunit ATPase in the family of structural maintenance of chromosomes (SMC). Cohesin promotes sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. Cohesin performs these functions as a DNA tether and potentially a DNA-based motor. At least one of its DNA binding activities involves entrapment of DNA within a lumen formed by its subunits. This activity can be reconstituted in vitro by incubating cohesin with DNA, ATP, and cohesin loader. Previously we showed that a mutant form of cohesin (DE-cohesin) possesses the ability to bind and tether DNA in vivo. Using in vitro reconstitution assays, we show that DE-cohesin can form stable complexes with DNA without ATP hydrolysis. We show that wild-type cohesin with ADP aluminum fluoride (cohesinADP/AlFx) can also form stable cohesin-DNA complexes. These results suggest that an intermediate nucleotide state of cohesin, likely cohesinADP-Pi, is capable of initially dissociating one interface between cohesin subunits to allow DNA entry into a cohesin lumen and subsequently interacting with the bound DNA to stabilize DNA entrapment. We also show that cohesinADP/AlFx binding to DNA is enhanced by cohesin loader, suggesting a function for loader other than stimulating the ATPase. Finally, we show that loader remains stably bound to cohesinADP/AlFx after DNA entrapment, potentially revealing a function for loader in tethering the second DNA substrate. These results provide important clues on how SMC complexes like cohesin can function as both DNA tethers and motors.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View