Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The Lyman α forest in optically thin hydrodynamical simulations

Abstract

We study the statistics of the Lyα forest in a flat Λ cold dark matter cosmology with the N-body + Eulerian hydrodynamics code NYX.We produce a suite of simulations, covering the observationally relevant redshift range 2 ≤ z ≤ 4. We find that a grid resolution of 20 h-1 kpc is required to produce 1 per cent convergence of Lyα forest flux statistics, up to k = 10 h-1 Mpc. In addition to establishing resolution requirements, we study the effects of missing modes in these simulations, and find that box sizes of L > 40h-1 Mpc are needed to suppress numerical errors to a sub-per cent level. Our optically thin simulations with the ionizing background prescription of Haardt & Madau reproduce an intergalactic medium density-temperature relation with T0 ≈ 104 K and γ ≈ 1.55 at z = 2, with a mean transmitted flux close to the observed values. When using the ionizing background prescription of Faucher-Giguère et al., the mean flux is 10-15 per cent below observed values at z = 2, and a factor of 2 too small at z = 4. We show the effects of the common practice of rescaling optical depths to the observed mean flux and how it affects convergence rates. We also investigate the practice of 'splicing' results from a number of different simulations to estimate the 1D flux power spectrum and show it is accurate at the 10 per cent level. Finally, we find that collisional heating of the gas from dark matter particles is negligible in modern cosmological simulations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View